

July 6, 2021 60565355

Mr. Brian Fettin CENWO-PM-HB U.S. Army Corps of Engineers 1616 Capitol Avenue Omaha, NE 68102

Subject: Draft Final OU1 Rebound Study Letter Report - Quarter 5 Event

Remedial Action Operation Groundwater Treatment Facility at OU1

and Groundwater Monitoring at OU1 and OU3

Cornhusker Army Ammunition Plant, Grand Island, Nebraska Contract W9128F-18-D-0020, Delivery Order Number F0041

Dear Mr. Fettin:

This Operable Unit (OU) 1 Rebound Study Letter Report – Quarter 5 (Q5) Event summarizes the fifth quarter of field activities completed for the OU1 Rebound Study and 2020 subsurface injections performance monitoring. The Letter Report presents the Q5 analytical results and evaluation for the OU1 Rebound Study and performance monitoring, a statistical trend evaluation for OU1 Rebound Study, and presents conclusions and recommendations for upcoming OU1 Rebound Study and performance monitoring activities at Cornhusker Army Ammunition Plant (CHAAP).

1.0 <u>INTRODUCTION</u>

1.1 PROJECT WORK AUTHORITY

Brice Engineering, LLC (Brice) and AECOM Technical Services (AECOM) have prepared this document as the OU1 Rebound Study Letter Report – Quarter 5 Event for CHAAP located at Grand Island, Nebraska (**Figures 1-1** and **1-2**). This work is being conducted under contract W9128F-18-D-0020, Delivery Order Number F0041 to the United States Army Corps of Engineers (USACE), Omaha District.

Conceptual basis for performing the OU1 Rebound Study was provided in the CHAAP OU1 2018 Groundwater Monitoring Results and Program Recommendations Technical Memorandum (Program Recommendations Tech Memo [Brice-AECOM 2019a]), the Final 2018 Annual Groundwater Monitoring Report, Remedial Action Operations (RAO), Groundwater Treatment Facility (GWTF) at OU1 and Groundwater Monitoring at OU1/OU3 (2018 Annual Groundwater Monitoring Report [Brice-AECOM 2019c]), and presented at several stakeholder meetings (April and November 2019). The approved OU1 Rebound Study work planning details are provided in the Final Addendum 3, Uniform Federal Policy – Quality Assurance Project Plan (UFP-QAPP) for RAO, GWTF at OU1 and Groundwater Monitoring at OU1/OU3 at CHAAP (OU1 Rebound Study Work Plan) (Addendum 3, UFP-QAPP [Brice-AECOM 2019b]). The approved 2019 and

2020 OU1 subsurface injection work planning details are provided in the Final UFP-QAPP (Bay West LLC and URS Group Inc. [BW-URS] 2014), its Final Addendum 2 (Brice-AECOM 2018), and the recommendations provided in the Final 2018 Annual Groundwater Monitoring Report (Brice-AECOM 2019c) and the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b).

1.2 PROJECT PURPOSE AND OBJECTIVE

OU1 consists of explosives-contaminated groundwater plumes (explosives concentrations exceeding regulatory action levels) at CHAAP. Health Advisory Levels (HALs) for explosives compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were established as regulatory action levels for CHAAP in the OU1 Record of Decision (ROD) (United States Army Environmental Center [USAEC] 1994) and the subsequent OU1 ROD Amendment (URS Greiner Woodward-Clyde Federal Services [URSGWCFS] 2001). The HALs for RDX and TNT are 2 micrograms per liter (μ g/L) and 400 μ g/L for HMX. The primary compounds of concern (i.e., compounds with historic concentrations in groundwater exceeding their corresponding HAL) are RDX and TNT. HMX has not historically exceeded the HAL during any past groundwater monitoring events. The current OU1 RAO is on-post pump and treatment and monitored natural attenuation for off-post.

Historically, due to the reduction in on-post concentrations and/or the implementation of supplemental remediation efforts (i.e., subsurface injections), operation of extraction wells (EW) 1 through EW6 (that began operation in 1998) have been discontinued since 2009. At the former facility boundary, EW7 began operation in 2000 and has been the only operating extraction well since 2009. Historic groundwater monitoring and subsequent statistical analysis have shown that concentrations of RDX and TNT near the former facility boundary between EW6 and EW7 have significantly declined over the past 23 years due to the existing on-post RAO. Numerical groundwater modeling predictions with EW7 not pumping indicate that the on-post plume will not migrate further downgradient (Brice-AECOM 2019c). Based on these results and simulations, an OU1 Rebound Study is being performed to temporarily discontinue pumping at EW7 and monitor groundwater near the former facility boundary. Eight total groundwater sampling events (one baseline and seven quarterly events) will be completed to closely monitor potential migration of the RDX and TNT plumes and to document any increases/decreases in explosives concentrations in groundwater. The objective of the OU1 Rebound Study is to establish a sufficient data set to initiate further identified Decision Points and Contingency Actions as presented in the OU1 Rebound Study Work Plan (i.e., groundwater extraction is no longer needed, groundwater extraction should be resumed, alternative actions) (Brice-AECOM 2019b).

Concurrent with the OU1 Rebound Study, subsurface injections (a voluntary action) were completed in 2019 (in the area of highest RDX and TNT concentrations near the former facility boundary) and in 2020 (for on-post areas with remaining residual RDX and TNT concentrations above HALs) to accelerate remedial timeframes. Four total groundwater sampling events (at approximate quarterly frequency) will be completed for each injection event to closely monitor performance of the subsurface injections and remediation of the RDX and TNT plumes, and to document any increases/decreases in explosives concentrations in groundwater. The 2019 and 2020 OU1 subsurface injection details and design were included in the Final 2018 Annual Groundwater Monitoring Report (Brice-AECOM 2019c), Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b), respectively; with the approved procedures outlined

in the Final UFP-QAPP (BW-URS 2014). Following the OU1 Rebound Study and the OU1 subsurface injections with associated performance monitoring activities, long-term monitoring (LTM) will continue at OU1.

2.0 FIELD ACTIVITIES

This section summarizes the Q5 OU1 Rebound Study and the 2020 subsurface injection performance monitoring field activities completed at CHAAP. All field activities were completed in accordance with field protocols and standard operating procedures (SOPs) presented in the *Groundwater Recovery and Treatment System Operation and Maintenance (O&M) Manual* (GWTF O&M Manual [Brice 2019]), the Final UFP-QAPP (BW-URS 2014) and its Final Addendum 2 (Brice-AECOM 2018), the Final OU1 Rebound Study Work Plan (Brice-AECOM 2019b), and the OU1 subsurface injection recommendations provided in the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b).

2.1 OU1 REBOUND STUDY FIELD ACTIVITIES

This section presents the Q5 OU1 Rebound Study field activities. The Q5 field activities were completed in February/March 2021 to compare and evaluate associated data to previous completed events. The most recent OU1 Rebound Study activities (Q4) are summarized in the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021). Additionally, the baseline event, Q2, and Q3 are summarized in the Final OU1 Rebound Study Letter Report – Baseline Event (Brice-AECOM 2020a), Final OU1 Rebound Study Letter Report – Quarter 2 Event (Brice-AECOM 2020c), and Final OU1 Rebound Study Letter Report – Quarter 3 Event (Brice-AECOM 2020d), respectively.

2.1.1 Quarter 5 Direct Push Groundwater Sampling Activities (Off-Post)

A total of nine direct push groundwater samples were collected on February 22 and 23, 2021 from three off-post locations (OS001, OS003, and NW050R) as shown on Figure 2-1. Off-post direct push groundwater sampling was completed to continue monitoring explosives concentrations only (as screening data) from the select OU1 off-post locations where permanent monitoring wells are not present and are not able to be installed due to private land ownership. In accordance with the OU1 Rebound Study Work Plan (Brice-AECOM 2019b), off-post location OS001 was selected to evaluate existing explosives concentrations that migrated off-post, and off-post location OS003 was selected to delineate the furthest extent off-post of explosives concentrations above HALs. Off-post location NW050R was selected for direct push groundwater sampling due to private landowner no longer allowing property access to six OU1 Rebound Study off-post monitoring wells (NW050, NW051, NW052, NW080, NW081R, NW082R) (shown on Figure 2-1). The six off-post monitoring wells are no longer sampled for OU1 activities and are scheduled for future abandonment. To continue monitoring groundwater in the area of these wells, direct push groundwater sampling will be conducted in the right-of-way (ROW) adjacent to off-post well cluster NW050 (with Hall County permitting) at similar depths to the three wells during each quarterly event (Q5 through Q8), following similar procedures currently completed for the area downgradient of EW7 (see Table 2-1).

Direct push groundwater sampling was completed for all locations at predetermined vertical intervals within the unconfined shallow aquifer (Grand Island Formation) to verify the vertical extent of the explosives plume. The OS001 and OS003 depth intervals included: shallow – screened approximately 21 to 25 feet below ground surface [bgs], shallow-intermediate – screened approximately 31 to 35 feet bgs, and intermediate – screened approximately 41 to 45 feet bgs. The NW050R depth intervals included: shallow – screened approximately 16 to 20 feet bgs, shallow-intermediate – screened approximately 31 to 35 feet bgs, and intermediate – screened approximately 56 to 60 feet bgs.

Brice-AECOM obtained utility clearances prior to the start of intrusive direct push activities. The Nebraska One Call Diggers Hotline was contacted for utility clearances, which were requested a minimum of 48 hours prior to intrusive work. All identified underground utilities were marked with flagging, stakes, and/or paint. Utility locate tasks were documented in field logbooks to aid in subsequent clearance work. No intrusive work was completed within 5 feet of a marked utility.

The direct push locations OS001 and OS003 were sited using predetermined horizontal coordinates and a global positioning system (GPS) unit to ensure completion in the planned locations. The final sampling location has been vertically surveyed and referenced to previously surveyed locations (i.e., monitoring wells). Due to proximity, the direct push location NW050R utilizes the surveyed horizontal coordinates and vertical elevations of existing well cluster NW050. The surveyed ground surface elevation and sample interval elevations are provided in **Table 2-1**.

The direct push groundwater samples were collected using a Geoprobe® rig (model 7720DT) by Plains Environmental Services (PES) of Salina, Kansas, with full-time oversight by Brice-AECOM. Nebraska well drilling contractor licenses for PES and Brice-AECOM are provided in **Appendix A**.

Direct push groundwater samples were completed using direct push technology with a Geoprobe™ stainless steel screen point sampler (SP15 with exposed screen) and collected from the screened interval using a Geotech Geopump™ peristaltic pump and a check valve. Prior to groundwater sample collection, approximately 7 liters (3 to 5 rod volumes) were purged typically at rates of 0.5 to 1.0 liter per minute (lpm) for each sampling interval. Direct push groundwater samples were analyzed for explosives only (including mono-nitroso-RDX [MNX]) (United States Environmental Protection Agency [USEPA] Method 8330A). Quality control (QC) samples (field duplicates) and matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a 5-percent rate (i.e., one per 20 samples collected). Direct push groundwater sample locations, sample identification (ID) numbers, sample screened intervals, sample collection dates, QC locations, and sample parameters are provided in **Table 2-1**. Direct push groundwater sample collection field sheets (SCFSs) are provided in **Appendix B**.

2.1.2 Quarter 5 OU1 Monitoring Well Sampling Activities (Off-Post and On-Post)

During the Q5 OU1 Rebound Study sampling event, 12 off-post and 18 on-post monitoring wells were sampled from February 28 through March 3, 2021. A summary of the OU1 off-post and on-post sampling locations is presented in **Table 2-2** and shown on **Figure 2-1**.

The monitoring wells were purged and sampled with stainless steel ProActive Monsoon® submersible pumps. The ProActive Monsoon® pump with new disposable tubing was lowered to the middle of the screened interval prior to purging. Modified low-flow purging techniques were

completed at each monitoring well location, maintaining less than (<) 0.3 foot of water level drawdown at a pumping rate of 0.5 lpm or less. Field water quality parameters, including dissolved oxygen (DO), oxidation/reduction potential (ORP), temperature, pH, conductivity, and turbidity were measured at monitoring wells using an In-Situ Aqua TROLL® 500 MPS water quality probe fitted with a flow-through cell. Ferrous iron (Fe²⁺) was measured using a Hach DR820 colorimeter. Purging continued until field water quality parameters stabilized (i.e., three consecutive readings) within criteria ranges.

After purging was completed, sample containers were filled from the discharge line at a rate of 0.5 lpm or less. Samples were collected and analyzed for explosives (including MNX) and laboratory monitored natural attenuation (MNA) parameters: alkalinity by Method 2320B, ammonia by Method 350.1, carbon dioxide (CO₂) back calculated by Method 2320B, nitrate/nitrite by Method 353.2, sulfate by Method 9056A, sulfide by Method 9034, total Kjeldahl nitrogen (TKN) by Method 351.2, dissolved organic carbon (DOC) by Method 9060A, and methane by Method Robert S. Kerr Environmental Research Laboratory 175 (RSK-175). QC samples (field duplicates) and MS/MSDs were collected at a 5-percent rate (i.e., one per 20 samples collected) for all parameters (**Table 2-2**). Off-post and on-post monitoring well SCFSs are provided in **Appendix B**.

2.2 OU1 SUBSURFACE INJECTION FIELD ACTIVITIES

This section presents the Q5 performance monitoring activities completed in February/March 2021 to monitor the results of the 2020 OU1 subsurface injections completed at LL1, LL2, the Decant Station, and at select locations between EW6 and EW7. The Q5 performance monitoring is the first monitoring event following the 2020 subsurface injection activities. The 2020 subsurface injection activities are summarized in the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021). Performance monitoring activities completed for the 2019 subsurface injections (baseline through Q4) is additionally summarized in previous Letter Reports, most recently the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021).

2.2.1 Quarter 5 Subsurface Injection Performance Monitoring

At LL1, LL2, the Decant Station, and between EW6 and EW7, 20 performance monitoring locations (ten LTM monitoring wells and 10 temporary wells) were sampled in February/March 2021, as shown on Figures 2-2 through 2-4. The Q5 event is the first of four quarterly performance monitoring events planned at these performance monitoring wells to gauge the effectiveness of the 2020 subsurface injection activities completed in October/November 2020. Groundwater samples collected from the temporary monitoring wells and LTM wells were analyzed for explosives (including MNX) and laboratory water quality parameters: alkalinity, ammonia, nitrate/nitrite, sulfate, sulfide, TKN, DOC, and methane. QC samples (field duplicates) and MS/MSDs were collected at a 5-percent rate (i.e., one per 20 samples collected) for all parameters. Performance monitoring groundwater sampling locations and parameters are listed in Table 2-4. Performance monitoring SCFSs are provided in Appendix B. The Q5 performance monitoring included:

- Ten new temporary wells (EW7-PM21A, EW7-PM24A, EW7-PM25A/B, EW7-PM26A/B, EW7-PM27B, EW7-PM28A, EW7-PM29A/B) at seven locations between EW6 and EW7
- Ten existing monitoring wells

— LL1: G0094, G0096

— LL2: G0111, G0121, G0122, G0123

— Decant Station: G0102

— Between EW6 and EW7: G0022 and piezometers PZ017R and PZ018

As completed during the baseline through Q4 events, temporary monitoring wells were used to provide a higher quality groundwater sample that has lower turbidity (compared to direct push screen point samples) and is representative of the aquifer. Temporary monitoring wells were installed using direct push technology. The temporary monitoring wells were screened at select vertical intervals based on past direct push vertical profile sampling results. Six shallow temporary wells (screened 20 to 30 feet bgs [i.e., EW7-PM25A]) and four shallow-intermediate temporary wells (screened 30 to 40 feet bgs [i.e., EW7-PM25B]) were installed within the interpreted groundwater explosives plume or within areas of historically higher concentrations identified during the Quarter 3 Event. Temporary well construction details are provided in **Table 2-3**. Surveyed ground surface elevations for both temporary wells and monitoring wells are provided in **Tables 2-3** and **2-4**.

2.2.1.1 Groundwater Sampling from Temporary Wells

The 10 temporary monitoring wells (at seven locations) were installed, developed, purged, sampled, and abandoned from February 25 through February 27, 2021. Temporary performance monitoring well development, purging, and sampling were completed using a Geotech GeopumpTM peristaltic pump. Temporary wells were developed by purging approximately 10 well volumes (purge rates between 0.5 and 1.0 lpm) and samples were collected after all field water quality parameters had stabilized.

Per Nebraska Administrative Code (NAC) Title 178, Chapter 12 (NAC 2014), temporary wells (i.e., test holes) can be used in conjunction with groundwater investigations but may be retained for no more than 10 days unless a surface seal is used and a pre-notification document is submitted to Nebraska Department of Health and Human Services within 30 days prior to construction, then a temporary well may be retained for up to 90 days. Upon completion of sample collection, all temporary monitoring wells were abandoned within 10 days of installation by a Nebraska-licensed well driller. Temporary monitoring wells were abandoned by removing approximately the top 3 feet of the well casing below the ground surface and grouting from the bottom of the well up to ground surface following the procedures outlined in SOP 4, Boring and Monitoring Well Abandonment in the Final UFP-QAPP (BW-URS 2014).

2.2.1.2 Groundwater Sampling from OU1 Monitoring Wells

Ten existing monitoring wells at LL1, LL2, the Decant Station, and between EW6 and EW7 were purged and sampled on March 2 and March 3, 2021. These wells were purged and sampled in accordance with **Section 2.1.2**. Performance monitoring groundwater sampling locations and parameters are listed in **Table 2-4**. Performance monitoring SCFSs are provided in **Appendix B**.

2.3 INVESTIGATION-DERIVED WASTE DISPOSAL PROCEDURES

Investigation-derived waste (IDW) from the Q5 sampling events consisted of purge, decontamination, and development water. IDW disposal was completed in accordance with NDEE IDW procedures as outlined in the Final UFP-QAPP (BW-URS 2014), as follows:

- A visual inspection of the IDW was conducted for evidence of potential contamination (i.e., discoloration, sheen, etc.).
- All IDW water was containerized in an IDW-labeled poly tank located at the GWTF and sampled for site waste characterization analysis (Explosives [including MNX] only [Method 8330A]). All IDW analytical results were below HALs, as summarized in **Table 2-5** (included in **Appendix D**) and discharged to ground surface.

2.4 FIELD DOCUMENTATION, SAMPLE IDENTIFICATION, SAMPLE HANDLING, AND SHIPPING

The observations and data collected during field activities were recorded with waterproof ink in a permanently bound, waterproof logbook with consecutively numbered pages, and/or on field sheets (provided in **Appendix B**), if applicable. A photographic record of site activities and progress was maintained throughout the course of the OU1 Rebound Study and subsurface injection activities and is provided in **Appendix C**.

Samples were collected in laboratory-provided containers and given discrete ID codes that included the sample location number (sample depth for direct push groundwater samples) and collection date. Sample ID labels were attached to each sample container and completed using waterproof, permanent ink. The labels were completed with the sampler's name, sample ID number, date and time of sample collection, preservation type, analyses requested, and sampling matrix. Sample containers were placed into coolers, packed with wet ice (to achieve a temperature of 6 degrees Celsius [°C] or less), and made ready for shipment. Chain-of-custody (CoC) forms were included in each cooler. A copy of each CoC was maintained to document sample handling between the field and the laboratory. Sample coolers were shipped to Eurofins TestAmerica Laboratories in Arvada, Colorado during each sampling event. All samples were shipped via FedEx Priority Overnight.

2.5 FIELD REPORTING

2.5.1 Daily Quality Control Reports

Daily Quality Control Reports (DQCRs) were completed for each day of fieldwork associated with the OU1 Rebound Study and subsurface injection activities. DQCRs include a summary of daily field activities, safety activities, quality assurance/QC activities pertaining to all features of work, problems encountered in the field, and any corrective actions that were taken to correct these problems. Copies of the completed DQCRs are provided in **Appendix B**.

2.5.2 Weekly Progress Reports

Weekly progress reports were completed and submitted to the USACE Project Manager throughout the duration of the field activities. The weekly reports included a summary of the work performed in a particular week including mobilization, site preparation, site access, surveying, groundwater sampling, injection, and demobilization actions. The reports also included a summary of the problems encountered, deviations from the scope of work, percentage of work performed, and records of conversations or other correspondence among CHAAP team members. Copies of the weekly progress reports are provided in **Appendix B**.

3.0 SUMMARY OF QUARTER 5 RESULTS AND DATA QUALITY REVIEW

3.1 QUARTER 5 ANALYTICAL RESULTS

Groundwater samples for the Q5 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring activities were analyzed in accordance with the Final Addendum 2, UFP-QAPP (Brice-AECOM 2018) for various compounds depending on sample location. Groundwater samples for the OU1 Rebound Study off-post direct push locations were analyzed for explosives (including MNX) only (see **Table 2-1**). Groundwater samples for the OU1 Rebound Study off-post and on-post monitoring wells and the 2020 subsurface injection performance monitoring activities were analyzed for explosives (including MNX) and laboratory MNA/water quality parameters: alkalinity, ammonia, nitrate/nitrite, sulfate, sulfide, TKN, DOC, and methane (see **Tables 2-2** and **2-4**). All laboratory analyses were completed by Eurofins TestAmerica. A summary of all Q5 analytical results is presented below.

Tables 3-1 (off-post direct push samples), **3-2** (off-post and on-post monitoring wells), and **3-3** (performance monitoring wells) summarize the explosives compounds detected in groundwater during the Q5 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring sampling activities. The primary explosives compounds detected in groundwater were RDX, HMX, and TNT (only compounds having HALs). Additionally, the explosives breakdown products 1,3,5-trinitrobenzene, 2,4-dinitrotoluene, 2-amino-4,6-dinitrotoluene (2-Am-DNT), 4-amino-2,6-dinitrotoluene (4-Am-DNT), and MNX were detected.

- One off-post direct push location (OS001) had a concentration of TNT above the HAL (2 μg/L), but no off-post direct push locations had detections above the RDX HAL (2 μg/L). Off-post direct push locations had detections of explosives breakdown products 1,3,5-trinitrobenzene, 2-Am-DNT, and 4-Am-DNT.
- Five OU1 Rebound Study on-post monitoring wells (G0086, G0077, PZ017R, PZ018, PZ020) had TNT concentrations above the HAL and one OU1 Rebound Study on-post monitoring well (PZ017R) had an RDX concentration above the HAL. No OU1 Rebound Study off-post monitoring wells had RDX or TNT concentrations above the HALs. Ten OU1 Rebound Study off-post and on-post monitoring wells had small detections of HMX but were below the HAL (400 μg/L). OU1 Rebound Study off-post and on-post monitoring wells had detections of explosives breakdown products 1,3,5-trinitrobenzene, 2,4-dinitrotoluene, 2-Am-DNT, and 4-Am-DNT.

• Six performance monitoring wells (EW7-PM21A, EW7-PM24A, G0094, G0111, PZ017R, PZ018) had TNT concentrations above the HAL and three OU1 Rebound Study on-post monitoring well (G0094, G0096, PZ017R) had RDX concentrations above the HAL. Two performance monitoring wells had small detections of HMX but were below the HAL. Performance monitoring wells had detections of explosives breakdown products 1,3,5-trinitrobenzene, 2,4-dinitrotoluene, 2-Am-DNT, 4-Am-DNT, and MNX.

The data collected during the Q5 OU1 Rebound Study and 2020 subsurface injection performance monitoring were used to update the explosives plume boundaries in these areas. Data for the Q5 off-post direct push groundwater sample locations and off-post and on-post monitoring wells are shown on **Figure 2-1** and data for the Q5 2020 subsurface injection performance monitoring are shown on **Figure 2-2** through **2-4**.

Tables 3-2 and **3-3** also summarize the laboratory MNA/water quality parameters detected in groundwater at off-post and on-post monitoring wells and performance monitoring wells, respectively. Field duplicate sample pairs were collected to assess both field and laboratory precision. Three field duplicate samples were collected and submitted to the laboratory for analysis. Analytical results for the Q5 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring field duplicate sample pairs are presented in **Table 3-4**.

3.2 FIELD WATER QUALITY PARAMETERS

Field water quality parameter measurements were taken at the time of sample collection during Q5 OU1 Rebound Study (off-post and on-post monitoring wells) and 2020 OU1 subsurface injection performance monitoring sampling activities. Field water quality parameter measurements included ORP, DO, pH, conductivity, temperature, turbidity, and Fe²⁺. Groundwater purging stabilization was successfully accomplished using these field water quality parameter criteria. All field results were recorded on the SCFSs (included in **Appendix B**). OU1 off-post and on-post monitoring well and subsurface injection performance monitoring well field water quality parameter measurements are presented in **Tables 3-5** and **3-6**, respectively.

3.3 DATA QUALITY REVIEW/VALIDATION PROCESS

Analytical data were reviewed and verified in accordance with the Final Addendum 2, UFP-QAPP (Brice-AECOM 2018). The data review process included evaluations of the following elements, as required, including validation of raw data by an AECOM chemist. The validation software ADR.NET was used to supplement the manual validation.

- Laboratory case narrative/cooler receipt form
- Sample documentation
- Sample preservation and holding time compliance
- Instrument performance check (tuning)
- Initial calibration
- Initial calibration verification second source
- Second column confirmation

- Primary and secondary column relative percent difference (RPD)
- Continuing calibration verification (CCV)
- Internal standards
- Blank samples
- Laboratory control samples (LCS)
- Surrogate compounds
- MS/MSDs
- Field duplicates
- Sensitivity
- Additional qualifications, including professional judgment
- Completeness

3.3.1 Analytical Results Verification

The laboratory data reports, complete ADR.NET, and data verification reports are provided in **Appendix D**. Qualifications applied to the analytical results based on the data review findings are included in **Table D-1** (**Appendix D**). As previously indicated, below trends only include discussion regarding the Q5 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring activities.

General trends regarding the data validation are as follows:

- Some explosives results for samples OS001-DP05-35, OS001-DP05-45, EW7-PM21A-5-25, EW7-PM24A-5-25, EW7-PM27B-5-35, EW7-PM29B-5-35, CA213-5, G0075-5, G0080-5, G0081-5, G0082-5, G0086-5, G0087-5, G0091-5, G0094-5, G0096-5, G0111-5, G0296-5, PZ017R-5, PZ021-5, and Water-WC-Q5-MAR21 were qualified as estimated (J) / estimated nondetect (UJ) due to relative percent differences >40% between the primary and confirmation columns.
- The sulfide result for sample G0079-5 was qualified as nondetect (U) due to method blank contamination.
- The 2-nitrotoluene results for samples EW7-PM25A-5-25, EW7-PM25B-5-35, and EW7-PM28A-5-35 were qualified as **UJ** due to continuing calibration verification percent differences outside of evaluation criteria.
- The 2-amino-4,6-dinitrotoluene and sulfate results for the duplicate pair G0096-5 / G0296-5 were qualified as J/UJ due to field duplicate relative percent differences outside of evaluation criteria.
- The methane results for the duplicate pair PZ017R-5 / PZ021-5 were qualified as **J** due to field duplicate relative percent differences outside of evaluation criteria.
- The methane result for sample EW7-PM27B-5-35 was qualified as **J** due to the presence of headspace greater than six millimeters in the VOA vials.

- The sulfate results for samples G0111-5, G0082-5, and G0070-5 and the methane results for samples EW7-PM29B-5-35 and G0082-5 were qualified as **J** due to MS/MSD recoveries above evaluation criteria.
- All detected explosives for samples EW7-PM21A-5-25, EW7-PM24A-5-25, EW7-PM26A-5-25, EW7-PM27B-5-25, G0094-5, G0096-5, G0296-5, G0086-5, and Water-WC-Q5-MAR21 were qualified as **J** due to surrogate recoveries above evaluation criteria.
- The 2-amino-4,6-dinitrotoluene result for sample EW7-PM29B-5-35 was qualified as **J** due to surrogate recovery above evaluation criteria.
- The sulfide results for the following samples were qualified as J/UJ due holding time exceedances: G0082-5, PZ017R-5, PZ018-5, PZ021-5, G0081-5, G0086-5, G0087-5, CA210-5, G0091-5, and G0092-5.
- The methane result for sample EW7-PM29B-5-35 was qualified as **J** due to lab duplicate relative percent difference outside of evaluation criteria.
- The 1,3-dinitrobenzene, 2,4-dinitrobenzene, 2-nitrotoluene, 3-nitrotoluene, 4-amino-2,6-dinitrotoluene, 4-nitrotoluene, and nitrobenzene results for samples NW050R-DP05-20, NW050R-DP05-35, NW050R-DP05-60, OS001-DP05-25, and OS501-DP05-25 were qualified as J/UJ due to LCS/LCSD recoveries below evaluation criteria.
- The 2-nitrotoluene, 3-nitrotoluene, and 4-amino-2,6-dinitrotoluene results for samples PZ017R-5, PZ018-5, PZ019-5, PZ021-5, NW020-5, NW021-5, NW022-5, G0024-5, G0077-5, G0078-5, and PZ020-5 were qualified as J/UJ due to LCS/LCSD recoveries below evaluation criteria.
- The explosives results for all samples in SDG 280-145816 were qualified as J/UJ due to temperature exceedance. During shipment, delivery of one sample cooler containing SDG 280-145816 samples was delayed and received later in the week due to severe weather.
- The explosives results for sample OS003-DP05-45 were qualified as **UJ** due to MS/MSD recoveries below evaluation criteria.
- The ammonia, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene, and 4-amino-2,6-dinitrotoluene results for EW7-PM29B-5-35 were qualified as **J/UJ** due to MS/MSD recoveries below evaluation criteria.
- The TKN results for samples G0080-5, G0086-5, and PZ020-5 were qualified as UJ due to MS/MSD recoveries below evaluation criteria.
- The nitrate-nitrite result for sample G0024-5 was qualified as **J** due to MS/MSD recoveries below evaluation criteria.
- The TKN and methane result for sample G0070-5 were qualified as **UJ** due to MS/MSD recoveries below evaluation criteria.
- The TKN and sulfide result for sample G0075-5 were qualified as UJ due to MS/MSD recoveries below evaluation criteria.
- The explosives results for samples OS001-DP05-35, OS003-DP05-25, OS003-DP05-45, NW050R-DP05-20, G0111-5, and G0122-5 were qualified as J/UJ due to surrogate recoveries below evaluation criteria.

3.3.2 Conclusions of Data and Quality Review

The analytical data were found to be acceptable for the intended use based on the data validation and the automated data review. Completeness, defined to be the percentage of analytical results judged to be valid, including estimated data, was 100 percent for the sampling events. No analytical data were rejected during the data validation. Generally, good precision was noted in the field duplicate samples for analytes reported above the laboratory limits of quantitation.

4.0 OU1 STATISTICAL TREND EVALUATION (OU1 REBOUND STUDY WELLS)

Following the OU1 Rebound Study Q5 event (5th sampling event for all respective wells), a statistical trend evaluation of RDX and TNT concentrations was completed. The OU1 Rebound Study statistical trend evaluation includes only the off-post and on-post OU1 Rebound Study monitoring wells (shown on **Figure 2-1**). While all OU1 Rebound Study wells are considered for trend evaluations, only the wells with detections are included in the quarterly report statistical trend figures, currently illustrated as two sets of wells (former facility boundary wells provided on **Figure 4-1** and upgradient wells provided on **Figure 4-2**).

4.1 STATISTICAL TREND EVALUATION PROCESS

OU1 Rebound Study analytical results were evaluated using Mann-Kendall analysis in Monitoring and Remediation Optimization System (MAROS) Version 3.0 (AFCEC 2012). Statistical trend analysis of RDX and TNT was completed using the Mann-Kendall analysis to assess the potential for future RDX and TNT concentration increases. Mann-Kendall is a non-parametric statistical procedure that is well suited for analyzing trends in data over time, that do not follow a normal distribution, and focus on the location of the probability distribution of the sampled population, rather than specific parameters of the population. (AFCEC 2012). The linear regression analysis, modeling, and empirical functions were not used during this evaluation.

Using the three statistical metrics for Mann-Kendall analysis (Mann-Kendall statistic [S], Confidence in Trend [CT], and Coefficient of Variation [COV]), the Mann-Kendall analyzes the trend in the data over time and is utilized in the analysis of groundwater plume stability. A concentration trend category is then determined following the Mann-Kendall Analysis Decision Matrix. Generally, positive S values indicate an increase in analyte concentrations over time and negative S values indicate a decrease in analyte concentrations over time. The CT provides a percentage value of confidence for the S validity, and the COV provides a general indicator of the degree of variability. Mann-Kendall analysis will be applied to RDX and TNT results to assess the potential for future RDX and TNT concentration increases.

Individual monitoring well concentration trends are categorized into one of seven categories based on the decision matrix:

MANN-KENDALL ANALYSIS DECISION MATRIX

Mann-Kendall Statistic (S)	Confidence in Trend (CT)	Concentration Trend
S > 0	> 95%	Increasing (I)
S > 0	90% to 95%	Probably Increasing (PI)
S > 0	< 90%	No Trend (NT)
S less than or equal (≤) 0	< 90% and COV greater than or equal (≥) 1	No Trend (NT)
S ≤ 0	< 90% and COV < 1	Stable (S)
S < 0	90% to 95%	Probably Decreasing (PD)
S < 0	> 95%	Decreasing (D)
Dataset where a	ll values are nondetect	Nondetect (ND)

Notes:

No Trend – No statistically significant trend with more variability in concentrations over time (COV) Stable – No statistically significant trend with less variability in concentrations over time (COV)

4.1.1 Program Input

4.1.1.1 Data Management

Groundwater monitoring data at each set of wells were tabulated into an importable format recognized by the MAROS software, as summarized and presented in **Appendix E** (**Tables E.1**, **E.2**, and **E.3**). The groundwater monitoring data set included:

- Well names
- Well location coordinates
- Chemical constituent(s)
- Sample results
- Sample dates
- Detection limits (used to estimate values for non-detects)
- Data flags (non-detect or estimated [J] values)

4.1.2 Program Output

Mann-Kendall Statistics Summary result sheets output for each well set are included in **Appendix E** with results discussed below.

4.2 STATISTICAL RESULTS SUMMARY

The Mann-Kendall Statistics Summary sheets lists monitoring wells used in the evaluation. General sampling information, such as the number of samples and average detected constituent concentration, is also presented. A contaminant concentration trend is determined for each well using the Mann-Kendall technique.

Data for the Mann-Kendall analysis for wells at the 'former facility boundary' (near operating EW7) were used from 12 total wells (i.e., three off-post monitoring wells, six on-post monitoring wells, and three piezometers) and shown on the Mann-Kendall Statistics Summary result sheet in **Appendix E**. Due to no RDX and TNT detections at five of the former facility boundary wells during OU1 Rebound Study sampling events (i.e., baseline through Q5), only seven wells were included for evaluation and shown on **Figure 4-1**. The Mann-Kendall trend analysis results for each of the seven wells including: detections, detection frequency, minimum, maximum, mean, median, Mann-Kendall statistic result, and concentration trend are provided on **Figure 4-1** and yielded the following summarized results for TNT and RDX:

- TNT increasing (I) at NW020 and G0077, no trend (NT) at G0024 and PZ020, stable (S) at PZ017R and PZ018, and nondetect (ND) at G0091.
- RDX increasing (I) at PZ017R, no trend (NT) at NW020, G0024, PZ018, and PZ020, stable (S) at G0077, and decreasing (D) at G0091.

Data for the Mann-Kendall analysis for 'upgradient wells' of EW7 were used from nine on-post monitoring wells and shown on the Mann-Kendall Statistics Summary result sheet in **Appendix** E. Due to no RDX and TNT detections at four of the upgradient wells during OU1 Rebound Study sampling events (i.e., baseline through Q5), only five wells were included for evaluation and shown on **Figure 4-2**. The Mann-Kendall trend analysis results for each of the five wells including: detections, detection frequency, minimum, maximum, mean, median, Mann-Kendall statistic result, and concentration trend are provided on **Figure 4-2** and yielded the following summarized results for TNT and RDX:

- TNT stable (S) at G0086, probably decreasing (PD) at G0081, and nondetect (ND) at G0076, G0082, and G0087.
- RDX increasing (I) at G0087, no trend (NT) at G0086, stable (S) at G0076 and G0082, and nondetect (ND) at G0081.

Data for the remaining OU1 Rebound Study 'downgradient' wells (i.e., 15 wells downgradient of EW7 and feedlot) are included in **Appendix E** (**Tables E.3**); however, these wells were not included in Mann-Kendall analysis, analysis figures, or summary sheets due to all having no detections of RDX or TNT during OU1 Rebound Study sampling events (i.e., baseline through Q5).

The trend analysis results for the two sets of wells (shown on **Figures 4-1** and **4-2**) indicated that four wells had an increasing trends (I), one well had a decreasing trend, and one well had a probably decreasing trend (PD). All other wells yielded no trend (NT), stable (S), or nondetect (ND) results for Mann-Kendall statistical analysis. Of the four wells with increasing trends, two 'former facility boundary' wells (NW020 and G0077) showed increasing TNT trends and one 'former facility boundary' well (PZ017R) showed an increasing RDX trend. One 'upgradient' well (G0087) had an increasing trend for RDX. During the OU1 Rebound Study sampling events, G0077 has remained slightly above the TNT HAL for all events, PZ017R concentrations have increased to slightly above the RDX HAL (only during Q5), and although increasing, NW020 and G0087 still remain below the TNT and RDX HALs, respectively. One 'former facility boundary' well (G0091) had a decreasing trend for RDX, one 'upgradient' well (G0081) had a probably decreasing trend for TNT, and both have not been above the HALs during the OU1 Rebound Study. The tabulated groundwater monitoring data for each well are included in **Appendix E**.

5.0 OU1 REBOUND STUDY AND INJECTION PERFORMANCE EVALUATION

This section presents an evaluation of the Q5 data compared to the previous four quarters of data for the OU1 Rebound Study and the subsurface injection performance monitoring for the OU1 groundwater explosives plume, as summarized in **Tables 5-1** through **5-4**. This evaluation compares RDX and TNT concentrations and key MNA/water quality parameters in groundwater and qualitatively discusses any concentration trends observed. Although baseline through Q4 performance monitoring was specifically completed for evaluating the 2019 subsurface injection event, select locations were added (or continued) in Q5 for performance monitoring of the 2020 subsurface injection event.

Previous baseline, Q2, Q3, Q4 event data are provided in the Final OU1 Rebound Study Letter Report – Baseline Event (Brice-AECOM 2020a), the Final OU1 Rebound Study Letter Report – Quarter 2 Event (Brice-AECOM 2020c), the Final OU1 Rebound Study Letter Report – Quarter 3 Event (Brice-AECOM 2020d), and the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021), respectively. Additionally, for comparison, historic RDX and TNT plume interpretation figures from previous OU1 Rebound Study and performance monitoring events (i.e., baseline through Q4) are included in **Appendix F**.

5.1 OU1 REBOUND STUDY EVALUATION

5.1.1 RDX and TNT Concentrations

RDX and TNT concentrations for all OU1 Rebound Study locations are presented in **Table 5-1**. Of the 18 on-post wells sampled during the Q5 event, five wells (G0077, G0086, PZ017R, PZ018, and PZ020) had TNT concentrations above its HAL (2 μ g/L); during the Q4 event four wells had TNT concentrations above the HAL. G0086 was nondetect for TNT in Q4; however, it was slightly above the TNT HAL from baseline through Q3 events and again in Q5 (4.9 μ g/L). For the five onpost wells, the TNT concentration increased slightly at G0077, G0086, and PZ020 from Q4 to Q5, but were comparable to previous events. The TNT concentrations decreased slightly at PZ017R and PZ018 from Q4 to Q5; however, PZ017R had an increase to above the RDX HAL (2 μ g/L) in Q5 (from 1.8 μ g/L in Q4 to 2.2 μ g/L in Q5). PZ017R is the only on-post well with RDX concentrations above the HAL in Q5 (**Figures 4-1** and **4-2**). For the 12 off-post wells, concentrations continued to be nondetect for RDX and TNT during the Q5 event, with exception of NW020 (located at the former facility boundary) which has had minor RDX and TNT detections in all events, was above the RDX HAL during Q4 (2.2 μ g/L), but has decreased to below the HAL during Q5 (1.2 μ g/L).

At off-post direct push location OS001 during the Q5 event, all RDX concentrations were below the HAL and one TNT concentration remained above the HAL, but TNT concentrations continued to decrease comparatively to previous events. During Q5, the shallow interval at OS001 currently has a TNT concentration greater than the HAL. At OS001, a comparison of TNT concentrations detected during the baseline through Q5 sampling events indicates concentrations have generally decreased since Q3 in the shallow interval (approximately 25 feet bgs) from 12 μ g/L, to 9.2 μ g/L, to 32 μ g/L, to 29 μ g/L, to 20 μ g/L. TNT concentrations in the shallow-intermediate interval (approximately 35 feet bgs) have fluctuated during events from 11 μ g/L, to 8.2 μ g/L, to 11 μ g/L, to 15 μ g/L, to 2 μ g/L. In the intermediate interval (approximately 45 feet bgs) TNT concentrations have generally remained below the HAL from nondetect, to 1.1 μ g/L, to 2.2 μ g/L, to nondetect,

to 0.25 μ g/L. Off-post direct push locations OS003 (farther downgradient) and NW050R (downgradient of feedlot/adjacent to previous OU1 Rebound well cluster NW050) had no RDX or TNT detections during the Q5 event, with the exception of OS003 having a TNT detection of 0.2 μ g/L in the shallow interval (approximately 25 feet bgs). At OS003 (sampled during baseline, Q4, and Q5 events), a comparison of TNT concentrations detected indicate TNT concentrations have decreased to below the HAL from 3 μ g/L, to nondetect, to 0.2 μ g/L, respectively.

Q5 data indicate that TNT concentrations >2 $\mu g/L$ are present on-post slightly upgradient of the former facility boundary and extend off-post approximately 1,000 feet downgradient of the former facility boundary in a narrow and shallow plume. One small RDX plume >2 $\mu g/L$ is present on-post at the former facility boundary (**Figure 2-1**).

5.1.2 MNA Parameter Measurements

MNA parameters for all OU1 Rebound Study wells are presented in Table 5-2. MNA occurs through both destructive (biodegradation) and non-destructive (dispersion and dilution) processes. The Q5 MNA parameter results for the OU1 Rebound Study wells were comparable to baseline through Q4 parameters at the same off-post and on-post wells. In general, the data indicate these OU1 Rebound Study off-post and on-post wells continue to have higher ORP, DO (with the exception of the lower portion of the aquifer which has low DO concentrations), nitrate/nitrite, and sulfate measurements and low ammonia, TKN, DOC, CO₂, methane, alkalinity, sulfide, and Fe²⁺ measurements. Geochemical conditions most conducive to biodegradation include negative ORP values, DO concentrations less than 0.5 mg/L, low nitrate/nitrite concentrations, low sulfate concentrations, and DOC concentrations greater than 10 mg/L. Correspondingly, higher concentrations of sulfide, Fe²⁺, and methane can indicate an environment in which biodegradation is occurring. With the exception of the deeper portion of the aquifer, the data do not provide strong evidence that biodegradation is the primary mechanism of MNA for RDX and TNT for OU1 Rebound Study wells. Given the low and generally decreasing concentrations of RDX and TNT in the areas where the OU1 Rebound Study wells are located (generally surrounding the plume; upgradient, cross gradient, and downgradient), it is likely that dispersion and dilution play a stronger role in MNA for the OU1 Rebound Study wells than biodegradation. Overall, conditions at the OU1 Rebound Study wells continue to indicate the effectiveness of MNA at reducing RDX and TNT concentrations.

5.2 OU1 SUBSURFACE INJECTION PERFORMANCE MONITORING EVALUATION

5.2.1 RDX and TNT Concentrations

Explosives results for all OU1 subsurface injection performance monitoring locations are presented in **Table 5-3**. The Q5 performance monitoring includes locations specific for evaluating the 2020 subsurface injection event that was completed in October-November 2020 at LL1, LL2, the Decant Station, and between EW6 and EW7. Although the 2019 subsurface injection event (October-November 2019) was evaluated using baseline through Q4 performance monitoring events, select locations are again included (for Q5 through Q8 events) for performance monitoring of the 2020 subsurface injection event. The Q5 event performance monitoring results continued to verify that RDX and/or TNT concentrations >2 μg/L remain at LL1, LL2, and between EW6 and EW7; however, concentrations have been substantially reduced (including multiple locations

decreasing to below HALs) within the 2020 subsurface injection areas (shown on **Figures 2-2** through **2-4**).

At LL1, performance monitoring was completed in Q5 to evaluate the 2020 subsurface injection at two on-post monitoring wells (G0094 and G0096) which had RDX and/or TNT concentrations above the HALs (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). Neither monitoring well was sampled during baseline, Q2, and Q4 events. During the Q5 event, both monitoring wells continue to have RDX and/or TNT concentrations above the HALs. At G0094, a comparison of RDX and TNT concentrations detected during the Q3 through Q5 sampling events indicates RDX concentrations increased from 2.7 μ g/L to 16 μ g/L and TNT concentrations decreased from 8.5 μ g/L to 4.9 μ g/L. At G0096, a comparison of RDX and TNT concentrations detected during the Q3 through Q5 sampling events indicates RDX concentrations increased from 36 μ g/L to 87 μ g/L and TNT concentrations decreased from 0.96 μ g/L to 0.24 μ g/L.

At LL2, performance monitoring was completed in Q5 to evaluate the 2020 subsurface injection at four on-post monitoring wells (G0111, G0121, G0122, and G0123) which had RDX or TNT concentrations above the HALs (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). None of the monitoring wells were sampled during baseline, Q2, and Q4 events. During the Q5 event, only G0111 continued to have a TNT concentration above the HAL and all wells were nondetect for RDX. At G0111, a comparison of TNT concentrations detected during the Q3 through Q5 sampling events indicate the TNT concentration decreased from 12 μ g/L to 3.7 μ g/L.

At the Decant Station, performance monitoring was completed in Q5 to evaluate the 2020 subsurface injection at one on-post monitoring well (G0102) which had an RDX concentration above the HAL (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). G0102 was not sampled during the baseline, Q2, and Q4 events. During the Q5 event, G0102 was nondetect for both RDX and TNT. At G0102, a comparison of RDX concentrations detected during the Q3 through Q5 sampling events indicate the RDX concentration decreased from 41 μ g/L to nondetect, respectively.

Between EW6 and EW7, performance monitoring was completed in Q5 to evaluate the 2020 subsurface injection at three on-post monitoring wells (G0022, PZ017R, and PZ018) and 10 temporary wells (EW7-PM21A, PM24A, PM25A, PM25B, PM26A, PM26B, PM27B, PM28A, PM29A, and PM29B) which had RDX and/or TNT concentrations above the HALs (2 µg/L) during the Q3 event (annual OU1 LTM event – June 2020) or Q4 event. During the Q5 event, two of the three monitoring wells continued to have RDX or TNT concentrations above the HALs (PZ017R and PZ018). At PZ017R, a comparison of RDX and TNT concentrations detected during the baseline through Q5 sampling events indicates RDX concentrations increased slightly from $0.87 \mu g/L$, to $1.4 \mu g/L$, to $1.8 \mu g/L$, to $2.2 \mu g/L$ and TNT concentrations generally decreased from 15 μ g/L, to 17 μ g/L, to 11 μ g/L, to 15 μ g/L, to 10 μ g/L. At PZ018, a comparison of RDX and TNT concentrations detected during the baseline through Q5 sampling events indicates RDX decreased from 0.88 µg/L, to nondetect, to 1 µg/L, to nondetect, to nondetect and TNT concentrations generally decreased from 15 µg/L, to 19 µg/L, to nondetect, 17 µg/L, to 6 μg/L. At the ten temporary wells, only three locations had detections of TNT during Q5 event, of which two remain above the HAL (EW7-PM21A and PM24A), and there were no detections of RDX. At PM21A, a comparison of TNT concentrations detected during the baseline through Q5 sampling events indicate TNT concentrations have decreased from 29 µg/L, to 17 µg/L, to 11 μg/L, to 11 μg/L, to 5.8 μg/L. At PM24A, a comparison of TNT concentrations detected during

the baseline through Q5 sampling events indicate TNT concentrations have decreased from 9.8 μ g/L, to 0.53 μ g/L, to 8.3 μ g/L, to 5.4 μ g/L, to 4.6 μ g/L. The on-post groundwater explosives plumes at LL1, LL2, the Decant Station, and between EW6 and EW7 was refined based on the Q5 subsurface injection performance monitoring results as shown on **Figures 2-2** through **2-4**.

5.2.2 Water Quality Parameter Measurements

Water quality parameters for all OU1 subsurface injection performance monitoring locations are presented in **Table 5-4**. The Q5 water quality parameters for the performance monitoring wells indicate a continued anaerobic environment is present due to the 2020 subsurface injections. ORP and DO measurements continued to be low and decreasing during the Q5 event when compared to previous events. At all locations directly impacted by the 2020 injections (i.e., temporary wells and select monitoring wells), significant anaerobic conditions are present (e.g., ORP/DO measurements at shallow temporary wells and monitoring wells averaged from -10.3 mV/1.22 mg/L during baseline events to -118.9 mV/0.38 mg/L during Q5 event). In comparison to baseline events for each location, Q5 results show decreases in nitrate and sulfate and increases in DOC, methane, and Fe²⁺ which indicate that anaerobic conditions are present within the treatment zone.

6.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents the conclusions for the Q5 OU1 Rebound Study and the 2020 OU1 subsurface injection performance monitoring activities, and recommendations for the next sampling event (Quarter 6 [Q6] – May/June 2021). For comparison, historic RDX and TNT plume interpretation figures from previous OU1 Rebound Study and performance monitoring events (i.e., baseline through Q4) are included in **Appendix F**.

6.1 CONCLUSIONS

6.1.1 OU1 Rebound Study

All Q5 OU1 Rebound Study sampling activities were completed successfully, 16 months after EW7 shutdown (October 2019). The Q5 analytical results indicate the OU1 on-post TNT plume generally maintains a similar shape and extent from previous sampling events, with detections below HALs to the north and south extent of EW7 (i.e., well cluster NW020 and PZ019). During Q5, all RDX detections at OU1 Rebound Study monitoring wells and off-post direct push locations were below the HAL (2 µg/L), with the exception of on-post piezometer PZ017R (2.2 µg/L) which is its first exceedance of the RDX HAL since 2017. The slight increase in the RDX concentration at PZ017R is likely a small, isolated pulse migrating from upgradient, as evidenced by no RDX detections above the HAL at surrounding wells. As PZ017R is also utilized for performance monitoring of upgradient subsurface injection activities (2019 and 2020), this RDX concentrations above the HAL, which was not identified during baseline through Q4 events, are likely the result of the 2019 and 2020 injection activities causing mobilization of dissolved RDX. Previous injection events at OU1 have shown that RDX concentrations will likely decrease as the compound is biodegraded within the established anaerobic conditions.

During Q5, TNT concentrations $>2 \mu g/L$ were identified at five OU1 Rebound Study on-post wells. These results are similar to previous events, with the exception of the TNT concentration at upgradient well G0086 increasing to above the HAL and the noteworthy decreases in TNT

concentrations at PZ017R and PZ018. TNT concentrations at well G0086 have been above the HAL since its installation in 2010, except for 2016 and Q4. At PZ017R (and generally at PZ018), TNT concentrations are lowest since well installations in 2001.

During Q5, TNT concentrations >2 μ g/L were identified at off-post direct push location OS001. TNT concentrations decreased at the shallow interval (25 feet bgs) and the shallow-intermediate interval (35 feet bgs) with only the shallow interval having a TNT concentration above the HAL. At off-post direct push location OS003 and newly sampled location NW050R, all sample depth intervals were nondetect for TNT and only minor detections of RDX below the HALwere observed at off-post direct push location OS003. The Q5 off-post direct push sample results indicate that the interpreted TNT plume is similar in size to Q4 (approximately 1,000 feet downgradient of former facility boundary), stable, and likely naturally attenuating. Additionally, off-post monitoring wells downgradient of the feedlot (which have been below HALs since 2012 or longer) continue to remain nondetect for both RDX and TNT.

Based on the observation of concentrations above HALs at off-post direct push locations and monitoring wells, the criteria were met to evaluate Decision Points #1 and #2 as outlined in the OU1 Rebound Study Work Plan. Continuation of the OU1 Rebound Study is recommended for Contingency Action #1 based on the following Decision Point #1 inputs:

- The current extent of off-post TNT concentrations above the HAL are defined by the Q5 off-post direct-push sample results.
- Based on the results of the previous rebound study off-post direct push sample locations, TNT
 concentrations above the HAL are unlikely to migrate beyond the feedlot (i.e., plume is
 attenuating).
- Existing institutional controls (ICs) (i.e., off-post City Ordinance extending to facility boundary [maintained by City of Grand Island and Central Platte Natural Resources District (CPNRD)], on-post deed restrictions) remain protective.

Continuation of the OU1 Rebound Study is recommended for Contingency Action #2 based on the following Decision Point #2 inputs:

- The current extent of on-post and off-post RDX concentrations are defined and RDX concentrations above the HAL are unlikely to migrate beyond the feedlot.
- Existing ICs (i.e., off-post City Ordinance extending to facility boundary [maintained by City of Grand Island and CPNRD], on-post deed restrictions) remain protective.

6.1.2 OU1 Subsurface Injection Performance Monitoring

All Q5 OU1 subsurface injection performance monitoring sampling was completed successfully approximately three months after the 2020 subsurface injection event (October/November 2020). Decreases in explosives concentrations were identified at LL1, LL2, the Decant Station, and between EW6 and EW7 during the Q5 event due to the establishment of a highly anaerobic subsurface environment conducive to explosives biodegradation.

During Q5, six of 20 performance monitoring locations (G0094 – LL1, G0111 – LL2, and PZ017R, PZ018, EW7-PM21A, PM24A – between EW6 and EW7) had TNT concentrations above the HAL (seven prior to the 2020 injection event), but TNT concentrations have decreased at all locations.

The largest decrease in TNT concentrations at Q5 performance monitoring wells, from prior to 2020 subsurface injections to Q5 event, was at PZ018 (17 μ g/L to 6 μ g/L, respectively), and monitoring well G0022 decreased to below the HAL.

During Q5, three of the 20 performance monitoring locations (G0094 and G0096 – LL1, and PZ017R – between EW6 and EW7) had RDX concentrations above the HAL (six prior to the 2020 injection event); however, RDX concentrations increased at all three locations and PZ017R was previously below the HAL in Q4. These increases in RDX concentrations were likely due to the injection activities causing mobilization of dissolved RDX (as previously identified during Q2 and Q3 sampling events following the 2019 injection activities). As similarly shown during the Q4 event, the concentrations of RDX are expected to quickly biodegrade within the established anaerobic treatment zone. Additionally, four other performance monitoring wells (G0121, G0122, G0123 – LL2 and G0102 – Decant Station) had decreases in RDX concentrations to below the HAL in Q5. The largest decrease in RDX concentrations at Q5 performance monitoring wells, from prior to 2020 subsurface injections to Q5, was at G0123 (48 μg/L to nondetect, respectively).

6.2 RECOMMENDATIONS

6.2.1 OU1 Rebound Study

Proceed with the Q6 sampling event for the OU1 Rebound Study (May/June 2021) per the OU1 Rebound Study Work Plan (Brice-AECOM 2019b) and continue to evaluate based on Decision Points, Contingency Actions, and Inputs #1 and #2 (Brice-AECOM 2019b). As completed during the Q5 OU1 Rebound Study sampling event, and as detailed/shown on **Table 2-1** and **Figure 2-1**, off-post direct push locations OS001 (location of highest explosives concentrations off-post), and OS003, NW050R (locations identified with explosives below HALs) will be sampled during Q6 field activities. As completed in Q5, location NW050R will continue to be sampled for explosives data within Hall County ROW to supplement for adjacent OU1 Rebound Study off-post well clusters NW050 and NW080 no longer being accessible (private landowner). In accordance with the OU1 Rebound Study Work Plan, these locations will continue to verify the current horizontal and vertical extent of explosives concentrations above HALs and to evaluate any potential explosives migration further downgradient off-post. Following future off-post data analysis, explosives concentrations and migration trends will continue to be evaluated, and if necessary, additional off-post direct push sampling will be completed to verify the off-post extent of explosives concentrations above HALs.

In accordance with OU1 Rebound Study Work Plan and Final Addendum 2 (Brice-AECOM 2018), groundwater samples will be collected at the remaining 30 on- and off-post monitoring wells (detailed/shown on **Table 2-2** and **Figure 2-1**) during Q6 field activities.

6.2.2 OU1 Subsurface Injection Performance Monitoring

Proceed with Q6 OU1 subsurface injection performance monitoring event (May/June 2021), which is the 2nd event evaluating the 2020 subsurface injections per the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b) and the recommendations detailed in the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021). As completed during the Q5 OU1 subsurface injection performance monitoring event, and as detailed/shown on **Table 2-4**

and **Figures 2-2** through **2-4**, 20 performance monitoring locations at LL1, LL2, the Decant Station, and between EW6 and EW7 will be sampled during the Q6 field activities.

7.0 REFERENCES

- Air Force Civil Engineer Center (AFCEC) 2012. Monitoring and Remediation Optimization System (MAROS) Software Version 3.0 User's Guide. Technology Transfer Division, Air Force Center for Environmental Excellence. Brooks AFB, San Antonio, TX. September.
- Bay West LLC and URS Group Inc. (BW-URS). 2014. Uniform Federal Policy Quality Assurance Project Plan. Remediation Action Operations Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1 and OU3. Cornhusker Army Ammunition Plant, Grand Island, Nebraska. November.
- Brice Engineering, LLC (Brice). 2019. Groundwater Recovery and Treatment System Operation and Maintenance Manual. Final. January.
- Brice-AECOM Technical Services (Brice-AECOM). 2018. Addendum 2 UFP-QAPP, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Groundwater Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2019a. CHAAP OU1 2018 Groundwater Monitoring Results and Program Recommendations Technical Memorandum. Final. June.
- Brice-AECOM. 2019b. Addendum 3 UFP-QAPP, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Groundwater Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. November.
- Brice-AECOM. 2019c. 2018 Annual Groundwater Monitoring Report, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Long-Term Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. December.
- Brice-AECOM. 2020a. OU1 Rebound Study Letter Report Baseline Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. June.
- Brice-AECOM. 2020b. 2019 Annual Groundwater Monitoring Report, Remedial Action Operation of the Groundwater Treatment Facility at OU1 and Long-Term Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2020c. OU1 Rebound Study Letter Report Quarter 2 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2020d. OU1 Rebound Study Letter Report Quarter 3 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. November.

Brice-AECOM. 2021. OU1 Rebound Study Letter Report – Quarter 4 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. April.

Nebraska Administrative Code (NAC). 2014. Title 178 - Water Well Standards, Chapter 12 - Water Well Construction, Pump Installation, and Water Well Decommissioning Standards. August.

URS Greiner Woodward-Clyde Federal Services (URSGWCFS). 2001. OU1 ROD Amendment. Final Report. Cornhusker Army Ammunition Plant. Prepared for USACE. August.

United States Army Environmental Center (USAEC). 1994. Interim Record of Decision for Cornhusker Army Ammunition Plant Operable Unit 1 – Groundwater. November.

We appreciate the opportunity to provide services for this project. If you have any questions, please contact the undersigned.

Sincerely,

Corey Schwabenlander

Project Manager

Brice Engineering, LLC

(801) 558-6032

Project Manager

Dean Converse

AECOM

(402) 952-2560

cs:dc O:\DCS\Projects\Secure\WP\605\65355\OU1 Rebound Study\Q5 Event\Rev1\OU1 Rebound Study Ltr Rpt-Q5_rev1.docx

ATTACHMENTS

I int of Tables

List of Tables	
Table 2-1	Direct Push Groundwater Samples Collected (Off-Post), OU1 Rebound Study Quarter 5
Table 2-2	Off-Post and On-Post Groundwater Monitoring Wells Sampled, OU1 Rebound

- Study, Quarter 5

 Table 2-3 Summary of Temporary Performance Monitoring Well Construction, OU1
 Subsurface Injection, Quarter 5
- Table 2-4 Performance Monitoring Locations Sampled, OU1 Subsurface Injection, Quarter 5
- Table 2-5 Summary of Explosives Detected, IDW Water
- Table 3-1 Summary of Explosives Detected, Direct Push Groundwater Locations (Off-Post), OU1 Rebound Study, Quarter 5
- Table 3-2 Summary of Explosives Detected and Laboratory MNA Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study, Quarter 5
- Table 3-3 Summary of Explosives Detected and Laboratory Water Quality Parameters, Performance Monitoring Wells, OU1 Subsurface Injection, Quarter 5
- Table 3-4 Summary of OU1 Field Duplicate Sample Pairs
- Table 3-5 Field Water Quality Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study, Quarter 5
- Table 3-6 Field Water Quality Parameters, Performance Monitoring Wells, OU1 Subsurface Injection, Quarter 5
- Table 5-1 Summary of RDX and TNT Concentrations, OU1 Rebound Study Locations
- Table 5-2 Summary of MNA Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study
- Table 5-3 Summary of RDX and TNT Concentrations, OU1 Performance Monitoring Locations
- Table 5-4 Summary of Water Quality Parameters, Performance Monitoring Locations, OU1 Subsurface Injection

List of Figures

- Figure 1-1 Facility Location Map
- Figure 1-2 Site Location Map
- Figure 2-1 Extent of OU1 Explosives Plume, OU1 Rebound Study, Quarter 5 (February/March 2021)
- Figure 2-2 Extent of OU1 Explosives Plume, OU1 Subsurface Injection Performance Monitoring, Quarter 5 (February/March 2021)
- Figure 2-3 Extent of OU1 Explosives Plume, OU1 Subsurface Injection, and Well Sampling Locations, Load Line 1, Load Line 2, and Between EW6 and EW7

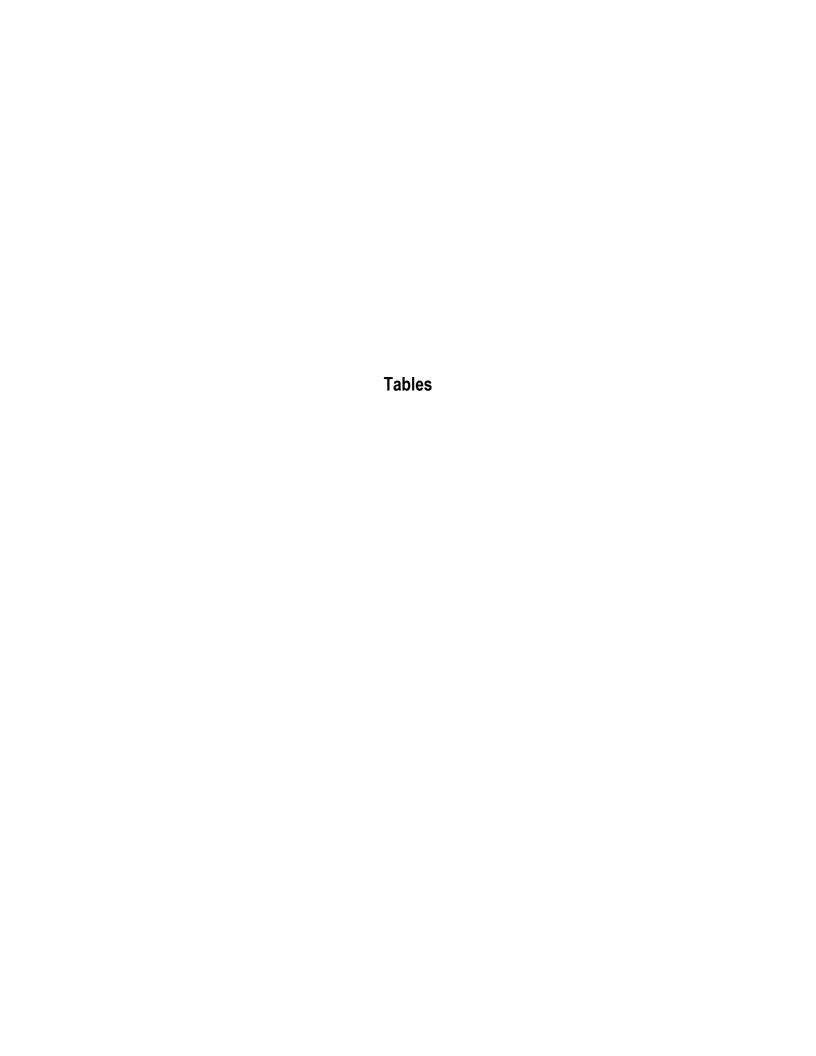
- Figure 2-4 Extent of OU1 Explosives Plume, OU1 Subsurface Injection and Well Sampling Locations, Decant Station

 Figure 4-1 Mann-Kendall Analysis for TNT and RDX, Former Facility Boundary Wells (OU1)
- Figure 4-2 Mann-Kendall Analysis for TNT and RDX, Upgradient Wells (OU1)

List of Appendices (CD Only)

Appendix A Well Drilling Licenses

Appendix B OU1 Rebound Study and Performance Monitoring Completed Field Forms


- Direct Push Groundwater Sample Collection Field Sheets (Off-post)
- OU1 Groundwater Monitoring Well Sample Collection Field Sheets
- Performance Monitoring Well Development Logs
- Performance Monitoring Sample Collection Field Sheets
- Direct Push Groundwater Sampling (Off-post), OU1 Groundwater Monitoring Well Sampling, and Performance Monitoring DQCRs and Weekly Reports

Appendix C Photographic Log

Appendix D Analytical Data and Validation

Appendix E OU1 Statistical Trend Data Sheets

Appendix F OU1 Rebound Study Historic Figures

TABLE 2-1 DIRECT PUSH GROUNDWATER SAMPLES COLLECTED (OFF-POST) OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

	Coord	linates ¹	_							Pa	ramet	ers
Sample	Nedlin	Fortier	Ground Elevation	In	reend	al	Sample Elevation	Secreta ID	Sanda Data	Explosives ²	Field Duplicate Samples ³	
Location ID	Northing	Easting	(feet amsl) ¹	(te	et bg	(s)	(feet amsl) ¹	Sample ID	Sample Date	Ξ	E %	MS
OU1 Rebound	l Study - Off-post	Direct Push Sam	ples ⁵									
				21	-	25	1865	OS001-DP05-25	2/23/2021	X	X	
OS001	403802.28	2067828.63	1890.06	31	-	35	1855	OS001-DP05-35	2/23/2021	X		
				41	-	45	1845	OS001-DP05-45	2/23/2021	X		
				21	-	25	1862	OS003-DP05-25	2/23/2021	X		
OS003	403834.73	2069322.13	1886.57	31	-	35	1852	OS003-DP05-35	2/23/2021	X		
				41	-	45	1842	OS003-DP05-45	2/23/2021	X		X
				16	-	20	1868	NW050R-DP05-20	2/22/2021	X		
NW050R	406567.11	2072396.24	1887.50	31	-	35	1853	NW050R-DP05-35	2/22/2021	X		
				56	-	60	1828	NW050R-DP05-60	2/22/2021	X		
									Totals	9	1	1

Notes:

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929. Coordinates and elevations for NW050R based upon adjacent well coordinates and elevations (i.e., NW050, NW051, NW052).

⁵OU1 Rebound Study off-post direct push groundwater samples will be collected over eight total sampling events (one baseline, seven follow-up) at an approximate quarterly frequency, over approximately 2 years. The follow-up direct push sampling events (seven events at approximate quarterly frequency) will be collected from the established baseline locations (i.e., OS001 and OS003), with selective sample depths based on the baseline and/or follow-up events sample results. Beginning Quater 5, due to no longer having property access at OU1 Rebound Study monitoing well clusters NW050 and NW080, off-post direct push groundwater samples will be collected from adjacent ROW location (i.e., NW050R) with comparable sample depth intervals (i.e., NW050, NW051, and NW052).

% = percent ID = identification number ROW = right-of-way (ditch) amsl = above mean sea level MNX = mono-nitroso-RDX OU = Operable Unit

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinzine

DP = direct push OS = off-post sample

²Explosives (+MNX) analysis (SW846 Method 8330A) only completed.

³Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for explosives only. The 21-25 foot depth interval was chosen for a field duplicate sample because, if the explosives plume does extend to that location, it will most likely be observed at that depth.

⁴MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for explosives only. The 41-45 foot depth interval was chosen for an MS/MSD sample since that interval is likely clean.

TABLE 2-2 OFF-POST AND ON-POST GROUNDWATER MONITORING WELLS SAMPLED **OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

Well Number	•	Explosives ¹	Laboratory MNA Parameters ²	Field MNA Parameters ³	Field Duplicate Sample ID ⁴	Field MS/MSD Sample ID ⁵
OU1 Off-Post	Monitoring Wel	ls			_	<u>-</u>
CA210	3/2/2021	X	X	X		
CA211	3/2/2021	X	X	X		
CA212	3/2/2021	X	X	X		
CA213	3/2/2021	X	X	X		
NW020	3/3/2021	X	X	X		
NW021	3/3/2021	X	X	X		
NW022	3/3/2021	X	X	X		
NW060	3/1/2021	X	X	X		
NW061	3/1/2021	X	X	X		
NW062	3/1/2021	X	X	X		
NW070	3/1/2021	X	X	X		
NW071	3/1/2021	X	X	X		
	Off-Post Totals	12	12	12	0	0
OU1 On-Post I	Monitoring Wel	ls				
G0024	3/3/2021	X	X	X		
G0070	3/1/2021	X	X	X		G0070-5 MS/MSD
G0075	3/1/2021	X	X	X		
G0076	3/1/2021	X	X	X		
G0077	3/3/2021	X	X	X		
G0078	3/3/2021	X	X	X		
G0079	3/1/2021	X	X	X		
G0080	2/28/2021	X	X	X		
G0081	3/2/2021	X	X	X		
G0082	3/2/2021	X	X	X		
G0086	3/2/2021	X	X	X		
G0087	3/2/2021	X	X	X		
G0091	3/2/2021	X	X	X		
G0092	3/2/2021	X	X	X		
PZ017R	3/3/2021	X	X	X	PZ021-5	
PZ018	3/3/2021	X	X	X		
PZ019	3/3/2021	X	X	X		
PZ020	3/3/2021	X	X	X		
	On-Post Totals	18	18	18	1	1
	Overall Totals	30	30	30	1	1

TABLE 2-2

OFF-POST AND ON-POST GROUNDWATER MONITORING WELLS SAMPLED **OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

			Laboratory		Field	
			MNA	Field MNA	Duplicate	Field MS/MSD
Well Number	Sample Date	Explosives ¹	Parameters ²	Parameters ³	Sample ID ⁴	Sample ID ⁵

Notes:

% = percent

ID = identification number

MNX = mono-nitroso-RDX

MS/MSD = matrix spike/matrix spike duplicate

MNA = monitored natural attenuation

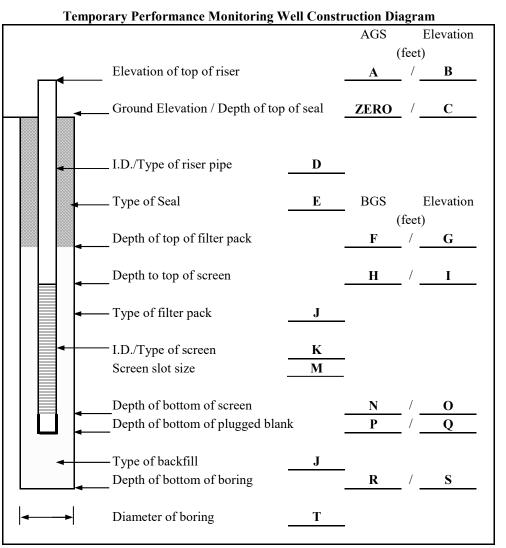
OU = Operable Unit

PZ = piezometer

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

RSK = Robert S. Kerr Environmental Research Laboratory

¹Explosives (+MNX) analysis (SW846 Method 8330A).


²Laboratory MNA parameters for OU1 (on- and off-post) include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

³Field MNA parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, specific conductance, turbidity, pH, and temperature.

⁴Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R was chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁵MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. G0070 was chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-3
SUMMARY OF TEMPORARY PERFORMANCE MONITORING WELL CONSTRUCTION
OU1 SUBSURFACE INJECTION, QUARTER 5
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Notes:

All temporary wells were installed by direct push methods (installation by Plains Environmental Services).

All temporary well installation activities were directed by AECOM.

Elevation datum based on National Geodetic Vertical Datum of 1929.

AGS = above ground surface

BGS = below ground surface

EW = extraction well

I.D. = inside diameter

OU = Operable Unit

PM = performance monitoring

The following information is the same for all temporary wells installed:

D = 1-inch inside diameter, Schedule 80, flush-threaded polyvinyl chloride

E = High-solids bentonite grount

J = Number 30-60, clean, washed, silica sand

K = 1-inch inside diameter, schedule 80, flush threaded, factory slotted polyvinyl chloride

M = Screen slot size standard 0.010-inch

T = 3.125-inch diameter

Well	Date Installed	Time	A	В	C	F	\mathbf{G}	Н	I	N	O	P	Q	R	S
EW7-PM21A	2/25/2021	0915	2.0	1899.12	1897.12	14.0	1883.1	20.0	1877.1	30.0	1867.1	30.1	1867.0	31.0	1866.1
EW7-PM24A	2/25/2021	0850	2.0	1899.72	1897.72	15.0	1882.7	20.0	1877.7	30.0	1867.7	30.1	1867.6	31.0	1866.7
EW7-PM25A	2/24/2021	1620	2.0	1895.73	1893.73	14.0	1879.7	20.0	1873.7	30.0	1863.7	30.1	1863.6	31.0	1862.7
EW7-PM25B	2/24/2021	1545	2.0	1895.73	1893.73	27.0	1866.7	30.0	1863.7	40.0	1853.7	40.1	1853.6	41.0	1852.7
EW7-PM26A	2/24/2021	1430	2.0	1899.73	1897.73	17.5	1880.2	20.0	1877.7	30.0	1867.7	30.1	1867.6	31.0	1866.7
EW7-PM26B	2/24/2021	1355	2.0	1899.73	1897.73	26.5	1871.2	30.0	1867.7	40.0	1857.7	40.1	1857.6	41.0	1856.7
EW7-PM27B	2/24/2021	1230	2.0	1897.55	1895.55	27.5	1868.1	30.0	1865.6	40.0	1855.6	40.1	1855.5	41.0	1854.6
EW7-PM28A	2/25/2021	0755	2.0	1894.82	1892.82	13.0	1879.8	20.0	1872.8	30.0	1862.8	30.1	1862.7	31.0	1861.8
EW7-PM29A	2/24/2021	1045	2.0	1895.35	1893.35	12.4	1881.0	20.0	1873.4	30.0	1863.4	30.1	1863.3	31.0	1862.4
EW7-PM29B	2/24/2021	0940	2.0	1895.35	1893.35	28.1	1865.3	30.0	1863.4	40.0	1853.4	40.1	1853.3	41.0	1852.4

TABLE 2-4 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

		Coord	linates ¹					Analyti	cal Par	ameters	,			
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Screene Interva (feet bg	al Dep	th Elevation	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters ³	Field Water Quality Parameters ⁴	eld Dupl mples ⁵	MS/MSD Samples ⁶
Between EW	**	1101 0111119	Zusving	(1000 times)	(1000 %g	5) (1000)	985) (1000 011151)	zumpie 12	2400					
G0022	Monitoring Well	403241.74	2064370.31	1899.16	18 - 3	33 25	1874	G0022-5	3/2/2021	X	X	X		
PZ017R	Piezometer	403469.08	2067255.25	1895.17	10 - 3	30 25	1870	PZ017R-5	3/3/2021	X	X	X	X	
PZ018	Piezometer	403293.15	2067256.61	1896.88	10 - 3	30 25	1872	PZ018-5	3/3/2021	X	X	X		
EW7-PM21A	Temp. Well	403407.45	2066429.65	1899.12	20 - 3	30 25	1874	EW7-PM21A-5-25	2/27/2021	X	X	X		
EW7-PM24A	Temp. Well	403412.74	2066751.85	1899.72	20 - 3	30 25	1875	EW7-PM24A-5-25	2/27/2021	X	X	X		
EW7-PM25A	Temp. Well	403432.36	2066962.17	1895.73	20 - 3	30 25	1871	EW7-PM25A-5-25	2/25/2021	X	X	X		
EW7-PM25B	Temp. Well	403432.30	2000902.17	1693.73	30 - 4	40 35	1861	EW7-PM25B-5-35	2/25/2021	X	X	X		
EW7-PM26A	Temp. Well	403248.72	2066662.06	1899.73	20 - 3	30 25	1875	EW7-PM26A-5-25	2/27/2021	X	X	X		
EW7-PM26B	Temp. Well	403240.72	2000002.00	1077./3	30 - 4	40 35	1865	EW7-PM26B-5-35	2/26/2021	X	X	X		
EW7-PM27B	Temp. Well	403170.77	2066860.69	1897.55	30 - 4	40 35	1863	EW7-PM27B-5-35	2/27/2021	X	X	X		
EW7-PM28A	Temp. Well	403302.80	2067019.15	1894.82	20 - 3	30 25	1870	EW7-PM28A-5-25	2/25/2021	X	X	X		

Notes:

% = percent ID = identification PM = performance monitoring

amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-tr

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).

³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R and G0096 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. EW7-PM29B was chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-4 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

		Coord	linates ¹									Analytic	cal Para	meters	,
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Inte	eened erval bgs)	Sample Depth (feet bgs)	Sample Elevation (feet amsl) ¹	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters ³	Field Water Quality Parameters ⁴	Field Duplicate Samples ⁵	MS/MSD Samples ⁶
EW7-PM29A	Temp. Well					- 30	25	1870	EW7-PM29A-5-25	2/26/2021	X	X	X	<u></u>	
EW7-PM29B	Temp. Well	403108.54	2067050.13	1895.35	30	- 40	35	1860	EW7-PM29B-5-35	2/26/2021	X	X	X		X
									Between EW6 and	EW7 Totals	13	13	13	1	1
Load Line 1															
G0094	Monitoring Well	401758.07	2063084.23	1903.72	15	- 25	20	1884	G0094-5	3/1/2021	X	X	X		
G0096	Monitoring Well	402127.49	2062746.66	1905.94	15	- 25	20	1886	G0096-5	3/1/2021	X	X	X	X	
									Load L	ine 1 Totals	2	2	2	1	0
Load Line 2															
G0111	Monitoring Well	401840.27	2059126.43	1911.94	15	- 25	20	1892	G0111-5	2/28/2021	X	X	X		
G0121	Monitoring Well	401466.39	2058974.24	1909.10	20	- 30	25	1884	G0121-5	2/28/2021	X	X	X		
G0122	Monitoring Well	401983.89	2058976.45	1909.68	20	- 30	25	1885	G0122-5	2/28/2021	X	X	X		
G0123	Monitoring Well	401358.55	2059055.22	1908.65	20	- 30	25	1884	G0123-5	2/28/2021	X	X	X		
									Load L	ine 2 Totals	4	4	4	0	0

Notes:

% = percent ID = identification PM = performance monitoring

amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-tr

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).

³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R and G0096 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. EW7-PM29B was chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-4 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

		Coord	linates ¹								Analytic	cal Para	meters	S
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Screened Interval (feet hos)	Depth	Sample Elevation (feet amsl) ¹	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters³	Field Water Quality Parameters ⁴	Field Duplicate Samples ⁵	MS/MSD Samples ⁶
		Tiorthing	Lasting	(icct amsi)	(icci bgs)	(icci bgs)	(icct amsi)	Sample 1D	Date			H		
Decant Statio	n													
G0102	Monitoring Well	404235.26	2048906.45	1912.20	14 - 24	20	1892	G0102-5	3/2/2021	X	X	X		
					•	•		Decan	t Station Totals	1	1	1	0	0
									Overall Totals	20	20	20	2	1

Notes:

% = percent ID = identification PM = performance monitoring

amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-tr

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).

³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R and G0096 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. EW7-PM29B was chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-5 SUMMARY OF EXPLOSIVES DETECTED, IDW - WATER **OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

FIELD ID	CHAAP	WA	TER-V	VC-Q	5-MAI	R21
SAMPLE DATE	HALs		3/	4/202	1	
	(µg/L)	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L))	-				
1,3,5-Trinitrobenzene	NA	<	U	0.11	0.26	0.28
1,3-Dinitrobenzene	NA	<	U	0.05	0.13	0.14
TNT	2	<	U	0.06	0.13	0.14
2,4-Dinitrotoluene	NA	<	U	0.04	0.11	0.13
2,6-Dinitrotoluene	NA	<	U	0.05	0.11	0.13
2-Amino-4,6-dinitrotoluene	NA	<	U	0.07	0.13	0.14
2-Nitrotoluene	NA	<	UJ	0.11	0.26	0.28
3-Nitrotoluene	NA	<	UJ	0.26	0.53	0.53
4-Amino-2,6-dinitrotoluene	NA	<	UJ	0.08	0.16	0.2
4-Nitrotoluene	NA	0.8	J	0.13	0.53	0.54
HMX	400	<	U	0.12	0.26	0.28
MNX	NA	<	U	0.2	0.53	2.6
Nitrobenzene	NA	<	U	0.12	0.26	0.28
RDX	2	<	U	0.07	0.26	0.28
Tetryl	NA	<	U	0.04	0.13	0.14

Notes:

< = less than LOQ

 $\mu g/L = micrograms per liter$

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

IDW = investigation-derived waste

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

WC = waste characterization (water)

TABLE 3-1

SUMMARY OF EXPLOSIVES DETECTED, DIRECT PUSH GROUNDWATER LOCATIONS (OFF-POST) OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

FIELD ID	СНААР		OSO	01-DP0	5-25			OSO	01-DP0:	5_35			OSO	01-DP0:	5_45			OSO)3-DP0:	5-25			OSO	03-DP0	5_35			OSO	03-DP0	5_45	-
SAMPLE DATE	HALs			/23/202					/ 23/202 1					/23/202					23/202					/23/202					/23/202		
SAMI LE DATE	HALS			1231202					25/202	L										•			<i>L</i> ,	1231202	1				1231202	1	
	(µg/L)	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																	-														
1,3,5-Trinitrobenzene	NA	0.56	J	0.088	0.21	0.22	5.8	J	0.089	0.21	0.22	4.3	J	0.087	0.21	0.22	<	UJ	0.093	0.22	0.23	<	U	0.09	0.21	0.22	<	UJ	0.095	0.23	0.24
1,3-Dinitrobenzene	NA	<	UJ	0.038	0.1	0.11	<	UJ	0.039	0.11	0.12	<	UJ	0.038	0.1	0.11	<	UJ	0.041	0.11	0.12	<	U	0.039	0.11	0.12	<	UJ	0.042	0.11	0.12
TNT	2	20	J	0.047	0.1	0.11	2	J	0.047	0.11	0.12	0.25	J	0.047	0.1	0.11	0.2	J	0.05	0.11	0.12	<	U	0.048	0.11	0.12	<	UJ	0.051	0.11	0.12
2,4-Dinitrotoluene	NA	<	UJ	0.029	0.083	0.1	<	UJ	0.029	0.084	0.11	<	UJ	0.028	0.083	0.1	<	UJ	0.03	0.088	0.11	<	U	0.029	0.085	0.11	<	UJ	0.031	0.091	0.11
2,6-Dinitrotoluene	NA	<	UJ	0.042	0.083	0.1	<	UJ	0.042	0.084	0.11	<	UJ	0.042	0.083	0.1	<	UJ	0.044	0.088	0.11	<	U	0.043	0.085	0.11	<	UJ	0.045	0.091	0.11
2-Amino-4,6-dinitrotoluene	NA	2.1	J	0.053	0.1	0.11	0.22	J	0.053	0.11	0.12	0.65	J	0.053	0.1	0.11	<	UJ	0.056	0.11	0.12	<	U	0.054	0.11	0.12	<	UJ	0.058	0.11	0.12
2-Nitrotoluene	NA	<	UJ	0.089	0.21	0.22	<	UJ	0.09	0.21	0.22	<	UJ	0.089	0.21	0.22	<	UJ	0.094	0.22	0.23	<	U	0.091	0.21	0.22	<	UJ	0.097	0.23	0.24
3-Nitrotoluene	NA	<	UJ	0.2	0.42	0.42	<	UJ	0.21	0.42	0.42	<	UJ	0.2	0.41	0.41	<	UJ	0.21	0.44	0.44	<	U	0.21	0.43	0.43	<	UJ	0.22	0.45	0.45
4-Amino-2,6-dinitrotoluene	NA	1.8	J	0.06	0.12	0.16	0.39	J	0.061	0.13	0.16	0.22	J	0.06	0.12	0.16	<	UJ	0.064	0.13	0.17	<	U	0.062	0.13	0.16	<	UJ	0.065	0.14	0.17
4-Nitrotoluene	NA	<	J	0.1	0.42	0.43	<	UJ	0.11	0.42	0.43	<	UJ	0.1	0.41	0.43	<	UJ	0.11	0.44	0.46	<	U	0.11	0.43	0.44	<	UJ	0.11	0.45	0.47
HMX	400	<	J	0.091	0.21	0.22	<	UJ	0.092	0.21	0.22	<	UJ	0.091	0.21	0.22	<	UJ	0.096	0.22	0.23	<	U	0.093	0.21	0.22	<	UJ	0.099	0.23	0.24
MNX	NA	<	J	0.16	0.42	2.1	<	UJ	0.16	0.42	2.1	<	UJ	0.16	0.41	2.1	<	UJ	0.17	0.44	2.2	<	U	0.16	0.43	2.1	<	UJ	0.17	0.45	2.3
Nitrobenzene	NA	<	J	0.095	0.21	0.22	<	UJ	0.096	0.21	0.22	<	UJ	0.094	0.21	0.22	<	UJ	0.1	0.22	0.23	<	U	0.097	0.21	0.22	<	UJ	0.1	0.23	0.24
RDX	2	<	J	0.054	0.21	0.22	0.82	J	0.054	0.21	0.22	<	UJ	0.053	0.21	0.22	<	UJ	0.057	0.22	0.23	<	U	0.055	0.21	0.22	<	UJ	0.058	0.23	0.24
Tetryl	NA	<	J	0.033	0.1	0.11	<	UJ	0.034	0.11	0.12	<	UJ	0.033	0.1	0.11	<	UJ	0.035	0.11	0.12	<	U	0.034	0.11	0.12	<	UJ	0.036	0.11	0.12

Notes:

Concentrations exceed HALs

< = less than LOQ

 $\mu g/L = micrograms per liter$

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

DP = direct push

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OS = off-post sample

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

TABLE 3-1 SUMMARY OF EXPLOSIVES DETECTED, DIRECT PUSH GROUNDWATER LOCATIONS (OFF-POST) OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

FIELD ID	CHAAP		NW05	0R-DP	05-20			NW05	0R-DP)5-35			NW05	0R-DP	05-60	
SAMPLE DATE	HALs		2	/22/202	1			2/	22/2021	l			2	22/2021	1	
	(µg/L)	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)	•	•														
1,3,5-Trinitrobenzene	NA	<	UJ	0.09	0.21	0.23	<	UJ	0.086	0.21	0.22	<	UJ	0.087	0.21	0.22
1,3-Dinitrobenzene	NA	<	UJ	0.04	0.11	0.12	<	UJ	0.038	0.1	0.11	<	UJ	0.038	0.1	0.11
TNT	2	<	UJ	0.048	0.11	0.12	<	UJ	0.046	0.1	0.11	<	UJ	0.047	0.1	0.11
2,4-Dinitrotoluene	NA	<	UJ	0.029	0.086	0.11	<	UJ	0.028	0.082	0.1	<	UJ	0.029	0.083	0.1
2,6-Dinitrotoluene	NA	<	UJ	0.043	0.086	0.11	<	UJ	0.041	0.082	0.1	<	UJ	0.042	0.083	0.1
2-Amino-4,6-dinitrotoluene	NA	<	UJ	0.054	0.11	0.12	<	UJ	0.052	0.1	0.11	<	UJ	0.053	0.1	0.11
2-Nitrotoluene	NA	<	UJ	0.092	0.21	0.23	<	UJ	0.088	0.21	0.22	<	UJ	0.089	0.21	0.22
3-Nitrotoluene	NA	<	UJ	0.21	0.43	0.43	<	UJ	0.2	0.41	0.41	<	UJ	0.2	0.42	0.42
4-Amino-2,6-dinitrotoluene	NA	<	UJ	0.062	0.13	0.16	<	UJ	0.059	0.12	0.15	<	UJ	0.06	0.12	0.16
4-Nitrotoluene	NA	<	UJ	0.11	0.43	0.44	<	UJ	0.1	0.41	0.42	<	UJ	0.1	0.42	0.43
HMX	400	<	UJ	0.094	0.43	2.1	<	UJ	0.09	0.21	0.22	<	UJ	0.091	0.21	0.22
MNX	NA	<	UJ	0.17	0.21	0.23	<	UJ	0.16	0.41	2.1	<	UJ	0.16	0.42	2.1
Nitrobenzene	NA	<	UJ	0.098	0.21	0.23	<	UJ	0.094	0.21	0.22	<	UJ	0.095	0.21	0.22
RDX	2	<	UJ	0.055	0.21	0.23	<	UJ	0.053	0.21	0.22	<	UJ	0.054	0.21	0.22
Tetryl	NA	<	UJ	0.034	0.11	0.12	<	UJ	0.033	0.1	0.11	<	UJ	0.033	0.1	0.11

Notes:

Concentrations exceed HALs

< = less than LOQ

 $\mu g/L = micrograms per liter$

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

DP = direct push

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OS = off-post sample

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

TABLE 3-2 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

	CVV															OFF-	POST															
FIELD ID	CHAAP HALs	CA210-5					CA211-5						CA212-5					CA213-5					NW020-5					NW021-5				
SAMPLE DATE	(μg/L)		3/2/2021				3/2/2021						3/2/2021					3/2/2021					3/3/2021					3/3/2021				
	(8)	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOC	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																
1,3,5-Trinitrobenzene	NA	<	U	0.08	0.19	0.2	<	U	0.07	9 0.19	0.2	0.22		0.079	0.19	0.2	0.084	J	0.08	0.19	0.2	<	U	0.079	0.19	0.2	<	U	0.08	0.19	0.2	
1,3-Dinitrobenzene	NA	<	U	0.035	0.095	0.1	<	U	0.03	5 0.095	0.1	<	U	0.035	0.094	0.1	<	U	0.035	0.095	0.1	<	U	0.035	0.094	0.1	<	U	0.035	0.095	0.1	
TNT	2	<	U	0.043	0.095	0.1	<	U	0.04	3 0.095	0.1	<	U	0.042	0.094	0.1	<	U	0.043	0.095	0.1	0.8		0.042	0.094	0.1	<	U	0.043	0.095	0.1	
2,4-Dinitrotoluene	NA	<	U	0.026	0.076	0.095	<	U	0.02	6 0.076	0.095	<	U	0.026	0.075	0.094	<	U	0.026	0.076	0.095	0.062	J	0.026	0.075	0.094	<	U	0.026	0.076	0.095	
2,6-Dinitrotoluene	NA	<	U	0.038	0.076	0.095	<	U	0.03	8 0.076	0.095	<	U	0.038	0.075	0.094	<	U	0.038	0.076	0.095	<	U	0.038	0.075	0.094	<	U	0.038	0.076	0.095	
2-Amino-4,6-dinitrotoluene	NA	<	U	0.048	0.095	0.1	<	U	0.04	8 0.095	0.1	<	U	0.048	0.094	0.1	<	U	0.048	0.095	0.1	1.5		0.048	0.094	0.1	0.95		0.048	0.095	0.1	
2-Nitrotoluene	NA	<	U	0.082	0.19	0.2	<	U	0.08	1 0.19	0.2	<	U	0.081	0.19	0.2	<	U	0.081	0.19	0.2	<	UJ	0.08	0.19	0.2	<	UJ	0.081	0.19	0.2	
3-Nitrotoluene	NA	<	U	0.19	0.38	0.38	<	U	0.18	0.38	0.38	<	U	0.18	0.38	0.38	<	U	0.19	0.38	0.38	<	UJ	0.18	0.38	0.38	<	UJ	0.19	0.38	0.38	
4-Amino-2,6-dinitrotoluene	NA	<	U	0.055	0.11	0.14	<	U	0.05	5 0.11	0.14	<	U	0.054	0.11	0.14	<	U	0.055	0.11	0.14	1.7	J	0.054	0.11	0.14	0.78	J	0.055	0.11	0.14	
4-Nitrotoluene	NA	<	U	0.095	0.38	0.39	<	U	0.09	5 0.38	0.39	<	U	0.094	0.38	0.39	<	U	0.095	0.38	0.39	<	U	0.094	0.38	0.39	<	U	0.095	0.38	0.39	
HMX	400	<	U	0.084	0.19	0.2	<	U	0.08	3 0.19	0.2	<	U	0.083	0.19	0.2	<	U	0.083	0.19	0.2	1		0.082	0.19	0.2	<	U	0.083	0.19	0.2	
MNX	NA	<	U	0.15	0.38	1.9	<	U	0.15	0.38	1.9	<	U	0.15	0.38	1.9	<	U	0.15	0.38	1.9	<	U	0.14	0.38	1.9	<	U	0.15	0.38	1.9	
Nitrobenzene	NA	<	U	0.087	0.19	0.2	<	U	0.08	6 0.19	0.2	<	U	0.086	0.19	0.2	<	U	0.086	0.19	0.2	<	U	0.085	0.19	0.2	<	U	0.087	0.19	0.2	
RDX	2	<	U	0.049	0.19	0.2	<	U	0.04	9 0.19	0.2	<	U	0.049	0.19	0.2	<	U	0.049	0.19	0.2	1.2		0.048	0.19	0.2	<	U	0.049	0.19	0.2	
Tetryl	NA	<	U	0.03	0.095	0.1	<	U	0.03	0.095	0.1	<	U	0.03	0.094	0.1	<	U	0.03	0.095	0.1	<	U	0.03	0.094	0.1	<	U	0.03	0.095	0.1	
LABORATORY MNA PARAMETERS																																
Ammonia USEPA 350.1 (mg/L)		0.062	J	0.022	0.05	0.1	<	U	0.02	2 0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	1.4		0.022	0.05	0.1	
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	1.7		0.69	1	1	
Nitrate/Nitrite USEPA 353.2 (mg/L)		42		0.19	0.5	1	40		0.19	0.5	1	15		0.19	0.5	1	1.3		0.019	0.05	0.1	68		0.38	1	2	1.3		0.019	0.05	0.1	
Sulfide SM 9034 (mg/L)		<	UJ	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4	
Sulfate USEPA 9056A (mg/L)		190		1	2.5	5	120		1	2.5	5	78		1	2.5	5	64		1	2.5	5	230		5.2	13	25	200		5.2	13	25	
Dissolved Organic Carbon SM 9060A (mg/L)		7.8		0.35	0.8	1	4.8		0.35	0.8	1	2.1		0.35	0.8	1	1.7		0.35	0.8	1	6.2		0.35	0.8	1	2.6		0.35	0.8	1	
Alkalinity SM 2320B (mg/L)		370		3.1	6.4	10	230		3.1	6.4	10	180		3.1	6.4	10	130		3.1	6.4	10	360		3.1	6.4	10	370		3.1	6.4	10	
Methane RSK-175 (μg/L)		1.7	J	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	8.5		0.63	2	5	
Carbon Dioxide SM 2320B (mg/L) ¹		164		3.1	6.4	10	102		3.1	6.4	10	80		3.1	6.4	10	58		3.1	6.4	10	160		3.1	6.4	10	164		3.1	6.4	10	

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX

 μ g/L = micrograms per literNA = not availableCHAAP = Cornhusker Army Ammunition PlantOU = Operable UnitDL = detection limitPZ = piezometerHAL = health advisory levelQual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

J = estimated SM = Standard Method
LOD = limit of detection TNT = 2,4,6-trinitrotoluene

LOQ = limit of quantification U = nondetect

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

MNA = monitored natural attenuation

	CHAIR															OFF-	POST														
FIELD ID	CHAAP HALs		N	W022-5	5			N	W060	-5			N	W061-5	5			N	W062-	5			N	W070-	5			N	W071-	5	
SAMPLE DATE	(μg/L)		3	/3/2021				3	3/1/202	1			3	3/1/2021				3	3/1/202	1			3	3/1/2021				3	3/1/2021		
	,,,,	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.079	0.19	0.2	<	U	0.079	0.19	0.2	<	U	0.078	0.19	0.2	<	U	0.079	0.19	0.2	<	U	0.077	0.18	0.19	<	U	0.08	0.19	0.2
1,3-Dinitrobenzene	NA	<	U	0.035	0.094	0.1	<	U	0.034	1 0.093	0.1	<	U	0.034	0.093	0.1	<	U	0.035	0.094	0.1	<	U	0.034	0.092	0.1	<	U	0.035	0.095	0.1
TNT	2	<	U	0.042	0.094	0.1	<	U	0.042	2 0.093	0.1	<	U	0.042	0.093	0.1	<	U	0.042	0.094	0.1	<	U	0.041	0.092	0.1	<	U	0.043	0.095	0.1
2,4-Dinitrotoluene	NA	<	U	0.026	0.075	0.094	<	U	0.020	6 0.075	0.093	<	U	0.026	0.075	0.093	<	U	0.026	0.075	0.094	<	U	0.025	0.073	0.092	<	U	0.026	0.076	0.095
2,6-Dinitrotoluene	NA	<	U	0.038	0.075	0.094	<	U	0.03	7 0.075	0.093	<	U	0.037	0.075	0.093	<	U	0.038	0.075	0.094	<	U	0.037	0.073	0.092	<	U	0.038	0.076	0.095
2-Amino-4,6-dinitrotoluene	NA	<	U	0.048	0.094	0.1	<	U	0.04	7 0.093	0.1	<	U	0.047	0.093	0.1	<	U	0.048	0.094	0.1	<	U	0.047	0.092	0.1	<	U	0.048	0.095	0.1
2-Nitrotoluene	NA	<	UJ	0.081	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.081	0.19	0.2	<	U	0.078	0.18	0.19	<	U	0.081	0.19	0.2
3-Nitrotoluene	NA	<	UJ	0.18	0.38	0.38	<	U	0.18	0.37	0.37	<	U	0.18	0.37	0.37	<	U	0.18	0.38	0.38	<	U	0.18	0.37	0.37	<	U	0.19	0.38	0.38
4-Amino-2,6-dinitrotoluene	NA	<	UJ	0.054	0.11	0.14	<	U	0.054	4 0.11	0.14	<	U	0.054	0.11	0.14	<	U	0.054	0.11	0.14	<	U	0.053	0.11	0.14	<	U	0.055	0.11	0.14
4-Nitrotoluene	NA	<	U	0.094	0.38	0.39	<	U	0.093	3 0.37	0.38	<	U	0.093	0.37	0.38	<	U	0.094	0.38	0.39	<	U	0.092	0.37	0.38	<	U	0.095	0.38	0.39
HMX	400	<	U	0.083	0.19	0.2	<	U	0.082	2 0.19	0.2	<	U	0.082	0.19	0.2	<	U	0.083	0.19	0.2	<	U	0.08	0.18	0.19	<	U	0.083	0.19	0.2
MNX	NA	<	U	0.15	0.38	1.9	<	U	0.14	0.37	1.9	<	U	0.14	0.37	1.9	<	U	0.15	0.38	1.9	<	U	0.14	0.37	1.8	<	U	0.15	0.38	1.9
Nitrobenzene	NA	<	U	0.086	0.19	0.2	<	U	0.083	5 0.19	0.2	<	U	0.085	0.19	0.2	<	U	0.086	0.19	0.2	<	U	0.084	0.18	0.19	<	U	0.086	0.19	0.2
RDX	2	<	U	0.049	0.19	0.2	<	U	0.048	0.19	0.2	<	U	0.048	0.19	0.2	<	U	0.049	0.19	0.2	<	U	0.047	0.18	0.19	<	U	0.049	0.19	0.2
Tetryl	NA	<	U	0.03	0.094	0.1	<	U	0.03	0.093	0.1	<	U	0.03	0.093	0.1	<	U	0.03	0.094	0.1	<	U	0.029	0.092	0.1	<	U	0.03	0.095	0.1
LABORATORY MNA PARAMETERS																															
Ammonia USEPA 350.1 (mg/L)		1.2		0.022	0.05	0.1	<	U	0.022	2 0.05	0.1	3.6		0.022	0.05	0.1	0.86		0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		1.5		0.69	1	1	<	U	0.69	1	1	3.4		0.69	1	1	1.1		0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		<	U	0.019	0.05	0.1	4.1		0.019	0.05	0.1	8.3		0.019	0.05	0.1	<	U	0.019	0.05	0.1	29		0.19	0.5	1	36		0.19	0.5	1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		260		5.2	13	25	30		1	2.5	5	140		1	2.5	5	190		1	2.5	5	98		1	2.5	5	63		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		2.8		0.35	0.8	1	2.2		0.35	0.8	1	4.7		0.35	0.8	1	2.6		0.35	0.8	1	6.4		0.35	0.8	1	2.8		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		460		3.1	6.4	10	41		3.1	6.4	10	290		3.1	6.4	10	270		3.1	6.4	10	210		3.1	6.4	10	98		3.1	6.4	10
Methane RSK-175 (μg/L)		350		0.63	2	5	20		0.63	2	5	62		0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		204		3.1	6.4	10	18		3.1	6.4	10	129		3.1	6.4	10	120		3.1	6.4	10	93		3.1	6.4	10	44		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX $\mu g/L$ = micrograms per liter NA = not available

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

HAL = health advisory level

OU = Operable Unit

PZ = piezometer

Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

	CYLLAR															ON-I	POST														
FIELD ID	CHAAP HALs		(G0024-5	1			(G0070-	5			(G0075-5	;				G0076-5	;			(G0077-5	;			(G0078-5	;	
SAMPLE DATE	(μg/L)		3	3/3/2021				3	3/1/202	1			3	/1/2021				3	3/1/2021				3	3/3/2021				3	3/3/2021		
	487	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.079	0.19	0.2	<	U	0.086	0.21	0.22	<	U	0.091	0.22	0.23	<	U	0.088	0.21	0.22	3.6		0.078	0.19	0.2	<	U	0.079	0.19	0.2
1,3-Dinitrobenzene	NA	<	U	0.035	0.094	0.1	<	U	0.038	0.1	0.11	<	U	0.04	0.11	0.12	<	U	0.039	0.11	0.12	<	U	0.034	0.093	0.1	<	U	0.035	0.094	0.1
TNT	2	0.48		0.042	0.094	0.1	<	U	0.046	0.1	0.11	<	U	0.049	0.11	0.12	<	U	0.047	0.11	0.12	3.6		0.042	0.093	0.1	<	U	0.042	0.094	0.1
2,4-Dinitrotoluene	NA	<	U	0.026	0.075	0.094	<	U	0.028	0.082	0.1	<	U	0.03	0.087	0.11	<	U	0.029	0.084	0.11	<	U	0.026	0.075	0.093	<	U	0.026	0.075	0.094
2,6-Dinitrotoluene	NA	<	U	0.038	0.075	0.094	<	U	0.041	0.082	0.1	<	U	0.043	0.087	0.11	<	U	0.042	0.084	0.11	<	U	0.037	0.075	0.093	<	U	0.038	0.075	0.094
2-Amino-4,6-dinitrotoluene	NA	1.5		0.048	0.094	0.1	<	U	0.052	0.1	0.11	0.66	J	0.055	0.11	0.12	<	U	0.053	0.11	0.12	2.2		0.047	0.093	0.1	<	U	0.048	0.094	0.1
2-Nitrotoluene	NA	<	UJ	0.08	0.19	0.2	<	U	0.088	0.21	0.22	<	U	0.092	0.22	0.23	<	U	0.09	0.21	0.22	<	UJ	0.08	0.19	0.2	<	UJ	0.08	0.19	0.2
3-Nitrotoluene	NA	<	UJ	0.18	0.37	0.37	<	U	0.2	0.41	0.41	<	U	0.21	0.43	0.43	<	U	0.2	0.42	0.42	<	UJ	0.18	0.37	0.37	<	UJ	0.18	0.38	0.38
4-Amino-2,6-dinitrotoluene	NA	1.2	J	0.054	0.11	0.14	<	U	0.059	0.12	0.15	0.93		0.062	0.13	0.16	<	U	0.061	0.13	0.16	2.4	J	0.054	0.11	0.14	<	UJ	0.054	0.11	0.14
4-Nitrotoluene	NA	<	U	0.094	0.37	0.38	<	U	0.1	0.41	0.42	<	U	0.11	0.43	0.44	<	U	0.11	0.42	0.43	<	U	0.093	0.37	0.38	<	U	0.094	0.38	0.38
HMX	400	<	U	0.082	0.19	0.2	<	U	0.09	0.21	0.22	0.27		0.095	0.22	0.23	<	U	0.092	0.21	0.22	0.58		0.082	0.19	0.2	<	U	0.082	0.19	0.2
MNX	NA	<	U	0.14	0.37	1.9	<	U	0.16	0.41	2.1	<	U	0.17	0.43	2.2	<	U	0.16	0.42	2.1	<	U	0.14	0.37	1.9	<	U	0.14	0.38	1.9
Nitrobenzene	NA	<	U	0.085	0.19	0.2	<	U	0.093	0.21	0.22	<	U	0.098	0.22	0.23	<	U	0.096	0.21	0.22	<	U	0.085	0.19	0.2	<	U	0.085	0.19	0.2
RDX	2	<	U	0.048	0.19	0.2	<	U	0.053	0.21	0.22	<	U	0.056	0.22	0.23	<	U	0.054	0.21	0.22	0.82		0.048	0.19	0.2	<	U	0.048	0.19	0.2
Tetryl	NA	<	U	0.03	0.094	0.1	<	U	0.033	0.1	0.11	<	U	0.034	0.11	0.12	<	U	0.033	0.11	0.12	<	U	0.03	0.093	0.1	<	U	0.03	0.094	0.1
LABORATORY MNA PARAMETERS																															
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	0.055	J	0.022	0.05	0.1	1.3		0.022	0.05	0.1	<	U	0.022	0.05	0.1	0.3		0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	UJ	0.69	1	1	<	UJ	0.69	1	1	1.1		0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		12	J	0.038	0.1	0.2	<	U	0.019	0.05	0.1	4.7		0.019	0.05	0.1	<	U	0.019	0.05	0.1	10		0.038	0.1	0.2	<	U	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	<	UJ	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		65		1	2.5	5	43	J	1	2.5	5	160		1	2.5	5	320		5.2	13	25	140		1	2.5	5	270		5.2	13	25
Dissolved Organic Carbon SM 9060A (mg/L)		4		0.35	0.8	1	0.89	J	0.35	0.8	1	2.4		0.35	0.8	1	2.7		0.35	0.8	1	2.8		0.35	0.8	1	2.3		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		240		3.1	6.4	10	210		3.1	6.4	10	290		3.1	6.4	10	350		3.1	6.4	10	280		3.1	6.4	10	320		3.1	6.4	10
Methane RSK-175 (μg/L)		<	U	0.63	2	5	<	UJ	0.63	2	5	0.75	J	0.63	2	5	310		0.63	2	5	47		0.63	2	5	<	U	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		107		3.1	6.4	10	93		3.1	6.4	10	129		3.1	6.4	10	156		3.1	6.4	10	124		3.1	6.4	10	142		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX $\mu g/L$ = micrograms per liter NA = not available CHAAP = Cornhusker Army Ammunition Plant OU = Operable Unit

 $DL = detection \ limit$ PZ = piezometer $HAL = health \ advisory \ level$ Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

																ON-	POST														
FIELD ID	CHAAP HALs			G0079-5	;				G0080-	5				G0081-	5				G0082-5	;				G0086-5	5			-	G0087-	5	
SAMPLE DATE	(μg/L)			3/1/2021				2	2/28/202	1				3/2/202	l				3/2/2021					3/2/2021	l			3	3/2/202	1	
	(1.8.)	Result	t Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.088	0.21	0.22	<	U	0.082	0.2	0.21	0.42		0.088	0.21	0.22	<	U	0.088	0.21	0.22	13	J	0.088	0.21	0.22	<	U	0.09	0.21	0.22
1,3-Dinitrobenzene	NA	<	U	0.039	0.11	0.12	<	U	0.036	0.098	0.11	<	U	0.039	0.1	0.12	<	U	0.039	0.1	0.12	<	U	0.039	0.11	0.12	<	U	0.039	0.11	0.12
TNT	2	<	U	0.047	0.11	0.12	<	U	0.044	0.098	0.11	<	U	0.047	0.1	0.12	<	U	0.047	0.1	0.12	4.9	J	0.047	0.11	0.12	<	U	0.048	0.11	0.12
2,4-Dinitrotoluene	NA	<	U	0.029	0.084	0.11	<	U	0.027	0.078	0.098	<	U	0.029	0.084	0.1	<	U	0.029	0.084	0.1	0.047	J	0.029	0.084	0.11	<	U	0.029	0.085	0.11
2,6-Dinitrotoluene	NA	<	U	0.042	0.084	0.11	<	U	0.039	0.078	0.098	<	U	0.042	0.084	0.1	<	U	0.042	0.084	0.1	<	U	0.042	0.084	0.11	<	U	0.043	0.085	0.11
2-Amino-4,6-dinitrotoluene	NA	<	U	0.053	0.11	0.12	<	U	0.05	0.098	0.11	0.092	J	0.053	0.1	0.12	0.14	J	0.053	0.1	0.12	1.8	J	0.053	0.11	0.12	0.11	J	0.054	0.11	0.12
2-Nitrotoluene	NA	<	U	0.09	0.21	0.22	<	U	0.084	0.2	0.21	<	U	0.09	0.21	0.22	<	U	0.089	0.21	0.22	<	U	0.09	0.21	0.22	<	U	0.091	0.21	0.22
3-Nitrotoluene	NA	<	U	0.2	0.42	0.42	<	U	0.19	0.39	0.39	<	U	0.2	0.42	0.42	<	U	0.2	0.42	0.42	<	U	0.2	0.42	0.42	<	U	0.21	0.43	0.43
4-Amino-2,6-dinitrotoluene	NA	<	U	0.061	0.13	0.16	0.12	J	0.057	0.12	0.15	0.1	J	0.06	0.13	0.16	0.18	J	0.06	0.13	0.16	1.2	J	0.061	0.13	0.16	0.62		0.062	0.13	0.16
4-Nitrotoluene	NA	<	U	0.11	0.42	0.43	<	U	0.098	0.39	0.4	<	U	0.1	0.42	0.43	<	U	0.1	0.42	0.43	<	U	0.11	0.42	0.43	<	U	0.11	0.43	0.44
HMX	400	<	U	0.092	0.21	0.22	0.26		0.086	0.2	0.21	<	U	0.092	0.21	0.22	0.64		0.092	0.21	0.22	0.47	J	0.092	0.21	0.22	0.69		0.094	0.21	0.22
MNX	NA	<	U	0.16	0.42	2.1	<	U	0.15	0.39	2	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	<	U	0.16	0.43	2.1
Nitrobenzene	NA	<	U	0.096	0.21	0.22	<	U	0.089	0.2	0.21	<	U	0.095	0.21	0.22	<	U	0.095	0.21	0.22	<	U	0.096	0.21	0.22	<	U	0.097	0.21	0.22
RDX	2	<	U	0.054	0.21	0.22	<	U	0.051	0.2	0.21	<	U	0.054	0.21	0.22	0.53		0.054	0.21	0.22	0.59	J	0.054	0.21	0.22	0.17	J	0.055	0.21	0.22
Tetryl	NA	<	U	0.033	0.11	0.12	<	U	0.031	0.098	0.11	<	U	0.033	0.1	0.12	<	U	0.033	0.1	0.12	<	U	0.033	0.11	0.12	<	U	0.034	0.11	0.12
LABORATORY MNA PARAMETERS																															
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	0.55		0.022	0.05	0.1	0.35		0.022	0.05	0.1	0.027	J	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	UJ	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	UJ	0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		3.8		0.019	0.05	0.1	3.2		0.019	0.05	0.1	<	U	0.019	0.05	0.1	2.4		0.019	0.05	0.1	3		0.019	0.05	0.1	9.9		0.038	0.1	0.2
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		68		1	2.5	5	100		1	2.5	5	170		1	2.5	5	170	J	1	2.5	5	200		1	2.5	5	99		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		3.6		0.35	0.8	1	2.7		0.35	0.8	1	5.3		0.35	0.8	1	3.2		0.35	0.8	1	2.3		0.35	0.8	1	2.4		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		280		3.1	6.4	10	350		3.1	6.4	10	340		3.1	6.4	10	290		3.1	6.4	10	310		3.1	6.4	10	300		3.1	6.4	10
Methane RSK-175 (μg/L)		2.6	J	0.63	2	5	5		0.63	2	5	1000		0.63	2	5	230	J	0.63	2	5	44		0.63	2	5	<	U	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		124		3.1	6.4	10	156		3.1	6.4	10	151		3.1	6.4	10	129		3.1	6.4	10	138		3.1	6.4	10	133		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $< = less than LOQ \\ \mu g/L = micrograms per liter \\ CHAAP = Cornhusker Army Ammunition Plant \\ DL = detection limit \\ HAL = health advisory level \\ MNX = mono-nitroso-RDX \\ NA = not available \\ OU = Operable Unit \\ PZ = piezometer \\ Qual = qualifier$

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

	CHAAD															ON-I	POST														
FIELD ID	CHAAP HALs		(G0091-5				(G0092-	5			P	Z017R-	5]	PZ018-5	;]	PZ019-5	i]	PZ020-5	;	
SAMPLE DATE	(μg/L)		3	3/2/2021				3	3/2/202	1			3	3/3/2021				:	3/3/2021				3	3/3/2021				3	3/2021		
	" " "	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.08	0.19	0.2	<	U	0.079	0.19	0.2	2.4		0.089	0.21	0.22	1		0.087	0.21	0.22	<	U	0.09	0.21	0.22	2.3		0.089	0.21	0.22
1,3-Dinitrobenzene	NA	<	U	0.035	0.095	0.1	<	U	0.035	0.094	0.1	<	U	0.039	0.11	0.12	<	U	0.038	0.1	0.11	<	U	0.039	0.11	0.12	<	U	0.039	0.11	0.12
TNT	2	<	U	0.043	0.095	0.1	<	U	0.042	0.094	0.1	10		0.048	0.11	0.12	6		0.047	0.1	0.11	<	U	0.048	0.11	0.12	3.9		0.048	0.11	0.12
2,4-Dinitrotoluene	NA	<	U	0.026	0.076	0.095	<	U	0.026	0.075	0.094	0.046	J	0.029	0.085	0.11	<	U	0.028	0.083	0.1	<	U	0.029	0.086	0.11	<	U	0.029	0.085	0.11
2,6-Dinitrotoluene	NA	<	U	0.038	0.076	0.095	<	U	0.038	0.075	0.094	<	U	0.043	0.085	0.11	<	U	0.042	0.083	0.1	<	U	0.043	0.086	0.11	<	U	0.042	0.085	0.11
2-Amino-4,6-dinitrotoluene	NA	0.17	J	0.048	0.095	0.1	<	U	0.048	0.094	0.1	4.7		0.054	0.11	0.12	2.8		0.053	0.1	0.11	<	U	0.054	0.11	0.12	2.9		0.054	0.11	0.12
2-Nitrotoluene	NA	<	U	0.081	0.19	0.2	<	U	0.08	0.19	0.2	<	UJ	0.091	0.21	0.22	<	UJ	0.089	0.21	0.22	<	J	0.091	0.21	0.22	<	UJ	0.09	0.21	0.22
3-Nitrotoluene	NA	<	U	0.19	0.38	0.38	<	U	0.18	0.38	0.38	<	UJ	0.21	0.42	0.42	<	UJ	0.2	0.42	0.42	<	UJ	0.21	0.43	0.43	<	UJ	0.21	0.42	0.42
4-Amino-2,6-dinitrotoluene	NA	0.16	J	0.055	0.11	0.14	<	U	0.054	0.11	0.14	7.4	J	0.061	0.13	0.16	5.2	J	0.06	0.12	0.16	<	UJ	0.062	0.13	0.16	3.4	J	0.061	0.13	0.16
4-Nitrotoluene	NA	<	U	0.095	0.38	0.39	<	U	0.094	0.38	0.39	<	U	0.11	0.42	0.44	<	U	0.1	0.42	0.43	<	U	0.11	0.43	0.44	<	U	0.11	0.42	0.43
HMX	400	0.3		0.083	0.19	0.2	<	U	0.082	0.19	0.2	1.4	J	0.093	0.21	0.22	<	U	0.091	0.21	0.22	<	U	0.094	0.21	0.22	0.79		0.093	0.21	0.22
MNX	NA	<	U	0.15	0.38	1.9	<	U	0.14	0.38	1.9	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	<	U	0.16	0.43	2.1	<	U	0.16	0.42	2.1
Nitrobenzene	NA	<	U	0.087	0.19	0.2	<	U	0.086	0.19	0.2	<	U	0.097	0.21	0.22	<	U	0.094	0.21	0.22	<	U	0.097	0.21	0.22	<	U	0.096	0.21	0.22
RDX	2	0.27	J	0.049	0.19	0.2	<	U	0.048	0.19	0.2	2.2		0.055	0.21	0.22	<	U	0.053	0.21	0.22	<	U	0.055	0.21	0.22	0.57		0.054	0.21	0.22
Tetryl	NA	<	U	0.03	0.095	0.1	<	U	0.03	0.094	0.1	<	U	0.034	0.11	0.12	<	U	0.033	0.1	0.11	<	U	0.034	0.11	0.12	<	U	0.034	0.11	0.12
LABORATORY MNA PARAMETERS																															
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	0.041	J	0.022	0.05	0.1	0.055	J	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	14		1.4	2	2	<	U	0.69	1	1	<	UJ	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		40		0.19	0.5	1	<	U	0.019	0.05	0.1	10		0.038	0.1	0.2	8.1		0.019	0.05	0.1	37		0.19	0.5	1	14		0.038	0.1	0.2
Sulfide SM 9034 (mg/L)		<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		210		5.2	13	25	370		5.2	13	25	53		1	2.5	5	49		1	2.5	5	71		1	2.5	5	160		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		2.8		0.35	0.8	1	2.5		0.35	0.8	1	6.8		0.35	0.8	1	7.9		0.35	0.8	1	1.8		0.35	0.8	1	3.4		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		260		3.1	6.4	10	370		3.1	6.4	10	440		3.1	6.4	10	320		3.1	6.4	10	120		3.1	6.4	10	340		3.1	6.4	10
Methane RSK-175 (µg/L)		<	U	0.63	2	5	11		0.63	2	5	120	J	0.63	2	5	8600		0.63	2	5	15000		0.63	2	5	0.78	J	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		116		3.1	6.4	10	164		3.1	6.4	10	196		3.1	6.4	10	142		3.1	6.4	10	53		3.1	6.4	10	151		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $<= less than \ LOQ \\ \mu g/L = micrograms \ per \ liter \\ CHAAP = Cornhusker \ Army \ Ammunition \ Plant$ $OU = Operable \ Unit$

DL = detection limit

HAL = health advisory level

PZ = piezometer

Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

	CHAAD													BE	TWE	EN E	W6 AN	D EV	V7												
FIELD ID	CHAAP HALs		(G0022-5	;			P	Z017R-	5			I	PZ018-5				EW7-	PM21A	-5-25			EW7	-PM24 <i>A</i>	\-5-25			EW7-	PM25A	A-5-25	
SAMPLE DATE	(μg/L)		;	3/2/2021					3/3/202	[3	3/3/2021				2	/27/202	1			2	2/27/202	1			2	/25/202	1	
	,	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	0.41		0.089	0.21	0.22	2.4		0.089	0.21	0.22	1		0.087	0.21	0.22	7.3	J	0.083	0.2	0.21	2.2	J	0.084	0.2	0.21	<	U	0.087	0.21	0.22
1,3-Dinitrobenzene	NA	<	U	0.039	0.11	0.12	<	U	0.039	0.11	0.12	<	U	0.038	0.1	0.11	<	U	0.036	0.098	0.11	<	U	0.037	0.1	0.11	<	U	0.038	0.1	0.11
TNT	2	1.1		0.047	0.11	0.12	10		0.048	0.11	0.12	6		0.047	0.1	0.11	5.8	J	0.044	0.098	0.11	4.6	J	0.045	0.1	0.11	<	U	0.047	0.1	0.11
2,4-Dinitrotoluene	NA	<	U	0.029	0.084	0.11	0.046	J	0.029	0.085	0.11	<	U	0.028	0.083	0.1	0.47	J	0.027	0.079	0.098	<	U	0.027	0.08	0.1	<	U	0.028	0.083	0.1
2,6-Dinitrotoluene	NA	<	U	0.042	0.084	0.11	<	U	0.043	0.085	0.11	<	U	0.042	0.083	0.1	<	U	0.039	0.079	0.098	<	U	0.04	0.08	0.1	<	U	0.042	0.083	0.1
2-Amino-4,6-dinitrotoluene	NA	1.1		0.053	0.11	0.12	4.7		0.054	0.11	0.12	2.8		0.053	0.1	0.11	3.5	J	0.05	0.098	0.11	1.4	J	0.051	0.1	0.11	<	U	0.053	0.1	0.11
2-Nitrotoluene	NA	<	U	0.09	0.21	0.22	<	UJ	0.091	0.21	0.22	<	UJ	0.089	0.21	0.22	<	U	0.084	0.2	0.21	<	U	0.086	0.2	0.21	<	UJ	0.089	0.21	0.22
3-Nitrotoluene	NA	<	U	0.21	0.42	0.42	<	UJ	0.21	0.42	0.42	<	UJ	0.2	0.42	0.42	<	U	0.19	0.39	0.39	<	U	0.2	0.4	0.4	<	U	0.2	0.41	0.41
4-Amino-2,6-dinitrotoluene	NA	0.89		0.061	0.13	0.16	7.4	J	0.061	0.13	0.16	5.2	J	0.06	0.12	0.16	<	U	0.057	0.12	0.15	2.1	J	0.058	0.12	0.15	<	U	0.06	0.12	0.16
4-Nitrotoluene	NA	<	U	0.11	0.42	0.43	<	U	0.11	0.42	0.44	<	U	0.1	0.42	0.43	<	U	0.098	0.39	0.4	<	U	0.1	0.4	0.41	<	U	0.1	0.41	0.42
HMX	400	<	U	0.092	0.21	0.22	1.4	J	0.093	0.21	0.22	<	U	0.091	0.21	0.22	<	U	0.086	0.2	0.21	<	UJ	0.088	0.2	0.21	<	U	0.091	0.21	0.22
MNX	NA	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	<	U	0.15	0.39	2	<	U	0.15	0.4	2	<	U	0.16	0.41	2.1
Nitrobenzene	NA	<	U	0.096	0.21	0.22	<	U	0.097	0.21	0.22	<	U	0.094	0.21	0.22	<	U	0.089	0.2	0.21	<	U	0.091	0.2	0.21	<	U	0.094	0.21	0.22
RDX	2	<	U	0.054	0.21	0.22	2.2		0.055	0.21	0.22	<	U	0.053	0.21	0.22	<	U	0.051	0.2	0.21	<	U	0.052	0.2	0.21	<	U	0.053	0.21	0.22
Tetryl	NA	<	U	0.034	0.11	0.12	<	U	0.034	0.11	0.12	<	U	0.033	0.1	0.11	<	U	0.031	0.098	0.11	<	U	0.032	0.1	0.11	<	U	0.033	0.1	0.11
LABORATORY WATER QUALITY PARAMETE	ERS																														
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	0.041	J	0.022	0.05	0.1	0.055	J	0.022	0.05	0.1	0.95		0.022	0.05	0.1	1.1		0.022	0.05	0.1	1.9		0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	0.69	1	1	14		1.4	2	2	<	U	0.69	1	1	3.6		0.69	1	1	6.3		3.4	5	5
Nitrate/Nitrite USEPA 353.2 (mg/L)		9.8		0.038	0.1	0.2	10		0.038	0.1	0.2	8.1		0.019	0.05	0.1	16		0.095	0.25	0.5	2.8		0.019	0.05	0.1	0.1		0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	UJ	0.79	1.9	4	<	UJ	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		120		1	2.5	5	53		1	2.5	5	49		1	2.5	5	72		1	2.5	5	16		1	2.5	5	2.4	J	1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		3		0.35	0.8	1	6.8		0.35	0.8	1	7.9		0.35	0.8	1	23		0.35	0.8	1	17		0.35	0.8	1	35		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		350		3.1	6.4	10	440		3.1	6.4	10	320		3.1	6.4	10	460		3.1	6.4	10	620		3.1	6.4	10	630		3.1	6.4	10
Methane RSK-175 (μg/L)		22		0.63	2	5	120	J	0.63	2	5	8600		0.63	2	5	15000		0.63	2	5	13000		0.63	2	5	17000		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		156		3.1	6.4	10	196		3.1	6.4	10	142		3.1	6.4	10	204		3.1	6.4	10	276		3.1	6.4	10	280		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX

 $\mu g/L = micrograms per liter$ NA = not available

CHAAP = Cornhusker Army Ammunition Plant

OU = Operable Unit

DL = detection limit

PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

LOD = limit of detection U = nondetect

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

	CHAAD													BE	TWE	EN E	W6 AN	ID EV	V7												
FIELD ID	CHAAP HALs		EW7-	PM25B	3-5-35			EW7-	PM26	\-5-25			EW7-	PM26B	-5-35			EW7-	PM27E	-5-35			EW7-	PM28A	-5-35			EW7-	PM29A	1-5-25	
SAMPLE DATE	(μg/L)		2	/25/202	1			2	/27/202	1			2.	26/2021	1			2	/27/202	1			2.	/25/202	1			2	/26/202	1	
	" "	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.086	0.21	0.22	0.35	J	0.083	0.2	0.21	<	U	0.081	0.19	0.2	<	U	0.082	0.19	0.2	<	U	0.087	0.21	0.22	<	U	0.081	0.19	0.2
1,3-Dinitrobenzene	NA	<	U	0.038	0.1	0.11	<	U	0.036	0.098	0.11	<	U	0.035	0.096	0.11	<	U	0.036	0.097	0.11	<	U	0.038	0.1	0.11	<	U	0.036	0.097	0.11
TNT	2	<	U	0.046	0.1	0.11	0.66	J	0.044	0.098	0.11	<	U	0.043	0.096	0.11	<	U	0.044	0.097	0.11	<	U	0.046	0.1	0.11	<	U	0.043	0.097	0.11
2,4-Dinitrotoluene	NA	<	U	0.028	0.082	0.1	<	U	0.027	0.079	0.098	<	U	0.026	0.077	0.096	<	U	0.027	0.078	0.097	<	U	0.028	0.083	0.1	<	U	0.026	0.077	0.097
2,6-Dinitrotoluene	NA	<	U	0.041	0.082	0.1	<	U	0.039	0.079	0.098	<	U	0.039	0.077	0.096	<	U	0.039	0.078	0.097	<	U	0.041	0.083	0.1	<	U	0.039	0.077	0.097
2-Amino-4,6-dinitrotoluene	NA	<	U	0.052	0.1	0.11	0.84	J	0.05	0.098	0.11	<	U	0.049	0.096	0.11	<	U	0.049	0.097	0.11	<	U	0.052	0.1	0.11	<	U	0.049	0.097	0.11
2-Nitrotoluene	NA	<	UJ	0.088	0.21	0.22	<	U	0.084	0.2	0.21	<	U	0.082	0.19	0.2	<	U	0.083	0.19	0.2	<	UJ	0.088	0.21	0.22	<	U	0.083	0.19	0.2
3-Nitrotoluene	NA	<	U	0.2	0.41	0.41	<	U	0.19	0.39	0.39	<	U	0.19	0.38	0.38	<	U	0.19	0.39	0.39	<	U	0.2	0.41	0.41	<	U	0.19	0.39	0.39
4-Amino-2,6-dinitrotoluene	NA	<	U	0.059	0.12	0.15	1.5	J	0.057	0.12	0.15	<	U	0.055	0.12	0.14	<	U	0.056	0.12	0.15	<	U	0.06	0.12	0.15	<	U	0.056	0.12	0.14
4-Nitrotoluene	NA	<	U	0.1	0.41	0.42	<	U	0.098	0.39	0.4	<	U	0.096	0.38	0.39	<	U	0.097	0.39	0.4	<	U	0.1	0.41	0.42	<	U	0.097	0.39	0.4
HMX	400	<	U	0.09	0.21	0.22	<	U	0.086	0.2	0.21	<	U	0.084	0.19	0.2	<	U	0.085	0.19	0.2	<	U	0.09	0.21	0.22	<	U	0.085	0.19	0.2
MNX	NA	<	U	0.16	0.41	2.1	<	U	0.15	0.39	2	<	U	0.15	0.38	1.9	27	J	0.15	0.39	1.9	<	U	0.16	0.41	2.1	<	U	0.15	0.39	1.9
Nitrobenzene	NA	<	U	0.094	0.21	0.22	<	U	0.09	0.2	0.21	<	U	0.087	0.19	0.2	<	U	0.088	0.19	0.2	<	U	0.094	0.21	0.22	<	U	0.088	0.19	0.2
RDX	2	<	U	0.053	0.21	0.22	<	U	0.051	0.2	0.21	<	U	0.049	0.19	0.2	<	U	0.05	0.19	0.2	<	U	0.053	0.21	0.22	<	U	0.05	0.19	0.2
Tetryl	NA	<	U	0.033	0.1	0.11	<	U	0.031	0.098	0.11	<	U	0.031	0.096	0.11	<	U	0.031	0.097	0.11	<	U	0.033	0.1	0.11	<	U	0.031	0.097	0.11
LABORATORY WATER QUALITY PARAMETE	RS																														
Ammonia USEPA 350.1 (mg/L)		3.5		0.022	0.05	0.1	0.15		0.022	0.05	0.1	1.5		0.022	0.05	0.1	6.5		0.044	0.1	0.2	0.99		0.022	0.05	0.1	1.3		0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		8.5		3.4	5	5	0.99	J	0.69	1	1	3.9		1.7	2.5	2.5	8.2	J	6.9	10	10	3.1		1.7	2.5	2.5	2.6		0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		0.09	J	0.019	0.05	0.1	4.9		0.019	0.05	0.1	0.1		0.019	0.05	0.1	<	U	0.019	0.05	0.1	0.077	J	0.019	0.05	0.1	0.1		0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		<	U	1	2.5	5	48		1	2.5	5	46		1	2.5	5	<	U	1	2.5	5	2.5	J	1	2.5	5	5		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		35		0.35	0.8	1	7.7		0.35	0.8	1	39		0.35	0.8	1	47		0.35	0.8	1	28		0.35	0.8	1	12		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		560		3.1	6.4	10	490		3.1	6.4	10	430		3.1	6.4	10	570		3.1	6.4	10	550		3.1	6.4	10	420		3.1	6.4	10
Methane RSK-175 (μg/L)		19000		0.63	2	5	13000		0.63	2	5	11000		0.63	2	5	16000	J	1.9	6	15	<	U	0.63	2	5	16000		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		249		3.1	6.4	10	218		3.1	6.4	10	191		3.1	6.4	10	253		3.1	6.4	10	244		3.1	6.4	10	187		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX

 μ g/L = micrograms per liter NA = not available
CHAAP = Cornhusker Army Ammunition Plant
OU = Operable Unit
DL = detection limit PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

	СНААР	BETW	EEN	EW6	AND	EW7				L	OAD	LINE 1	1										LOA	D LI	NE 2						
FIELD ID	HALs		EW7-	PM29B	3-5-35			(G0094-5	5			(G0096-5					G0111-5	;			(G0121-5	5			(G0122-5	5	
SAMPLE DATE	(μg/L)		2	/26/202	1			3	3/1/2021	[3/1/2021				2	/28/202	1			2,	/28/202	1			2	/28/202	1	
	, ,	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)																															
1,3,5-Trinitrobenzene	NA	<	U	0.087	0.21	0.22	<	U	0.088	0.21	0.22	1.1	J	0.092	0.22	0.23	2.6	J	0.084	0.2	0.21	<	U	8.5	20	21	<	UJ	0.086	0.21	0.22
1,3-Dinitrobenzene	NA	<	U	0.038	0.1	0.11	<	U	0.039	0.1	0.12	<	U	0.04	0.11	0.12	<	UJ	0.037	0.1	0.11	<	U	3.7	10	11	<	UJ	0.038	0.1	0.11
TNT	2	<	U	0.047	0.1	0.11	4.9	J	0.047	0.1	0.12	0.24	J	0.049	0.11	0.12	3.7	J	0.045	0.1	0.11	<	U	4.5	10	11	<	UJ	0.046	0.1	0.11
2,4-Dinitrotoluene	NA	<	U	0.028	0.083	0.1	0.29	J	0.029	0.084	0.1	<	U	0.03	0.087	0.11	0.28	J	0.027	0.08	0.1	<	U	2.8	8.1	10	<	UJ	0.028	0.082	0.1
2,6-Dinitrotoluene	NA	<	UJ	0.042	0.083	0.1	<	U	0.042	0.084	0.1	<	U	0.044	0.087	0.11	<	UJ	0.04	0.08	0.1	<	U	4	8.1	10	<	UJ	0.041	0.082	0.1
2-Amino-4,6-dinitrotoluene	NA	0.32	J	0.053	0.1	0.11	36	J	0.53	1	1.2	1.4	J	0.055	0.11	0.12	3.8	J	0.051	0.1	0.11	<	U	5.1	10	11	<	UJ	0.052	0.1	0.11
2-Nitrotoluene	NA	<	U	0.089	0.21	0.22	<	U	0.09	0.21	0.22	<	U	0.093	0.22	0.23	<	UJ	0.086	0.2	0.21	<	U	8.6	20	21	<	UJ	0.088	0.21	0.22
3-Nitrotoluene	NA	<	U	0.2	0.42	0.42	<	U	0.2	0.42	0.42	<	U	0.21	0.44	0.44	<	UJ	0.2	0.4	0.4	<	U	20	40	40	<	UJ	0.2	0.41	0.41
4-Amino-2,6-dinitrotoluene	NA	<	UJ	0.06	0.12	0.16	43	J	0.6	1.3	1.6	<	U	0.063	0.13	0.16	4.8	J	0.058	0.12	0.15	<	U	5.8	12	15	<	UJ	0.059	0.12	0.15
4-Nitrotoluene	NA	<	U	0.1	0.42	0.43	<	U	0.1	0.42	0.43	<	U	0.11	0.44	0.45	<	UJ	0.1	0.4	0.41	<	U	10	40	41	<	UJ	0.1	0.41	0.42
HMX	400	<	U	0.091	0.21	0.22	<	UJ	0.092	0.21	0.22	26	J	0.096	0.22	0.23	<	UJ	0.088	0.2	0.21	<	U	8.8	20	21	<	UJ	0.09	0.21	0.22
MNX	NA	<	U	0.16	0.42	2.1	<	U	0.16	0.42	2.1	2	J	0.17	0.44	2.2	<	UJ	0.15	0.4	2	<	U	16	40	200	<	UJ	0.16	0.41	2.1
Nitrobenzene	NA	<	U	0.094	0.21	0.22	<	U	0.095	0.21	0.22	<	U	0.099	0.22	0.23	<	UJ	0.091	0.2	0.21	<	U	9.2	20	21	<	UJ	0.094	0.21	0.22
RDX	2	<	U	0.053	0.21	0.22	16	J	0.054	0.21	0.22	87	J	1.1	4.4	4.6	<	UJ	0.052	0.2	0.21	<	U	5.2	20	21	<	UJ	0.053	0.21	0.22
Tetryl	NA	<	U	0.033	0.1	0.11	<	U	0.033	0.1	0.12	<	U	0.035	0.11	0.12	<	UJ	0.032	0.1	0.11	<	U	3.2	10	11	<	UJ	0.033	0.1	0.11
LABORATORY WATER QUALITY PARAMETE	RS																														
Ammonia USEPA 350.1 (mg/L)		7.9	J	0.044	0.1	0.2	3.6		0.022	0.05	0.1	2.9		0.022	0.05	0.1	0.58		0.022	0.05	0.1	31		0.22	0.5	1	4.8		0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		6.7		0.69	1	1	3.3		0.69	1	1	5		0.86	1.3	1.3	1.3		0.69	1	1	77		34	50	50	10		6.9	10	10
Nitrate/Nitrite USEPA 353.2 (mg/L)		0.09	J	0.019	0.05	0.1	11		0.038	0.1	0.2	14		0.038	0.1	0.2	7.8		0.019	0.05	0.1	<	U	0.019	0.05	0.1	0.021	J	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	4.8		0.79	1.9	4	1.6	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		<	U	1	2.5	5	82		1	2.5	5	120	J	1	2.5	5	320	J	5.2	13	25	110		1	2.5	5	45		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		21		0.35	0.8	1	5.5		0.35	0.8	1	120		1.2	2.7	3.3	9.5		0.35	0.8	1	69	J	13	30	38	150		1.4	3.3	4.2
Alkalinity SM 2320B (mg/L)		450		3.1	6.4	10	380		3.1	6.4	10	450		3.1	6.4	10	790		3.1	6.4	10	800		3.1	6.4	10	1400		3.1	6.4	10
Methane RSK-175 (μg/L)		16000	J	0.63	2	5	12000		0.63	2	5	2200		0.63	2	5	6400		0.63	2	5	5200		0.63	2	5	14000		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		200		3.1	6.4	10	169		3.1	6.4	10	200		3.1	6.4	10	351		3.1	6.4	10	356		3.1	6.4	10	622		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

<= less than LOQ MNX = mono-nitroso-RDX $\mu g/L$ = micrograms per liter NA = not available

 μ g/L = micrograms per liter NA = not available
CHAAP = Cornhusker Army Ammunition Plant
DL = detection limit PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

 $mg/L = milligrams \ per \ liter$

	CHI LE		LOA	D LIN	NE 2		D	ECAN	TST	ATIO	N
FIELD ID	CHAAP HALs		(G0123-5				(G0102-5		
SAMPLE DATE	(μg/L)		2	28/2021	1			3	/2/2021		
	,,,,	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)											
1,3,5-Trinitrobenzene	NA	<	U	0.083	0.2	0.21	<	U	0.091	0.22	0.23
1,3-Dinitrobenzene	NA	<	U	0.037	0.099	0.11	<	U	0.04	0.11	0.12
TNT	2	<	U	0.045	0.099	0.11	<	U	0.048	0.11	0.12
2,4-Dinitrotoluene	NA	<	U	0.027	0.079	0.099	<	U	0.029	0.086	0.11
2,6-Dinitrotoluene	NA	<	U	0.04	0.079	0.099	<	U	0.043	0.086	0.11
2-Amino-4,6-dinitrotoluene	NA	<	U	0.05	0.099	0.11	<	U	0.055	0.11	0.12
2-Nitrotoluene	NA	<	U	0.085	0.2	0.21	<	U	0.092	0.22	0.23
3-Nitrotoluene	NA	<	U	0.19	0.4	0.4	<	U	0.21	0.43	0.43
4-Amino-2,6-dinitrotoluene	NA	<	U	0.057	0.12	0.15	<	U	0.062	0.13	0.16
4-Nitrotoluene	NA	<	U	0.099	0.4	0.41	<	U	0.11	0.43	0.44
HMX	400	<	U	0.087	0.2	0.21	<	U	0.094	0.22	0.23
MNX	NA	<	U	0.15	0.4	2	<	U	0.17	0.43	2.2
Nitrobenzene	NA	<	U	0.09	0.2	0.21	<	U	0.098	0.22	0.23
RDX	2	<	U	0.051	0.2	0.21	<	U	0.055	0.22	0.23
Tetryl	NA	<	U	0.032	0.099	0.11	<	U	0.034	0.11	0.12
LABORATORY WATER QUALITY PARAMET	TERS										
Ammonia USEPA 350.1 (mg/L)		0.86		0.022	0.05	0.1	0.088	J	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		13		6.9	10	10	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		0.02	J	0.019	0.05	0.1	<	U	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	2.4	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		5.6	J	2.1	5	10	870		5.2	13	25
Dissolved Organic Carbon SM 9060A (mg/L)		580		5.4	13	16	22		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		810		3.1	6.4	10	660		3.1	6.4	10
Methane RSK-175 (μg/L)		12000		0.63	2	5	57		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		360		3.1	6.4	10	293		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ

NA = not available

 μ g/L = micrograms per liter

OU = Operable Unit

CHAAP = Cornhusker Army Ammunition Plant

PM = performance monitoring

MNX = mono-nitroso-RDX

DL = detection limit EW = extraction well

Qual = qualifier

HAL = health advisory level

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

RSK = Robert S. Kerr Environmental Research Laboratory

ID = identification number

SM = Standard Method TNT = 2,4,6-trinitrotoluene

J = estimated

LOD = limit of detection

U = nondetect

LOQ = limit of quantification

USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

TABLE 3-4 SUMMARY OF OU1 FIELD DUPLICATE SAMPLE PAIRS OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

WELL NUMBER					OS0	01-DP05-	25										G0096]	PZ017R					
FIELD ID		OS0	01-DP0	5-25			OS5	01-DP0	5-25				-	G0096-	5			(G0296-5	5				P	Z017R-	-5			F	PZ021-5	5		
SAMPLE DATE		2	/23/202	1			2.	/23/202	1				:	3/1/202	1			3	3/1/2021	l				3	3/3/2021	1			3	3/3/2021	1		
	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																	
1,3,5-Trinitrobenzene	0.56	J	0.088	0.21	0.22	0.57	J	0.089	0.21	0.22	2	1.1	J	0.092	0.22	0.23	1.2	J	0.091	0.22	0.23	9	2.4		0.089	0.21	0.22	2.2		0.086	0.2	0.22	9
1,3-Dinitrobenzene	<	UJ	0.038	0.1	0.11	<	UJ	0.039	0.11	0.12		<	U	0.04	0.11	0.12	<	U	0.04	0.11	0.12		<	U	0.039	0.11	0.12	<	U	0.038	0.1	0.11	
TNT	20	J	0.047	0.1	0.11	21	J	0.048	0.11	0.12	5	0.24	J	0.049	0.11	0.12	<	U	0.049	0.11	0.12	<2x	10		0.048	0.11	0.12	10		0.046	0.1	0.11	0
2,4-Dinitrotoluene	<	UJ	0.029	0.083	0.1	<	UJ	0.029	0.085	0.11		<	U	0.03	0.087	0.11	<	U	0.03	0.086	0.11		0.046	J	0.029	0.085	0.11	<	U	0.028	0.082	0.1	<2x
2,6-Dinitrotoluene	<	UJ	0.042	0.083	0.1	<	UJ	0.043	0.085	0.11		<	U	0.044	0.087	0.11	<	U	0.043	0.086	0.11		<	U	0.043	0.085	0.11	<	U	0.041	0.082	0.1	
2-Amino-4,6-dinitrotoluene	2.1	J	0.053	0.1	0.11	2	J	0.054	0.11	0.12	5	1.4	J	0.055	0.11	0.12	<	UJ	0.055	0.11	0.12	>2x	4.7		0.054	0.11	0.12	4.7		0.052	0.1	0.11	0
2-Nitrotoluene	<	UJ	0.089	0.21	0.22	<	UJ	0.091	0.21	0.22		<	U	0.093	0.22	0.23	<	U	0.092	0.22	0.23		<	UJ	0.091	0.21	0.22	<	UJ	0.088	0.2	0.22	
3-Nitrotoluene	<	UJ	0.2	0.42	0.42	<	UJ	0.21	0.42	0.42		<	U	0.21	0.44	0.44	<	U	0.21	0.43	0.43		<	UJ	0.21	0.42	0.42	<	UJ	0.2	0.41	0.41	
4-Amino-2,6-dinitrotoluene	1.8	J	0.06	0.12	0.16	1.7	J	0.061	0.13	0.16	6	<	U	0.063	0.13	0.16	<	UJ	0.062	0.13	0.16		7.4	J	0.061	0.13	0.16	7.6	J	0.059	0.12	0.15	3
4-Nitrotoluene	<	J	0.1	0.42	0.43	<	UJ	0.11	0.42	0.44		<	U	0.11	0.44	0.45	<	U	0.11	0.43	0.44		<	U	0.11	0.42	0.44	<	U	0.1	0.41	0.42	
HMX	<	J	0.091	0.21	0.22	0.16	J	0.093	0.21	0.22	<2x	26	J	0.096	0.22	0.23	24	J	0.095	0.22	0.23	8	1.4	J	0.093	0.21	0.22	1.4	J	0.09	0.2	0.22	0
MNX	<	J	0.16	0.42	2.1	<	UJ	0.16	0.42	2.1		2	J	0.17	0.44	2.2	<	UJ	0.17	0.43	2.2	<2x	<	U	0.16	0.42	2.1	<	U	0.16	0.41	2	
Nitrobenzene	<	J	0.095	0.21	0.22	<	UJ	0.097	0.21	0.22		<	U	0.099	0.22	0.23	<	U	0.098	0.22	0.23		<	U	0.097	0.21	0.22	<	U	0.093	0.2	0.22	
RDX	<	J	0.054	0.21	0.22	<	UJ	0.055	0.21	0.22		87	J	1.1	4.4	4.6	81	J	1.1	4.3	4.5	7	2.2		0.055	0.21	0.22	2.3		0.053	0.2	0.22	4
Tetryl	<	J	0.033	0.1	0.11	<	UJ	0.034	0.11	0.12		<	U	0.035	0.11	0.12	<	U	0.034	0.11	0.12		<	U	0.034	0.11	0.12	<	U	0.033	0.1	0.11	
LABORATORY MNA PARAMETERS																																	
Ammonia USEPA 350.1 (mg/L)												2.9	1	0.022	0.05	0.1	2.9		0.022	0.05	0.1	0	0.041	J	0.022	0.05	0.1	0.044	J	0.022	0.05	0.1	<2x
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)												5		0.86	1.3	1.3	5.7		0.86	1.3	1.3	13	<	U	0.69	1	1	<	U	0.69	1	1	
Nitrate/Nitrite USEPA 353.2 (mg/L)												14		0.038	0.1	0.2	15		0.095	0.25	0.5	7	10		0.038	0.1	0.2	9.9		0.038	0.1	0.2	1
Sulfide SM 9034 (mg/L)		N	o Analy	sis			No	Analy	sis			<	U	0.79	1.9	4	<	U	0.79	1.9	4		<	UJ	0.79	1.9	4	0.8	J	0.79	1.9	4	<2x
Sulfate USEPA 9056A (mg/L)												120	J	1	2.5	5	72	J	1	2.5	5	50	53		1	2.5	5	47		1	2.5	5	12
Dissolved Organic Carbon SM 9060A (mg/L)												120		1.2	2.7	3.3	130		1.2	2.7	3.3	8	6.8		0.35	0.8	1	6.6		0.35	0.8	1	3
Alkalinity SM 2320B (mg/L)												450		3.1	6.4	10	450		3.1	6.4	10	0	440		3.1	6.4	10	450		3.1	6.4	10	2
Methane RSK-175 (μg/L)												2200		0.63	2	5	2200		0.63	2	5	0	120	J	0.63	2	5	16000	J	0.63	2	5	197
Carbon Dioxide SM 2320B (mg/L) ¹												200		3.1	6.4	10	200		3.1	6.4	10	0	196		3.1	6.4	10	200		3.1	6.4	10	2

¹Carbon dioxide back calculated from alkalinity SM 2320. field duplicate RPD > 30 or >2X the LOQ

<= less than LOQ

 $\mu g/L = micrograms \ per \ liter \\ DL = detection \ limit$ $OU = Operable \ Unit \\ Qual = qualifier$

DP = direct push

RDX = hexahydro-1,3,5-triazine

 $HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine \\ RPD = relative percent difference$

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

OS = off-post sample

LOQ = limit of quantification U = nondetect

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

MNA = monitored natural attenuation X = times

MNX = mono-nitroso-RDX

TABLE 3-5 FIELD WATER QUALITY PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS **OU1 REBOUND STUDY, QUARTER 5 OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

				Specific				Ferrous
Well	Sample		Temperature	Conductance	DO	ORP	Turbidity	Iron
Number	Date	pН	(°C)	(mS/cm)	(mg/L)	(mV)	(NTU)	(mg/L)
OU1 Off-Post	Monitoring W	ells						
CA210	3/2/2021	6.75	13.17	1.545	0.21	177.6	0.41	0.18
CA211	3/2/2021	6.72	12.88	1.026	0.75	162.3	0.05	0.08
CA212	3/2/2021	6.97	11.17	0.621	0.05	161.4	2.64	0.16
CA213	3/2/2021	7.63	5.25	0.447	0.66	172.3	42.94	0.00
NW020	3/3/2021	6.90	11.81	1.504	5.54	138.9	6.57	0.15
NW021	3/3/2021	6.79	12.51	0.982	0.04	-110.2	15.22	0.18
NW022	3/3/2021	6.97	13.58	1.257	0.08	-19.9	20.04	1.00
NW060	3/1/2021	6.56	11.43	0.203	10.23	196.7	0.05	0.00
NW061	3/1/2021	7.13	11.70	0.941	0.03	35.3	8.27	0.00
NW062	3/1/2021	7.41	12.35	0.883	0.05	-100.6	30.26	0.73
NW070	3/1/2021	7.24	13.59	0.926	0.07	163.2	1.01	0.00
NW071	3/1/2021	6.61	11.55	0.686	1.94	107.8	12.84	0.18
OU1 On-Post	Monitoring W	ells						
G0024	3/3/2021	6.64	13.64	0.654	5.31	175.4	5.52	0.10
G0070	3/1/2021	7.02	11.97	0.427	1.80	84.2	0.37	0.00
G0075	3/1/2021	6.98	13.15	0.809	2.09	88.2	0.44	0.14
G0076	3/1/2021	6.81	13.15	1.135	0.05	-49.0	0.35	2.11
G0077	3/3/2021	6.61	14.25	0.795	2.34	194.5	0.27	0.16
G0078	3/3/2021	6.78	14.44	0.957	0.10	-10.9	5.93	1.41
G0079	3/1/2021	6.67	12.81	0.575	2.51	81.8	5.00	0.30
G0080	2/28/2021	6.82	12.18	0.703	0.09	48.7	0.00	0.21
G0081	3/2/2021	6.51	15.11	0.891	0.05	-25.1	3.50	1.16
G0082	3/2/2021	6.62	14.83	0.790	0.13	-21.0	17.40	0.20
G0086	3/2/2021	6.92	14.54	0.808	0.06	70.7	0.11	0.00
G0087	3/2/2021	6.82	14.95	0.731	0.05	100.1	3.12	0.06
G0091	3/2/2021	6.93	13.83	1.170	5.53	170.1	2.26	0.14
G0092	3/2/2021	7.28	13.04	1.297	0.04	43.8	0.06	0.10
PZ017R	3/3/2021	6.38	13.31	0.902	0.01	6.8	2.30	1.25
PZ018	3/3/2021	6.28	12.60	0.713	0.36	-9.9	3.36	2.62
PZ019	3/3/2021	6.32	12.54	0.663	7.35	162.2	3.60	0.23
PZ020	3/3/2021	6.87	14.22	0.916	2.65	104.1	2.90	0.05

Field water quality parameters for all wells were measured using a In-Situ Aqua TROLL 500 MPS equipped with a flow-through cell with the exception of ferrous iron. Ferrous iron was measured using a Hach colorimeter (DR/820).

DO = dissolved oxygen

mg/L = milligrams per liter

MPS = multiprobe system

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

ORP = oxidation/reduction potential

OU = Operable Unit

PZ = piezometer

[°]C = degrees Celsius

TABLE 3-6
FIELD WATER QUALITY PARAMETERS, PERFORMANCE MONITORING WELLS
OU1 SUBSURFACE INJECTION, QUARTER 5
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Well Number	Sample Date	pН	Temperature (°C)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Ferrous Iron (mg/L)
Between EW6	and EW7							
G0022	3/2/2021	6.87	10.52	0.850	3.32	-94.9	0.04	0.11
PZ017R	3/3/2021	6.38	13.31	0.902	0.01	6.8	2.30	1.25
PZ018	3/3/2021	6.28	12.60	0.713	0.36	-9.9	3.36	2.62
EW7-PM21A	2/27/21	6.35	10.80	0.925	0.05	-146.6	54.00	2.67
EW7-PM24A	2/27/2021	6.52	10.71	1.071	0.07	-129.6	9.10	2.10
EW7-PM25A	2/25/2021	6.32	11.12	1.243	0.01	-184.5	73.04	6.52
EW7-PM25B	2/25/2021	6.42	11.35	0.746	0.64	-99.8	46.30	6.48
EW7-PM26A	2/27/2021	6.56	10.67	0.925	0.03	-75.4	26.50	5.92
EW7-PM26B	2/26/2021	6.46	10.10	0.820	0.01	-104.6	35.00	7.32
EW7-PM27B	2/27/2021	6.29	11.57	0.974	0.01	-135.3	47.00	6.54
EW7-PM28A	2/25/2021	6.34	11.59	0.106	1.78	-58.1	30.00	5.00
EW7-PM29A	2/26/2021	6.52	10.67	0.817	0.01	-97.7	9.30	6.12
EW7-PM29B	2/26/2021	6.49	10.66	0.953	0.02	119.7	90.00	2.73
Load Line 1								
G0094	3/1/2021	6.30	12.93	0.887	0.03	-12.1	18.00	1.67
G0096	3/1/2021	6.19	10.69	1.138	0.03	-102.0	4.20	3.22
Load Line 2								
G0111	2/28/2021	6.69	11.78	1.762	0.22	-198.4	0.17	2.24
G0121	2/28/2021	5.02	11.55	3.539	0.04	-127.9	185.82	3.09
G0122	2/28/2021	6.48	9.00	2.339	0.06	-266.4	35.32	2.64
G0123	2/28/2021	6.00	11.97	1.673	0.03	-126.2	18.89	6.54
Decant Station								
G0102	3/2/2021	6.68	9.62	2.271	0.03	-279.2	20.10	2.20

Field water quality parameters for all wells were measured using a In-Situ Aqua TROLL 500 MPS equipped with a flow-through cell with the exception of ferrous iron. Ferrous iron was measured using a Hach colorimeter (DR/820).

> = greater than

°C = degrees Celsius

DO = dissolved oxygen

EW = extraction well

mg/L = milligrams per liter

MPS = multiprobe system

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

TABLE 5-1 SUMMARY OF RDX AND THT CONCENTRATIONS **OU1 REBOUND STUDY LOCATIONS OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

	BASE	CLINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5
Well Number /	RDX	TNT								
Sample Interval	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
OU1 Off-Post Wells										
CA210	ND									
CA211	ND									
CA212	ND									
CA213	ND									
NW020	0.2	ND	0.94	0.6	1.5	0.59	2.3	0.62	1.2	0.8
NW021	ND									
NW022	ND									
NW050*	ND	NS	NS							
NW051*	ND	NS	NS							
NW052*	ND	NS	NS							
NW060	ND									
NW061	ND									
NW062	ND									
NW070	ND									
NW071	ND									
NW080*	ND	NS	NS							
NW081R*	ND	NS	NS							
NW082R*	ND	NS	NS							
OU1 On-Post Wells										
G0024	ND	ND	ND	ND	0.59	0.63	ND	0.2	ND	0.48
G0070	ND									
G0075	ND									
G0076	ND	ND	ND	ND	0.2	ND	0.2	ND	ND	ND
G0077	0.91	3.2	0.19	2.7	0.46	3.3	0.34	3.4	0.82	3.6
G0078	ND									
G0079	ND									
G0080	ND									
G0081	ND	0.29	ND							
G0082	0.63	ND	ND	ND	0.68	ND	0.41	ND	0.53	ND
G0086	ND	3.8	ND	5.9	0.21	3.6	0.17	ND	0.59	4.9
G0087	ND	ND	ND	ND	0.15	ND	0.15	ND	0.17	ND
G0091	0.81	ND	0.83	ND	0.59	ND	0.46	ND	0.27	ND
G0092	ND									
PZ017R	0.87	15	1.4	17	1.4	11	1.8	15	2.2	10
PZ018	0.88	8	ND	19	1	ND	ND	17	ND	6
PZ019	ND									
PZ020	0.42	3.7	0.62	3.2	0.58	2.2	0.67	3.5	0.57	3.9

Notes:

Concentrations exceed HALs

 μ g/L = micrograms per liter OU = Operable Unit ND = nondetectPZ = piezometer

NS = not sampledRDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

OS = off-post sampleTNT = 2,4,6-trinitrotoluene

^{*}Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

TABLE 5-1 SUMMARY OF RDX AND THT CONCENTRATIONS **OU1 REBOUND STUDY LOCATIONS OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

	BASE	LINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5
Well Number /	RDX	TNT	RDX	TNT	RDX	TNT	RDX	TNT	RDX	TNT
Sample Interval	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
Direct Push Samples (Off-Post)									
OS001-25	ND	12	ND	9.2	0.19	32	ND	29	ND	20
OS001-35	ND	11	ND	8.2	0.21	11	1.8	15	0.82	2
OS001-45	ND	ND	ND	1.1	0.17	2.2	ND	ND	ND	0.25
OS002-25	0.63	1.3	NS							
OS002-35	ND	ND	NS							
OS002-45	ND	3.3	NS							
OS003-25	ND	ND	NS	NS	NS	NS	ND	ND	ND	0.2
OS003-35	ND	3	NS	NS	NS	NS	ND	ND	ND	ND
OS003-45	ND	ND	NS	NS	NS	NS	ND	ND	ND	ND
OS004-25	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS
OS004-35	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS
OS004-45	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS
NW050R-20	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND
NW050R-35	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND
NW050R-60	NS	NS	NS	NS	NS	NS	NS	NS	ND	ND

Notes:

Concentrations exceed HALs

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions

 $\mu g/L = micrograms \ per \ liter \quad OU = Operable \ Unit$ ND = nondetectPZ = piezometer

NS = not sampledRDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene OS = off-post sample

TABLE 5-2
SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Well Number			ORP (mV	/)]	DO (mg/I	٦)			Nitrat	e/Nitrite	(mg/L)			Am	monia (n	ıg/L)			T	KN (mg/	L)	
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21
Shallow Wells		_	_				_				· 							_				_		_	
CA210	165.5	61.3	70	210.0	177.6	0.45	1.99	0.48	0.17	0.21	22	13	19	2.7	42	ND	ND	0.052	0.098	0.06	ND	1.5	0.72	ND	ND
NW020	113.9	41.1	153	118.2	138.9	3.30	6.04	6.30	5.41	5.54	62	49	42	56	68	0.46	0.025	ND	ND	ND	ND	ND	ND	ND	ND
NW050*	112.8	140.3	130	118.6	NS	0.24	0.37	0.40	0.02	NS	62	79	78	87	NS	4.8	0.72	0.98	ND	NS	ND	ND	ND	ND	NS
NW060	171.6	29.2	130	156.7	196.7	10.75	10.20	10.63	9.26	10.23	1.8	3.0	2.4	4.9	4.1	0.14	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW070	127.0	-307.4	-7	107.0	163.2	0.38	1.59	0.40	0.12	0.07	0.03	ND	ND	39	29	0.024	0.059	0.087	ND	ND	ND	1.1	1.3	ND	ND
NW080*	197.0	146.2	186	133.8	NS	7.28	8.38	7.66	7.38	NS	47	32	26	40	NS	0.029	ND	ND	ND	NS	ND	ND	ND	ND	NS
G0024	156.5	22.5	119	155.4	175.4	4.88	5.57	7.26	5.01	5.31	40	32	26	23	12	ND	0.025	ND	ND	ND	ND	ND	ND	ND	ND
G0079	144.0	170.4	69	18.5	81.8	3.82	5.13	5.90	1.03	2.51	0.21	0.36	0.83	0.03	3.8	ND	0.058	0.065	ND	ND	0.76	ND	ND	1.3	ND
G0091	156.8	27.4	105	196.8	170.1	2.79	3.13	6.55	6.99	5.53	32	27	40	4.1	40	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PZ017R	173.9	154.3	111	68.6	6.8	5.68	2.63	3.44	0.65	0.01	41	26	30	20	10	0.060	0.13	ND	0.032	0.041	ND	ND	ND	ND	ND
PZ018	167.4	177.2	127	136.6	-9.9	1.34	9.09	9.26	5.99	0.36	24	31	26	26	8.1	0.21	0.023	ND	ND	0.055	ND	ND	ND	ND	14
PZ019	77.3	-4.3	112	166.3	162.2	6.44	9.44	10.83	9.36	7.35	34	31	34	36	37	ND	ND	ND	0.08	ND	ND	ND	ND	ND	ND
PZ020	160.2	166.3	104	114.1	104.1	2.54	4.17	7.07	4.06	2.65	29	28	38	27	14	ND	ND	0.032	ND	ND	ND	ND	ND	ND	ND
Shallow-Intermediate Wells																									
CA211	161.2	33.6	94	188.2	162.3	0.44	0.93	0.78	0.10	0.75	30	34	33	5.7	40	0.11	ND	ND	0.032	ND	ND	ND	ND	ND	ND
NW021	112.2	26.7	150	137.5	-110.2	0.26	0.83	0.34	0.06	0.04	0.84	0.43	1.5	1.5	1.3	3.8	2.7	1.4	1.6	1.4	3.5	2.8	1.8	1.9	1.7
NW051*	132.3	157.2	126	159.1	NS	0.32	7.01	0.37	0.56	NS	27	36	24	45	NS	ND	0.033	ND	ND	NS	ND	ND	ND	ND	NS
NW061	137.4	0.1	180	196.8	35.3	0.18	0.68	0.38	0.22	0.03	4.6	10	5.7	26	8.3	5.7	3.8	4.5	4.1	3.6	4.9	2.6	2.5	1.2	3.4
NW071	158.1	-151.2	88	130.0	107.8	2.18	3.43	3.00	0.46	1.94	2.9	32	30	26	36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW081R*	171.2	144.8	161	129.5	NS	0.65	0.62	1.46	0.14	NS	29	29	26	29	NS	ND	ND	ND	ND	NS	ND	ND	ND	ND	NS
G0075	132.7	154.9	73	257.3	88.2	6.86	1.05	0.71	0.03	2.09	1.2	0.94	2.4	0.76	4.7	0.056	ND	0.062	0.059	0.055	0.92	ND	ND	ND	ND
G0077	144.8	20.4	115	115.5	194.5	1.86	5.43	2.67	2.62	2.34	20	16	13	14	10	ND	ND	0.052	ND	ND	ND	ND	ND	ND	ND
G0080	-16.4	32.0	36	148.6	48.7	1.23	1.02	0.39	0.2	0.09	2.7	2.8	2.9	3.1	3.2	0.064	0.41	0.83	ND	0.55	ND	0.70	0.97	ND	ND
G0081	14.9	24.2	52	32.7	-25.1	0.18	0.75	0.59	0.07	0.05	0.36	0.051	ND	0.02	ND	0.26	0.26	0.31	0.34	0.35	ND	0.69	1.1	1.1	ND
G0082	32.9	14.4	-12	104.1	-21.0	0.20	0.51	0.23	0.23	0.13	3.4	0.31	0.46	0.69	2.4	ND	ND	0.11	0.30	0.027	ND	ND	ND	ND	ND
G0086	156.2	12.2	111	193.8	70.7	0.52	0.69	1.14	0.05	0.06	4.8	2.6	6.5	3.8	3.0	ND	0.039	0.025	ND	ND	ND	ND	ND	ND	ND
G0087	164.9	14.3	111	115.9	100.1	0.39	0.80	0.40	0.09	0.05	1.3	2.0	2.7	7.8	9.9	ND	ND	0.032	ND	ND	ND	ND	1.1	ND	ND
G0092	122.9	14.7	103	56.4	43.8	0.26	0.74	0.41	0.11	0.04	0.45	0.19	0.18	ND	ND	ND	ND	0.031	ND	ND	ND	ND	ND	ND	ND
Intermediate Wells	<u> </u>							-	-																
CA212	149.6	22.3	98	167.4	161.4	0.46	0.89	0.41	0.13	0.05	14	17	18	14	15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW022	26.7	15.4	85	-34.9	-19.9	0.19	0.72	0.33	0.13	0.03	53	ND	ND	ND	ND	0.42	0.47	1.4	1.3	1.2	ND	0.70	1.7	1.5	1.5
	134.5	87.4	27	20.1	-19.9 NS	0.19	0.72	0.36	0.63	NS	0.12	0.022	0.052	ND	NS	0.027	0.47	0.031	0.029	NS	0.80	0.70	1.0	1.6	NS
NW052* NW062	38.6	-15.8	-67	-62.2	-100.6	0.26	0.65	0.33	0.03	0.05	ND	ND	ND	ND	ND	0.59	0.63	0.031	0.35	0.86	1.0	1.3	1.5	1.0	1.1
NW082R*	153.8	144.8	153	151.9	-100.0 NS	0.20	0.63	0.33	0.13	NS	20	18	17	25	NS	ND	ND	0.024	ND	NS	ND	ND	ND	ND	NS
NW082R** G0076	-36.2	83.2	-27	-13.1	-49.0	1.91	0.31	0.49	0.01	0.05	ND	ND	ND	ND	ND	1.1	1.1	1.4	1.4	1.3	1.3	1.2	1.3	1.8	1.1
G0078	28.1	9.9	68	-21.2	-10.9	0.25	0.23	0.30	0.09	0.03	ND	ND	ND	ND	ND	0.53	0.48	0.46	0.42	0.3	ND	ND	ND	0.8	ND
Deep Wells	20.1	7.7	- 00	21.2	10.7	0.23	0.43	0.51	0.07	0.10	1112	1112	1112	1112	1110	0.55	0.40	0.40	0.72	0.5	1112	1112	1112	0.0	1110
CA213	118.3	17.4	95	97.9	172.3	0.22	1.51	0.48	0.09	0.66	1.3	1.4	1.0	0.81	1.3	ND	ND	ND	1.0	ND	0.97	ND	ND	ND	ND
G0070	16.5	87.3	120	68.5	84.2	3.29	0.58	1.40	0.54	1.80	0.025	ND	ND	ND	ND	ND	0.023	0.039	0.025	ND	ND	ND	ND	ND	ND

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = \text{micrograms per liter}$ NA = no analysis $CO_2 = \text{carbon dioxide}$ ND = nondetect

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = Specific Conductance not measured due to instrument error.

mg/L = milligrams per liter ORP = oxidation/reduction potential

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-2
SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Well Number		Γ	OOC (mg/	L)			(CO ₂ (mg/l	L)			Me	thane (µg	g/L)			Alk	alinity (n	ıg/L)			Ferro	ous Iron (mg/L)	
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21
Shallow Wells																									
CA210	9.7	14	14	9.2	7.8	138	156	151	142	164	23	6.6	2.3	1.6	1.7	310	350	340	320	370	ND	0.44	1.13	ND	0.18
NW020	3.6	6.1	5.9	6.7	6.2	129	138	142	151	160	ND	ND	ND	ND	ND	290	310	320	340	360	0.07	0.14	0.96	ND	0.15
NW050*	8.1	8.7	6.5	6.5	NS	107	116	98	80	NS	1.4	ND	ND	2.1	NS	240	260	220	180	NS	ND	0.02	0.30	ND	NS
NW060	1.8	1.6	0.96	2.5	2.2	15	14	12	28	18	ND	ND	ND	ND	20	33	31	28	64	41	ND	ND	0.10	ND	ND
NW070	7.2	9.3	10	5.9	6.4	23	49	32	67	93	18	630	3900	ND	ND	51	110	72	150	210	ND	0.35	1.21	ND	ND
NW080*	4.7	3.9	3.9	4.0	NS	111	116	93	84	NS	ND	ND	ND	ND	NS	250	260	210	190	NS	ND	0.02	0.26	ND	NS
G0024	4.9	5.8	5.5	5.3	4.0	49	89	129	89	107	ND	ND	ND	ND	ND	110	200	290	200	240	ND	0.07	1.26	ND	0.10
G0079	3.2	2.6	6.0	8.8	3.6	58	58	138	67	124	ND	ND	ND	ND	2.6	130	130	310	150	280	0.06	ND	0.25	ND	0.30
G0091	3.6	3.4	3.8	3.7	2.8	160	160	124	111	116	ND	ND	ND	ND	ND	360	360	280	250	260	ND	ND	0.28	ND	0.14
PZ017R	3.5	4.5	5.1	5.4	6.8	62	116	84	120	196	140	520	1800	7800	120	140	260	190	270	440	ND	0.04	0.42	ND	1.25
PZ018	3.3	3.3	4.0	3.9	7.9	89	32	43	44	142	240	ND	ND	60	8600	200	73	96	100	320	ND	0.02	0.42	ND	2.62
PZ019	2.2	2.1	2.0	ND	1.8	39	32	33	30	53	ND	ND	ND	ND	15000	88	73	75	68	120	0.07	0.06	0.23	ND	0.23
PZ020	3.8	4.6	6.4	5.7	3.4	124	142	138	147	151	ND	ND	ND	ND	0.78	280	320	310	330	340	0.11	0.06	0.91	ND	0.05
Shallow-Intermediate Wells																									
CA211	4.3	4.9	6.0	4.2	4.8	89	93	93	84	102	ND	ND	ND	ND	ND	200	210	210	190	230	ND	ND	0.91	ND	0.08
NW021	2.9	2.8	2.8	3.3	2.6	182	178	151	147	164	55	1.2	5.7	4.2	8.5	410	400	340	330	370	ND	0.06	1.09	ND	0.18
NW051*	9.0	9.4	9.2	9.1	NS	156	156	147	124	NS	8.3	4.9	1.9	0.9	NS	350	350	330	280	NS	ND	0.08	0.41	ND	NS
NW061	4.4	4.2	4.1	3.5	4.7	133	124	120	93	129	21	14	19	13	62	300	280	270	210	290	ND	NS	0.20	ND	ND
NW071	ND	3.3	3.7	4.1	2.8	49	44	43	42	44	ND	ND	ND	140	ND	110	100	96	95	98	ND	0.12	0.95	ND	0.18
NW081R*	4.5	4.6	5.0	4.3	NS	111	111	98	98	NS	ND	ND	ND	ND	NS	250	250	220	220	NS	ND	ND	0.62	ND	NS
G0075	3.4	3.1	3.4	2.7	2.4	173	164	160	142	129	12	ND	ND	ND	0.75	390	370	360	320	290	ND	ND	0.25	ND	0.14
G0077	4.5	4.0	3.6	3.9	2.8	138	111	116	102	124	26	ND	ND	ND	47	310	250	260	230	280	ND	0.06	1.28	ND	0.16
G0080	2.9	2.7	2.8	2.6	2.7	156	151	138	133	156	1.1	4.6	8.8	2.0	5.0	350	340	310	300	350	0.45	ND	0.78	ND	0.21
G0081	7.8	6.5	6.6	5.1	5.3	164	156	124	138	151	3500	2400	1100	2100	1000	370	350	280	310	340	0.68	0.62	0.71	0.51	1.16
G0082	ND	4.5	4.0	3.0	3.2	111	138	116	120	129	1100	2700	460	2200	230	250	310	260	270	290	0.04	1.35	0.10	ND	0.20
G0086	2.6	2.7	3.6	3.1	2.3	138	151	124	124	138	110	150	22	31	44	310	340	280	280	310	ND	0.04	0.16	ND	ND
G0087	2.9	2.8	2.9	2.8	2.4	138	142	138	120	133	ND	ND	ND	ND	ND	310	320	310	270	300	0.06	0.23	0.16	ND	0.06
G0097 G0092	2.9	2.8	2.9	3.3	2.5	182	169	156	142	164	1.1	1.4	18	9.3	11	410	380	350	320	370	ND	ND	0.22	ND	0.10
Intermediate Wells	2.7	2.0	2.7	3.3	2.3	102	10)	130	1 12	101	1.1	1.1	10	7.5		110	500	330	320	370	TID	TID	0.22	TID	0.10
CA212	2.6	2.7	3.1	2.5	2.1	84	102	76	84	80	ND	ND	ND	ND	ND	190	230	170	190	180	ND	2.98	0.93	ND	0.16
NW022			2.6	3.4	2.1	182		178	178	204	290	250	440	420	350	410		400	400	460	0.27	1.02	1.94	0.34	1.00
	2.9	2.7					191							630			430		370						
NW052* NW062	6.3 2.8	6.7 2.5	6.6 2.3	9.7 2.3	NS 2.6	169 120	160 120	142 107	164 107	NS 120	150 18	240 21	450 21	20	NS ND	380 270	360 270	320 240	240	NS 270	ND 0.18	0.39 0.94	0.96 0.84	0.62 0.47	NS 0.73
	2.8 ND	4.0	4.2	3.6	2.6 NS	120	120	107	93	NS	ND	0.66	2.0	ND	ND NS	240	240	230	210	NS	0.18	0.94 ND	0.84	0.47 ND	0.73 NS
NW082R* G0076	ND ND		3.3	2.6		156	156	102	138	NS 156	330	200	2.0 180	ND 190	NS 310	350	350	320	310	NS 350	1.68	1.21	0.33	1.33	NS 2.11
G0076 G0078	ND 2.8	2.9 2.8	3.8	3.2	2.7 2.3	187	182	142	138	136	350	240	130	190 71	ND	420	410	340	300	320	0.48	0.79	1.11	0.11	1.41
-	2.8	2.0	3.6	3.2	2.3	10/	104	131	133	142	330	240	130	/ 1	ND	420	410	340	300	320	0.46	0.79	1.11	0.11	1.41
Deep Wells	2.5	• •		1.0		5 0				5 0) III	100	100	120	100	120		0.00	1.00		.
CA213	2.2	2.0	1.7	1.8	1.7	58	53	53	53	58	ND	ND	ND	ND	ND	130	120	120	120	130	ND	0.09	1.02	ND	ND
G0070	1.0	0.89	1.0	0.75	0.9	98	102	89	89	93	ND	ND	ND	ND	ND	220	230	200	200	210	ND	ND	0.32	ND	ND

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = \text{micrograms per liter}$ NA = no analysis $CO_2 = \text{carbon dioxide}$ ND = nondetect

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = Specific Conductance not measured due to instrument error

mg/L = milligrams per liter ORP = oxidation/reduction potential

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-2 SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS OU1 REBOUND STUDY OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Well Number		Su	lfate (mg	;/L)			Su	lfide (mg	/L)				pН				Condu	uctance (mS/cm)	
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-2
Shallow Wells																				
CA210	120	99	150	190	190	ND	ND	ND	ND	ND	6.55	5.83	6.40	6.66	6.75	0.977	0.708	1.550	1.560	1.545
NW020	150	200	230	190	230	ND	NA	ND	ND	0.80	6.53	6.45	6.57	6.81	6.90	1.118	0.994	1.450	1.510	1.504
NW050*	120	210	200	190	NS	ND	NA	ND	ND	NS	6.71	6.50	5.97	6.56	NS	1.178	1.916	0.567	1.560	NS
NW060	3.8	7.5	5.2	20	30	ND	0.80	ND	ND	ND	6.01	5.82	5.88	6.46	6.56	0.075	0.077	0.065	0.200	0.203
NW070	3.9	6.4	5.9	93	98	ND	0.80	ND	ND	ND	7.10	6.59	6.51	7.25	7.24	0.096	0.184	0.195	0.910	0.926
NW080*	200	160	130	130	NS	ND	ND	ND	ND	NS	6.23	6.12	6.26	6.60	NS	1.161	0.991	1.070	1.050	NS
G0024	50	110	150	98	65	ND	NA	ND	ND	0.80	6.36	6.60	6.71	6.70	6.64	0.670	0.729	1.170	0.740	0.654
G0079	17	12	48	53	68	ND	ND	ND	ND	ND	6.34	5.73	6.63	6.13	6.67	0.278	0.273	0.706	0.502	0.575
G0091	190	200	190	190	210	ND	ND	ND	ND	ND	6.83	6.65	7.29	6.98	6.93	1.325	0.973	1.300	1.140	1.170
PZ017R	74	83	62	64	53	ND	NA	ND	1.6	ND	6.34	6.16	6.90	6.07	6.38	0.652	0.797	0.788	0.840	0.902
PZ018	100	62	67	65	49	ND	NA	ND	ND	ND	6.57	5.52	6.46	5.99	6.28	0.664	0.520	0.590	0.550	0.713
PZ019	67	57	58	62	71	ND	0.80	ND	ND	0.80	6.16	6.03	6.49	6.22	6.32	0.602	0.377	0.616	0.570	0.663
PZ020	160	160	190	170	160	ND	NA	ND	ND	ND	6.67	6.54	6.86	6.85	6.87	1.061	1.049	1.350	1.160	0.916
Shallow-Intermediate Wells																				
CA211	93	99	110	97	120	ND	ND	0.80	ND	ND	6.49	6.45	6.46	6.72	6.72	0.662	0.705	1.110	0.860	1.026
NW021	210	210	220	200	200	ND	NA	ND	ND	0.80	6.77	6.69	6.84	6.93	6.79	1.154	0.825	1.180	1.070	0.982
NW051*	170	180	190	190	NS	ND	NA	ND	ND	NS	6.47	6.32	6.14	6.75	NS	1.088	1.451	0.442	1.520	NS
NW061	170	160	170	160	140	ND	ND	ND	ND	ND	7.00	7.01	6.59	7.00	7.13	0.790	0.685	0.308	1.070	0.941
NW071	60	54	64	61	63	ND	ND	ND	ND	ND	6.32	6.32	6.40	6.62	6.61	0.563	0.519	0.745	0.610	0.686
NW081R*	98	91	95	97	NS	ND	ND	0.80	ND	NS	6.51	6.48	6.42	6.55	NS	0.797	0.925	1.050	0.990	NS
G0075	150	170	150	200	160	ND	ND	ND	ND	0.80	6.57	6.44	6.83	6.72	6.98	0.995	0.926	0.987	0.730	0.809
G0077	150	100	99	110	140	ND	NA	0.80	ND	ND	6.63	6.65	6.68	6.71	6.61	1.012	0.620	0.874	0.780	0.795
G0080	ND	72	87	98	100	2.9	ND	ND	ND	ND	6.64	6.48	6.70	6.54	6.82	0.795	0.557	0.884	0.840	0.703
G0081	120	140	190	130	170	ND	0.80	ND	ND	ND	6.19	6.22	6.43	6.31	6.51	0.910	0.664	1.020	0.550	0.891
G0082	76	130	130	140	170	ND	ND	ND	ND	ND	6.28	6.29	6.47	6.45	6.62	0.652	0.637	0.858	0.820	0.790
G0086	140	150	130	160	200	ND	NA	ND	ND	ND	6.84	6.69	7.03	6.91	6.92	0.684	0.725	0.923	0.880	0.808
G0087	120	120	110	100	99	ND	NA	ND	ND	0.80	6.70	6.75	7.03	6.79	6.82	0.808	0.663	0.851	0.710	0.731
G0092	300	290	330	340	370	ND	ND	0.80	ND	ND	7.14	7.06	7.54	7.36	7.28	1.269	0.940	1.240	1.290	1.297
Intermediate Wells																				
CA212	72	73	79	79	78	ND	ND	ND	ND	ND	6.70	6.88	6.64	7.05	6.97	0.496	0.573	0.732	0.660	0.621
NW022	360	260	290	250	260	ND	NA	ND	ND	ND	6.96	7.02	7.05	7.14	6.97	1.270	1.019	1.390	1.280	1.257
NW052*	130	130	140	150	NS	ND	NA	ND	ND	NS	7.24	6.15	6.26	7.00	NS	0.738	0.920	0.312	1.140	NS
NW062	180	180	190	180	190	ND	ND	ND	ND	0.80	8.11	6.97	6.71	7.38	7.41	0.701	0.584	0.270	0.850	0.883
NW082R*	86	88	85	88	NS	ND	NA	ND	ND	NS	6.84	6.48	6.64	6.58	NS	0.687	0.884	0.916	0.890	NS
G0076	280	280	310	300	320	ND	ND	ND	ND	ND	6.66	6.62	6.93	6.74	6.81	1.189	1.116	1.260	NS*	1.135
G0078	250	260	250	250	270	ND	NA	ND	ND	ND	6.90	6.94	6.91	6.78	6.78	1.213	0.972	1.280	1.070	0.957
Deep Wells				_			_	_					_	_				_		
CA213	63	60	57	61	64	ND	NA	ND	ND	ND	7.47	7.64	7.56	7.82	7.63	0.373	0.378	0.501	0.450	0.447
G0070	34	33	39	40	43	ND	ND	ND	ND	ND	7.12	6.88	7.01	6.88	7.02	0.461	0.452	0.511	NS*	0.427

Notes:

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 μ g/L = micrograms per liter NA = no analysis CO_2 = carbon dioxide ND = nondetect

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = Specific Conductance not measured due to instrument error

 $mg/L = milligrams \ per \ liter \\ ORP = oxidation/reduction \ potential$

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-3 SUMMARY OF RDX AND TNT CONCENTRATIONS **OU1 PERFORMANCE MONITORING LOCATIONS OU1 REBOUND STUDY LETTER REPORT - QUARTER 5**

	BASE	LINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5
Performance	RDX	TNT								
Monitoring Location	(µg/L)	(µg/L)	(μg/L)	(µg/L)						
Between EW6 and EW	7									
G0022	NS	NS	NS	NS	ND	2.3	NS	NS	ND	1.1
PZ017R	0.87	15	1.4	17	1.4	11	1.8	15	2.2	10
PZ018	0.88	8	ND	19	1	ND	ND	17	ND	6
EW7-PM21A-25	1	29	6.2	17	7.3	11	ND	11	ND	5.8
EW7-PM21B-35	0.39	5.7	ND	ND	ND	ND	ND	ND	NS	NS
EW7-PM22A-25	0.47	27	ND	1.1	ND	ND	ND	ND	NS	NS
EW7-PM22B-35	0.28	5.7	ND	ND	ND	ND	ND	ND	NS	NS
EW7-PM23A-25	1	28	2.2	38	ND	ND	ND	0.39	NS	NS
EW7-PM23B-35	0.32	5.2	ND	ND	ND	ND	ND	ND	NS	NS
EW7-PM24A-25	1.4	9.8	0.19	0.53	ND	8.3	ND	5.4	ND	4.6
EW7-PM24B-35	0.41	11	ND	ND	ND	ND	ND	ND	NS	NS
EW7-PM25A-25	1.6	13	ND	2.3	ND	ND	ND	ND	ND	ND
EW7-PM25B-35	ND	4.1	ND	ND	57	ND	ND	ND	ND	ND
EW7-PM26A-25	0.97	14	ND	0.73	0.46	0.87	ND	ND	ND	0.66
EW7-PM26B-35	0.38	7.2	37	ND	34	ND	ND	ND	ND	ND
EW7-PM27A-25	1.7	9.5	2.2	9.8	ND	0.45	ND	ND	NS	NS
EW7-PM27B-35	0.62	4.9	ND	0.26	17	ND	ND	ND	ND	ND
EW7-PM28A-25	1.1	13	1.1	8.2	15	ND	ND	ND	ND	ND
EW7-PM28B-35	0.22	5.6	ND	ND	ND	ND	ND	ND	NS	NS
EW7-PM29A-25	1.2	5.9	ND	ND	26	ND	ND	ND	ND	ND
EW7-PM29B-35	ND	3.6	ND	ND	44	ND	ND	ND	ND	ND
Load Line 1										
G0094	NS	NS	NS	NS	2.7	8.5	NS	NS	16	4.9
G0096	NS	NS	NS	NS	36	0.96	NS	NS	87	0.24
Load Line 2										
G0111	NS	NS	NS	NS	ND	12	NS	NS	ND	3.7
G0121	NS	NS	NS	NS	13	ND	NS	NS	ND	ND
G0121	NS	NS	NS	NS	12	ND	NS	NS	ND	ND
G0123	NS	NS	NS	NS	48	ND	NS	NS	ND	ND
Decant Station										
G0102	NS	NS	NS	NS	41	ND	NS	NS	ND	ND

Concentrations exceed HALs

 $\mu g/L = micrograms per liter$

EW = extraction well

ND = nondetect

NS = not sampled

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Performance Monitroing			ORP (mV	7)]	DO (mg/l	(ـــ)			Nitrat	e/Nitrite ((mg/L)			Am	monia (m	ıg/L)			T	KN (mg/	L)	
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21
Shallow Wells																									
G0022	NS	NS	64	NS	-94.9	NS	NS	2.07	NS	3.32	NS	NS	8.8	NS	9.8	NS	NS	ND	NS	ND	NS	NS	ND	NS	ND
PZ017R	173.9	159.3	111	68.6	6.8	5.68	2.63	3.44	0.65	0.01	41	26	30	20	10	0.06	0.13	ND	0.032	0.041	ND	ND	ND	ND	ND
PZ018	167.4	177.2	127	156.6	-9.9	1.34	9.09	9.26	5.99	0.40	24	31	26	26	8.1	0.21	0.023	ND	ND	0.055	ND	ND	ND	ND	14
EW7-PM21A	-36.9	-307.7	-235	-81.2	-146.6	0.57	1.45	0.69	0.07	0.05	23	11	8.0	7.2	16	1.1	0.77	0.8	0.93	0.95	ND	1.3	1.8	1.0	ND
EW7-PM22A	-10.3	-326.1	-148	-101.5	NS	0.32	1.04	0.53	0.06	NS	13	2.3	5.4	2.1	NS	1.8	0.59	2.3	2.1	NS	ND	3.9	7.5	4.9	NS
EW7-PM23A	-26.7	-325.2	-91	-81.8	NS	0.36	1.18	0.41	0.00	NS	24	24	0.26	22	NS	1.8	1.3	1.6	ND	NS	ND	ND	3.7	2.3	NS
EW7-PM24A	-28.7	-288.4	-68	-85.6	-129.6	1.49	0.35	0.54	0.03	0.07	51	10	6.9	7.2	2.8	0.33	0.34	0.20	0.42	1.10	ND	1.3	2.1	3.5	3.6
EW7-PM25A	17.9	-331.9	7	-111.1	-184.5	3.48	0.33	8.07	0.00	0.01	25	6.8	3.0	ND	0.10	0.13	1.2	1.4	0.20	1.90	ND	3.8	6.8	6.2	6.3
EW7-PM26A	-39.0	-321.4	-53	-71.1	-75.4	0.83	0.16	0.49	0.06	0.03	11	2.1	1.9	3.4	4.9	0.086	1.0	0.09	0.39	0.15	ND	2.0	1.5	2.0	0.99
EW7-PM27A	-6.6	222.5	-99	-306.2	NS	2.02	2.95	0.31	0.02	NS	26	22	4.2	5.9	NS	0.15	0.21	1.1	1.4	NS	ND	ND	3.6	4.3	NS
EW7-PM28A	-28.2	-211.3	-53	-335.5	-58.1	0.12	0.40	0.35	0.03	1.78	16	3.9	0.15	ND	0.077	0.53	2.4	3.0	0.9	1.0	ND	3.9	5.6	4.4	3.1
EW7-PM29A	-20.7	-137.6	-62	-287.5	-97.7	0.35	0.61	0.37	0.01	0.01	12	0.13	0.06	ND	0.10	0.12	0.19	0.35	1.1	1.3	ND	2.4	5.3	2.7	2.6
Shallow-Intermediate Wells																									
EW7-PM21B	-121.5	-160.7	-122	-84.2	NS	0.16	0.25	0.39	0.07	NS	2.5	0.18	ND	ND	NS	1.5	0.68	1.5	1.7	NS	1.4	2.3	4.6	2.8	NS
EW7-PM22B	-36.6	-33.1	-123	-106.7	NS	0.20	0.32	0.34	0.06	NS	1.9	ND	ND	ND	NS	1.3	4.4	1.0	2.8	NS	1.2	21	6.4	5.7	NS
EW7-PM23B	-51.6	-20.1	-91	-135.4	NS	0.18	0.52	0.40	0.00	NS	4.4	ND	0.032	ND	NS	1.2	1.5	2.4	0.09	NS	1.6	7.4	8.0	6.5	NS
EW7-PM24B	-92.2	-321.0	-135	-109.0	NS	0.30	0.67	0.34	0.02	NS	11	0.053	ND	ND	NS	1.3	0.27	1.70	0.28	NS	ND	5.0	8.2	6.7	NS
EW7-PM25B	4.6	-330.7	-79	-123.3	-99.8	0.15	0.34	0.42	0.00	0.64	1.7	ND	0.053	ND	0.09	1.5	3.1	3.1	100	3.5	1.5	1.0	6.8	5.1	8.5
EW7-PM26B	-108.3	-318.6	-82	97.2	-104.6	0.28	1.07	0.41	0.03	0.01	7.5	ND	0.055	ND	0.10	0.57	1.3	1.8	1.8	1.5	0.7	11	7.2	4.5	3.9
EW7-PM27B	-86.3	-297.6	-107	-112.1	-135.3	0.24	0.50	0.36	0.05	0.01	8.3	0.056	0.16	ND	ND	1.1	1.8	1.8	4.8	6.5	1.1	3.9	5.7	10	8.2
EW7-PM28B	-12.2	-240.9	-141	-125.4	NS	0.23	0.29	0.29	0.05	NS	2.7	0.031	0.035	ND	NS	1.0	9.9	5.8	4.9	NS	5.2	12	9.2	7.4	NS
EW7-PM29B	-55.6	-300.9	-105	-119.1	-119.7	0.20	0.54	0.29	0.02	0.02	2.5	0.037	0.049	ND	0.09	2.4	0.33	1.6	3.1	7.9	2.4	8.1	7.2	5.1	6.7
Load Line 1																									
G0094	NS	NS	-28.0	NS	-12.1	NS	NS	0.64	NS	0.03	NS	NS	1.00	NS	11	NS	NS	6.1	NS	3.6	NS	NS	6.90	NS	3.3
G0096	NS	NS	65.0	NS	-102.0	NS	NS	0.61	NS	0.03	NS	NS	25	NS	14	NS	NS	0.19	NS	2.9	NS	NS	ND	NS	5.0
Load Line 2																									
G0111	NS	NS	14.0	NS	-198.4	NS	NS	0.86	NS	0.22	NS	NS	14	NS	7.8	NS	NS	0.39	NS	0.58	NS	NS	ND	NS	1.3
G0121	NS	NS	-80.0	NS	-127.9	NS	NS	0.50	NS	0.04	NS	NS	0.40	NS	ND	NS	NS	3.7	NS	31	NS	NS	4.4	NS	77
G0122	NS	NS	-61.0	NS	-266.4	NS	NS	0.30	NS	0.06	NS	NS	0.82	NS	0.021	NS	NS	1.9	NS	4.8	NS	NS	3.0	NS	10
G0123	NS	NS	45.0	NS	-126.2	NS	NS	0.31	NS	0.03	NS	NS	0.31	NS	0.02	NS	NS	0.24	NS	0.86	NS	NS	0.84	NS	13
Decant Station																									
G0102	NS	NS	-60.0	NS	-279.2	NS	NS	0.43	NS	0.03	NS	NS	3.9	NS	ND	NS	NS	0.072	NS	0.088	NS	NS	ND	NS	ND

 $\mu g/L = micrograms per liter$

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

mS/cm = milliSiemens per centimeter

mV = millivolts

ND = nondetect

NS = no sample/measurement collected

NS* = Specific Conductance not measured due to instrument error.

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

TKN = total Kjeldahl nitrogen

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Performance Monitroing		Ι	OOC (mg/l	L)			(CO ₂ (mg/l	L)			Me	thane (µg	g/L)			Alk	alinity (m	ıg/L)			Ferro	ous Iron (mg/L)	
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21
Shallow Wells						<u> </u>															. <u></u>				
G0022	NS	NS	3.0	NS	3.0	NS	NS	182	NS	156	NS	NS	ND	NS	22	NS	NS	330	NS	350	NS	NS	0.26	NS	0.11
PZ017R	3.5	4.5	5.1	5.4	6.8	62	116	84	120	196	140	520	1800	7800	120	140	260	190	270	440	ND	0.04	0.42	ND	1.25
PZ018	3.3	3.3	4.0	3.9	7.9	89	32	43	44	142	240	ND	ND	60	8600	200	73	96	100	320	ND	0.02	0.42	ND	2.62
EW7-PM21A	3.7	7.6	11	6.3	23	142	173	173	156	204	340	320	4700	9400	15000	320	390	390	350	460	0.99	2.62	5.73	3.14	2.67
EW7-PM22A	3.5	84	68	18	NS	147	227	209	209	NS	800	2700	13000	12000	NS	330	510	470	470	NS	2.89	3.06	>15	8.76	NS
EW7-PM23A	3.6	3.8	12	22	NS	147	147	187	213	NS	420	460	8400	13000	NS	330	330	420	480	NS	2.73	0.90	10.28	5.80	NS
EW7-PM24A	3.8	14	20	16	17	151	178	213	200	276	380	760	9000	12000	13000	340	400	480	450	620	2.62	3.30	>15	5.96	2.10
EW7-PM25A	4.4	100	130	23	35	142	182	231	271	280	590	1600	5000	17000	17000	320	410	520	610	630	1.56	7.68	3.30	5.78	6.52
EW7-PM26A	3.9	27	9.6	9.3	7.7	147	196	222	178	218	1600	1300	2600	7400	13000	330	440	500	400	490	2.89	2.83	4.52	5.88	5.92
EW7-PM27A	4.2	13	42	15	NS	124	164	196	200	NS	610	170	6400	7900	NS	280	370	440	450	NS	2.89	2.48	6.60	5.30	NS
EW7-PM28A	4.8	29	46	72	28	164	187	209	240	244	1600	3300	15000	14000	ND	370	420	470	540	550	3.30	4.42	7.05	2.64	5.00
EW7-PM29A	3.1	93	38	12	12	102	160	196	156	187	450	1900	22000	12000	16000	230	360	440	350	420	3.30	11.28	2.64	7.50	6.12
Shallow-Intermediate Wells																									
EW7-PM21B	3.2	43	63	8.1	NS	133	160	182	142	NS	770	1300	6700	3800	NS	300	360	410	320	NS	2.89	>15	>15	5.34	NS
EW7-PM22B	3.3	480	96	33	NS	133	142	218	173	NS	690	1500	15000	10000	NS	300	320	490	390	NS	2.89	>15	>15	6.90	NS
EW7-PM23B	3.2	270	66	37	NS	138	196	253	253	NS	620	3300	21000	18000	NS	310	440	570	570	NS	2.89	>15	>15	2.50	NS
EW7-PM24B	3.8	140	150	34	NS	147	178	222	213	NS	1300	1100	14000	12000	NS	330	400	500	480	NS	3.30	9.56	>15	7.17	NS
EW7-PM25B	4.8	69	72	18	35	182	271	342	236	249	3900	1600	18000	21000	19000	410	610	770	530	560	0.72	2.12	4.28	3.15	6.48
EW7-PM26B	4.7	490	220	23	39	173	196	231	213	191	2900	3700	19000	14000	11000	390	440	520	480	430	2.78	>15	>15	2.02	7.32
EW7-PM27B	5.1	120	47	44	47	173	222	218	236	253	1700	3400	16000	11000	16000	390	500	490	530	570	2.89	6.20	4.32	6.78	6.54
EW7-PM28B	6.5	25	23	16	NS	200	311	329	227	NS	3500	2200	16000	19000	NS	450	700	740	510	NS	3.30	11.28	5.48	2.89	NS
EW7-PM29B	3.7	280	64	14	21	156	244	213	187	200	750	3100	9600	18000	16000	350	550	480	420	450	3.30	12.08	6.51	7.05	2.73
Load Line 1																									
G0094	NS	NS	5.8	NS	5.5	NS	NS	129	NS	169	NS	NS	19000	NS	12000	NS	NS	290	NS	380	NS	NS	12.20	NS	1.67
G0096	NS	NS	4.4	NS	120	NS	NS	124	NS	200	NS	NS	5100	NS	2200	NS	NS	280	NS	450	NS	NS	1.26	NS	3.22
Load Line 2																									
G0111	NS	NS	7.9	NS	9.5	NS	NS	320	NS	351	NS	NS	3800	NS	6400	NS	NS	720	NS	790	NS	NS	0.38	NS	2.24
G0121	NS	NS	8.0	NS	69	NS	NS	222	NS	356	NS	NS	10000	NS	5200	NS	NS	500	NS	800	NS	NS	8.08	NS	3.09
G0122	NS	NS	7.0	NS	150	NS	NS	258	NS	622	NS	NS	8500	NS	14000	NS	NS	580	NS	1400	NS	NS	7.80	NS	2.64
G0123	NS	NS	5.6	NS	580	NS	NS	231	NS	360	NS	NS	15000	NS	12000	NS	NS	520	NS	810	NS	NS	0.88	NS	6.54
Decant Station																									
G0102	NS	NS	3.90	NS	22	NS	NS	191	NS	293	NS	NS	1.80	NS	57	NS	NS	430	NS	660	NS	NS	2.95	NS	2.20

 $\mu g/L = micrograms per liter$

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

mS/cm = milliSiemens per centimeter

mV = millivolts

ND = nondetect

NS = no sample/measurement collected

NS* = Specific Conductance not measured due to instrument error.

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

TKN = total Kjeldahl nitrogen

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 5

Performance Monitroing		Su	lfate (mg	/L)			Su	lfide (mg	/L)				pН				Condu	uctance (1	nS/cm)	
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21
Shallow Wells																				
G0022	NS	NS	NS	NS	120	NS	NS	0.80	NS	ND	NS	NS	7.08	NS	6.87	NS	NS	0.862	NS	0.850
PZ017R	74	83	62	64	53	ND	ND	ND	1.6	ND	6.34	6.16	6.90	6.07	6.40	0.652	0.797	0.788	0.840	0.900
PZ018	100	62	67	65	49	ND	ND	ND	ND	ND	6.57	5.52	6.46	5.99	6.30	0.664	0.520	0.590	0.550	0.700
EW7-PM21A	84	61	49	78	72	ND	ND	ND	ND	ND	7.66	6.12	6.38	6.65	6.35	0.724	0.700	0.920	0.886	0.925
EW7-PM22A	85	22	30	13	NS	ND	0.80	ND	ND	NS	7.05	6.11	6.16	6.46	NS	0.673	0.817	0.932	1.004	NS
EW7-PM23A	90	91	44	21	NS	ND	ND	ND	ND	NS	8.21	6.53	6.54	6.50	NS	0.740	0.705	0.949	1.223	NS
EW7-PM24A	84	57	40	32	16	ND	0.80	ND	ND	0.80	7.56	6.33	6.44	6.49	6.52	0.903	0.716	1.070	0.908	1.071
EW7-PM25A	87	39	38	ND	2.4	ND	0.80	0.80	ND	0.80	7.23	5.87	6.21	6.26	6.32	0.794	0.814	1.230	1.503	1.243
EW7-PM26A	73	20	36	54	48	ND	ND	ND	ND	ND	7.69	6.18	6.54	6.58	6.56	0.684	0.674	1.050	0.818	0.925
EW7-PM27A	120	83	47	37	NS	ND	ND	ND	ND	NS	7.01	6.35	6.07	6.37	NS	0.771	0.753	1.010	1.019	NS
EW7-PM28A	80	53	28	ND	2.5	ND	ND	ND	ND	0.80	7.45	6.11	6.23	6.29	6.34	0.797	0.731	1.110	1.222	0.106
EW7-PM29A	97	7.9	7.1	24	5.0	ND	ND	ND	0.80	0.80	7.29	5.71	6.25	6.40	6.52	0.600	0.623	0.955	0.818	0.817
Shallow-Intermediate Wells																				
EW7-PM21B	150	29	70	93	NS	ND	ND	ND	ND	NS	9.46	6.15	6.29	6.67	NS	0.697	0.646	0.952	0.553	NS
EW7-PM22B	160	45	14	11	NS	ND	ND	ND	ND	NS	7.64	5.32	6.15	6.49	NS	0.734	0.933	1.090	NS*	NS
EW7-PM23B	150	4.0	1.1	ND	NS	ND	ND	ND	ND	NS	7.98	5.72	6.14	6.30	NS	0.750	0.870	1.270	1.356	NS
EW7-PM24B	110	43	6.0	5.9	NS	ND	ND	0.80	0.80	NS	8.84	5.80	6.13	6.35	NS	0.707	0.786	1.160	1.095	NS
EW7-PM25B	110	4.0	ND	ND	ND	ND	ND	ND	ND	ND	7.11	6.38	6.46	6.43	6.42	0.791	0.971	1.530	1.464	0.746
EW7-PM26B	79	29	6.8	ND	46	ND	ND	ND	ND	ND	9.22	5.28	6.06	6.49	6.46	0.792	1.091	1.280	0.867	0.820
EW7-PM27B	90	16	37	2.1	ND	ND	0.80	ND	ND	ND	8.70	5.80	6.41	6.33	6.29	0.798	0.897	1.180	1.192	0.974
EW7-PM28B	71	3.4	ND	13	NS	ND	ND	0.80	ND	NS	7.09	6.44	6.74	6.58	NS	0.802	1.028	1.460	NS*	NS
EW7-PM29B	140	ND	ND	8.0	ND	ND	0.80	ND	0.80	0.80	8.07	5.66	6.32	6.50	6.49	0.769	1.099	1.11	0.964	0.953
Load Line 1																				
G0094	NS	NS	59	NS	82	NS	NS	ND	NS	ND	NS	NS	6.04	NS	6.30	NS	NS	0.791	NS	0.887
G0096	NS	NS	85	NS	120	NS	NS	ND	NS	ND	NS	NS	6.72	NS	6.19	NS	NS	1.040	NS	1.138
Load Line 2																				
G0111	NS	NS	370	NS	320	NS	NS	ND	NS	ND	NS	NS	7.06	NS	6.69	NS	NS	1.620	NS	1.762
G0121	NS	NS	500	NS	110	NS	NS	ND	NS	4.80	NS	NS	6.86	NS	5.02	NS	NS	1.770	NS	3.539
G0122	NS	NS	700	NS	45	NS	NS	ND	NS	1.60	NS	NS	7.01	NS	6.48	NS	NS	2.340	NS	2.339
G0123	NS	NS	490	NS	5.6	NS	NS	ND	NS	0.80	NS	NS	6.85	NS	6.00	NS	NS	1.860	NS	1.673
Decant Station																				
G0102	NS	NS	1100	NS	870	NS	NS	ND	NS	2.40	NS	NS	7.00	NS	6.68	NS	NS	2.740	NS	2.271

 $\mu g/L = micrograms per liter$

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

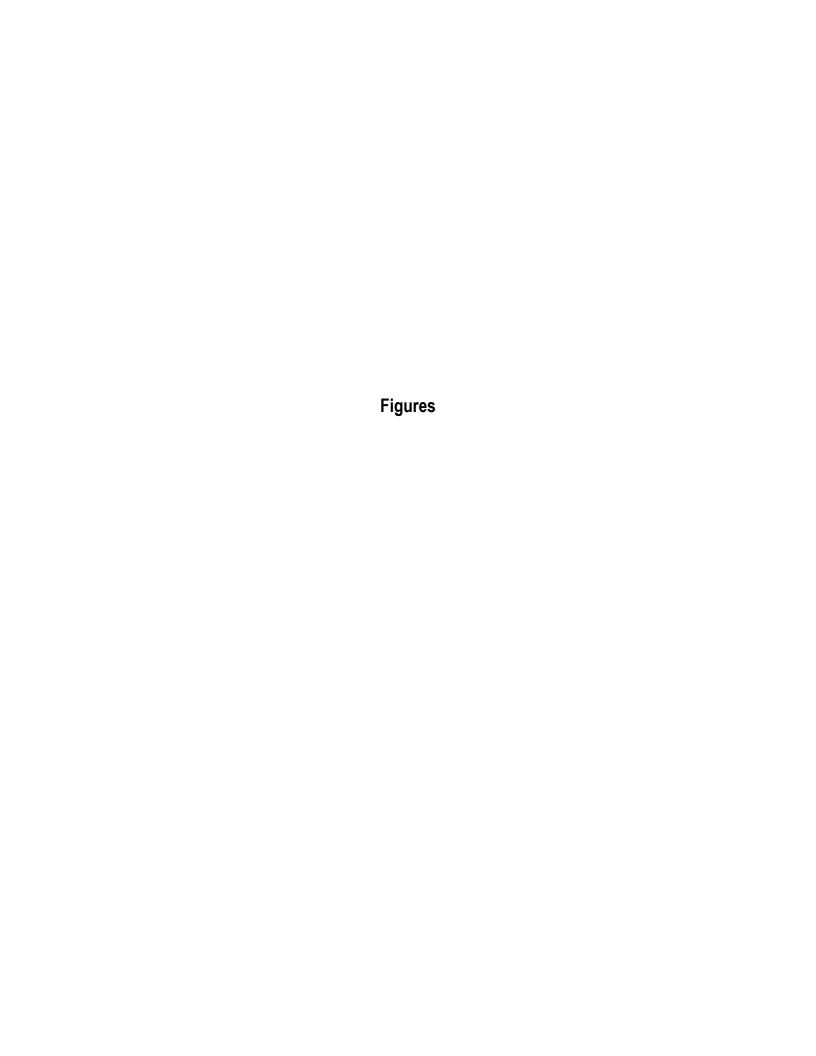
mS/cm = milliSiemens per centimeter

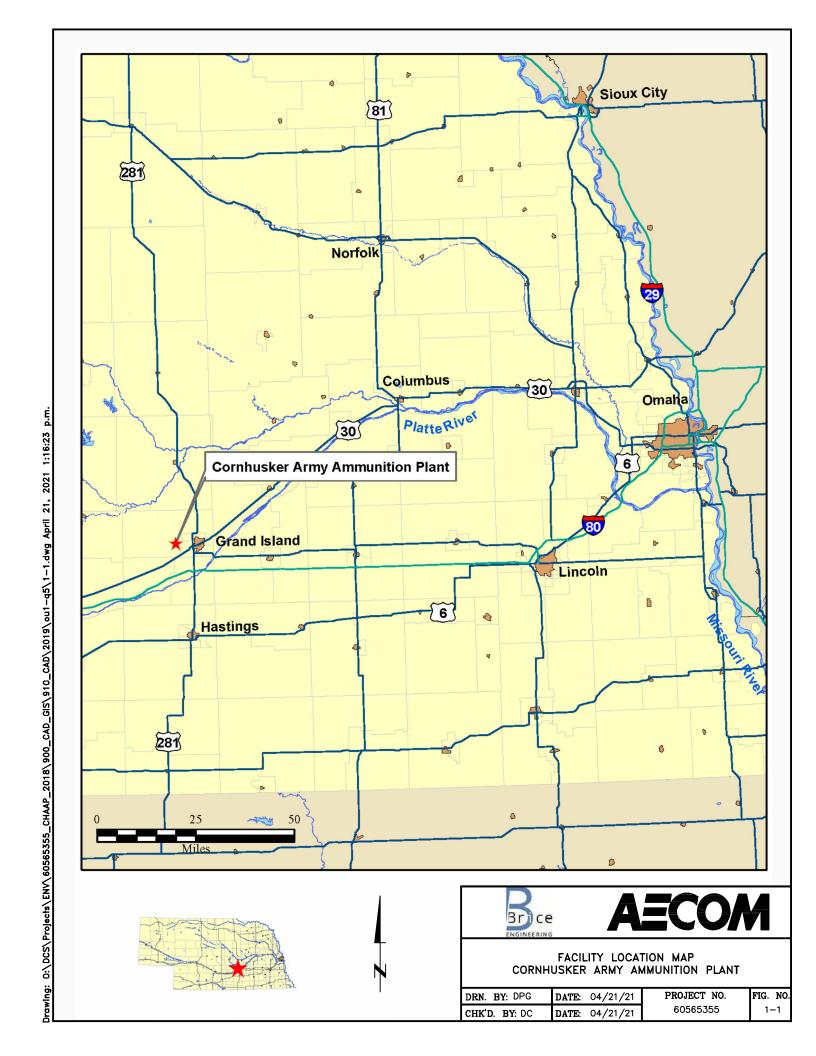
mV = millivolts

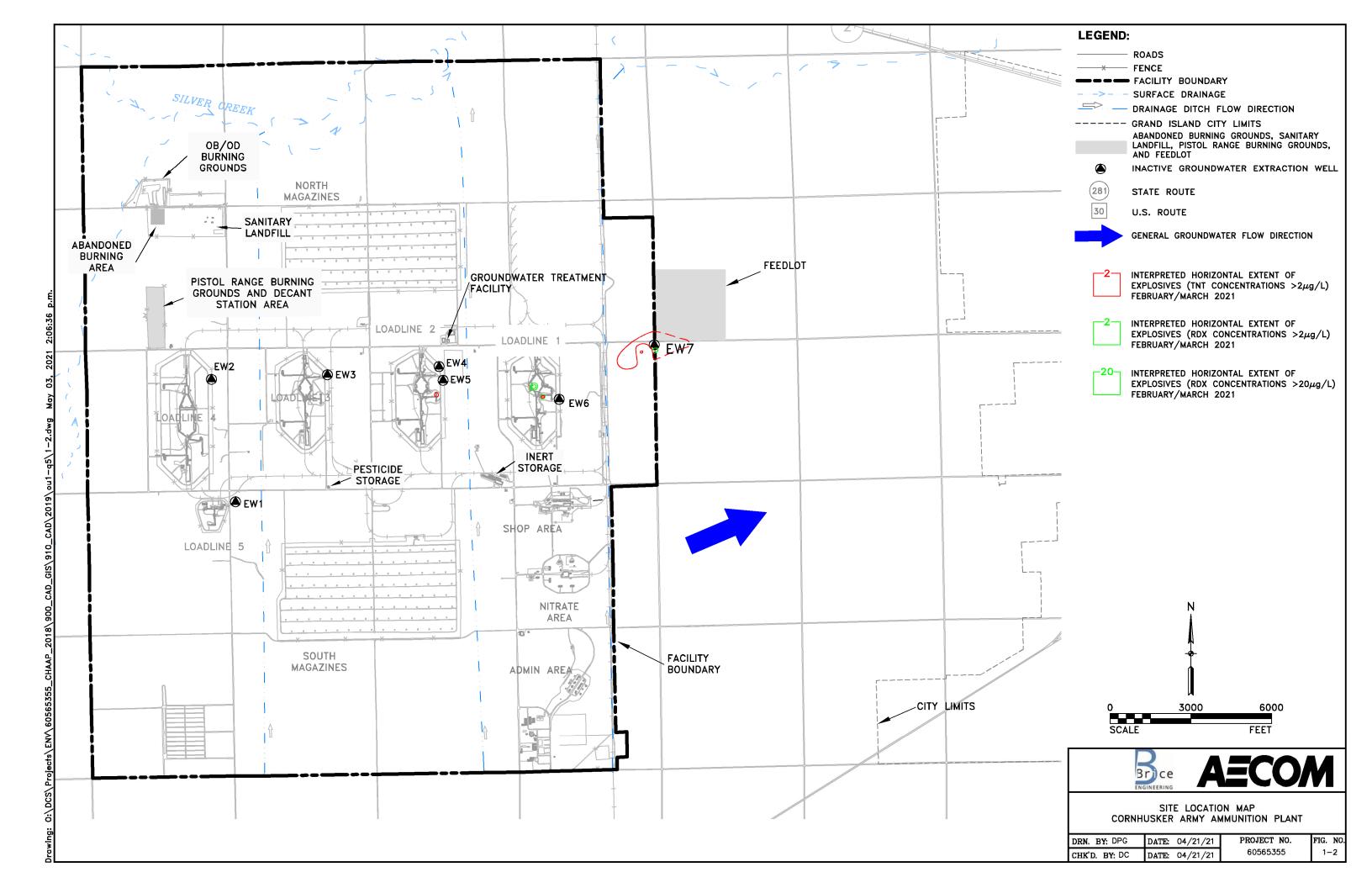
ND = nondetect

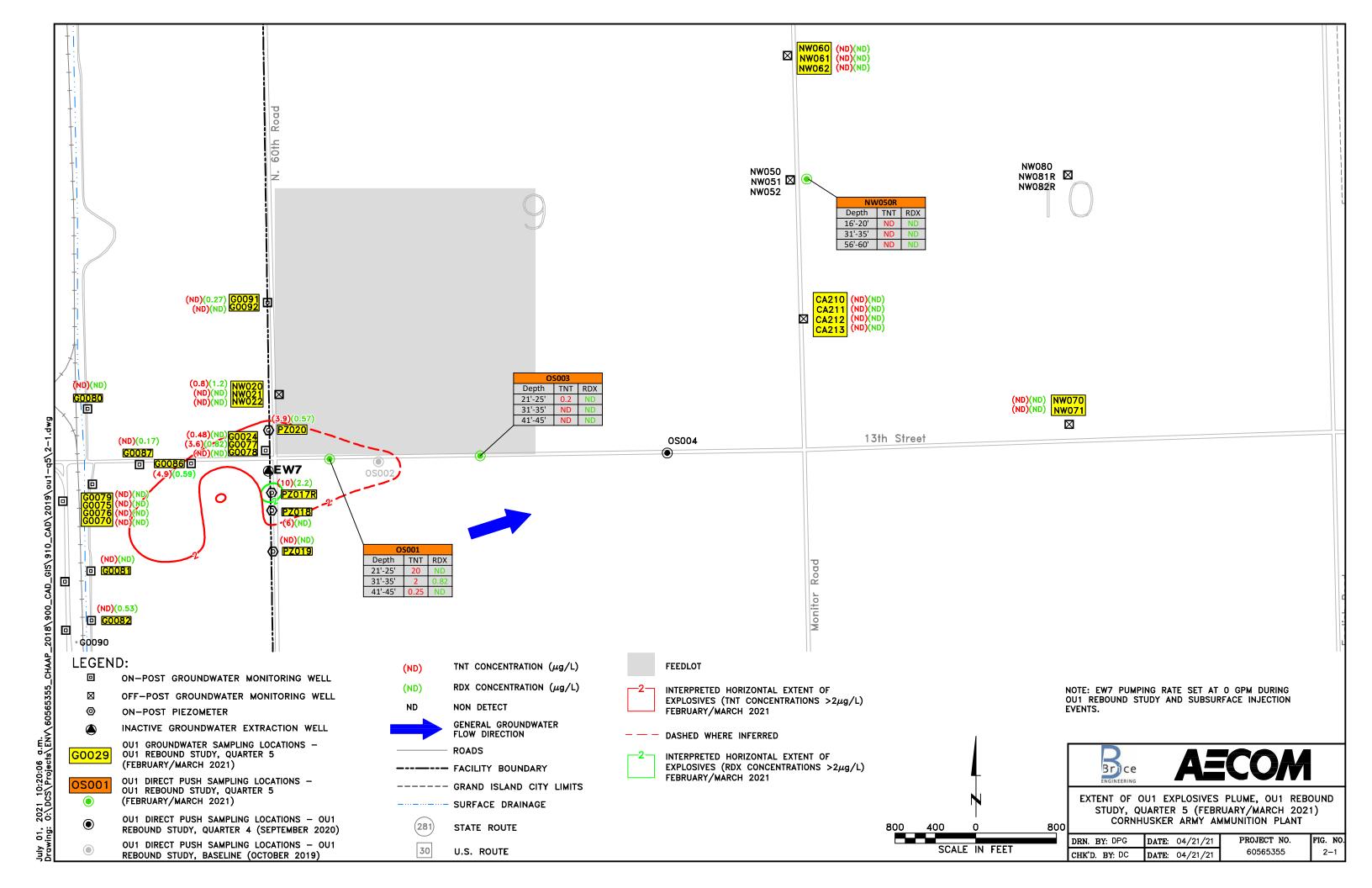
NS = no sample/measurement collected

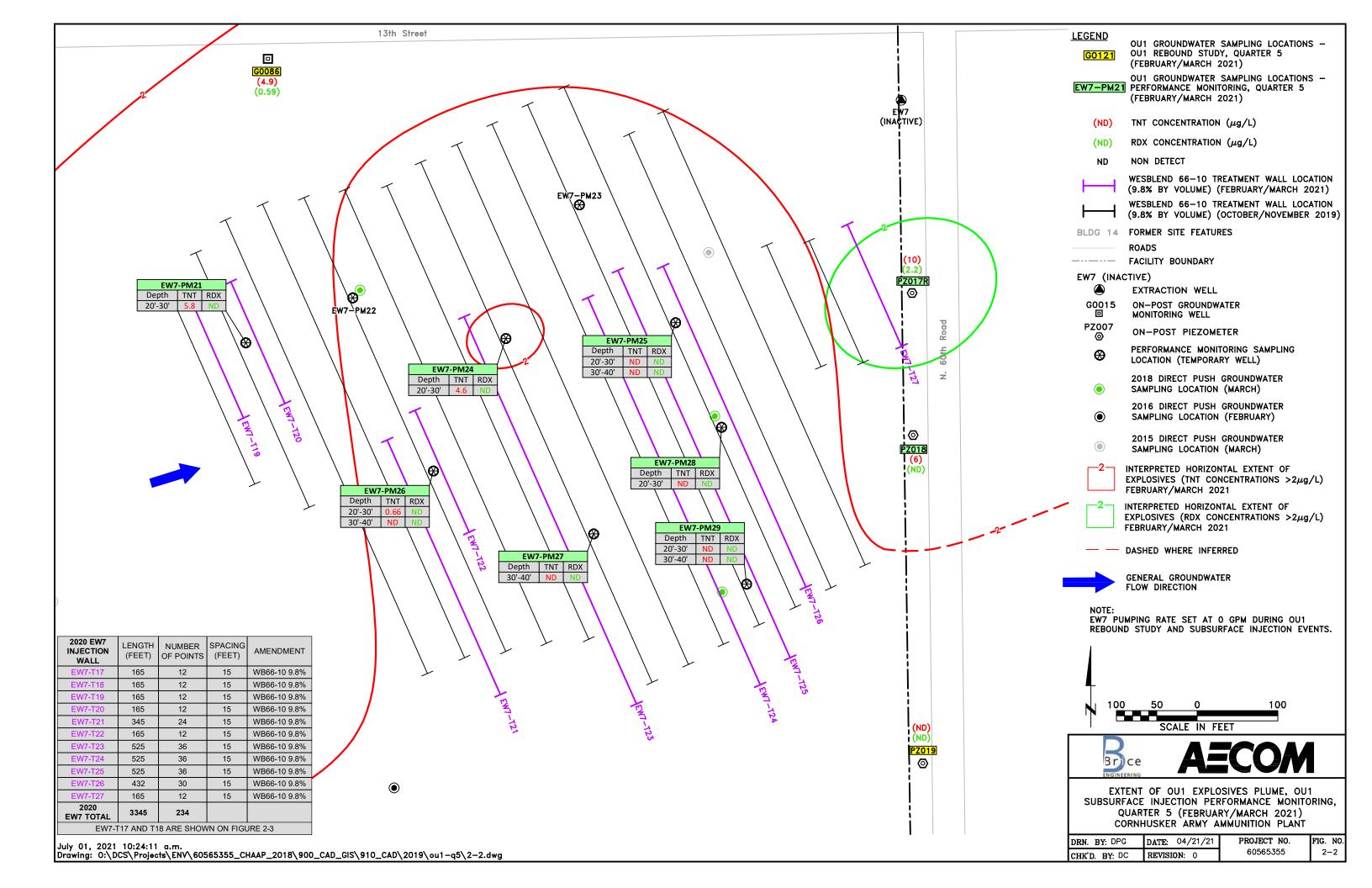
NS* = Specific Conductance not measured due to instrument error.

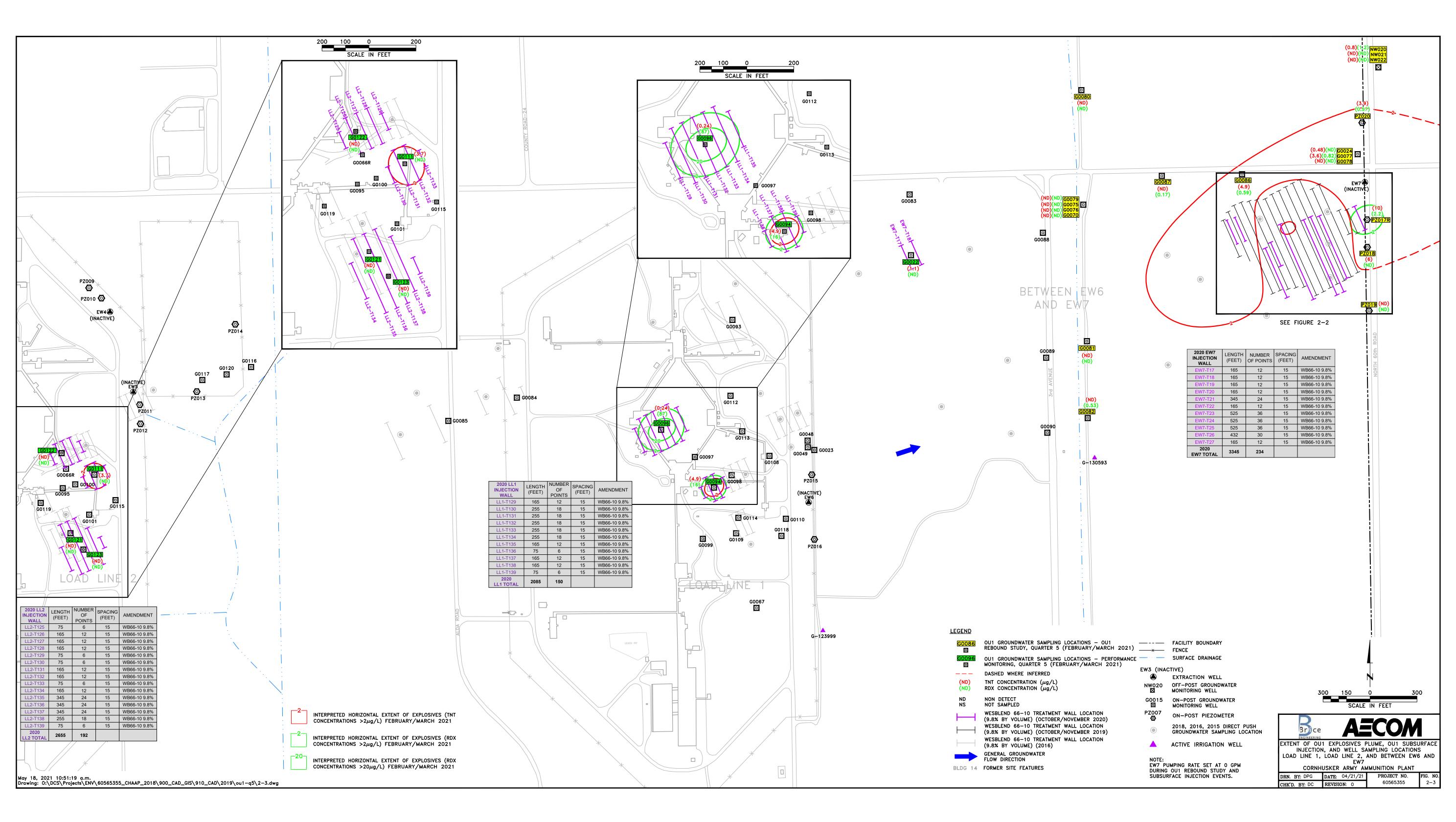

ORP = oxidation/reduction potential

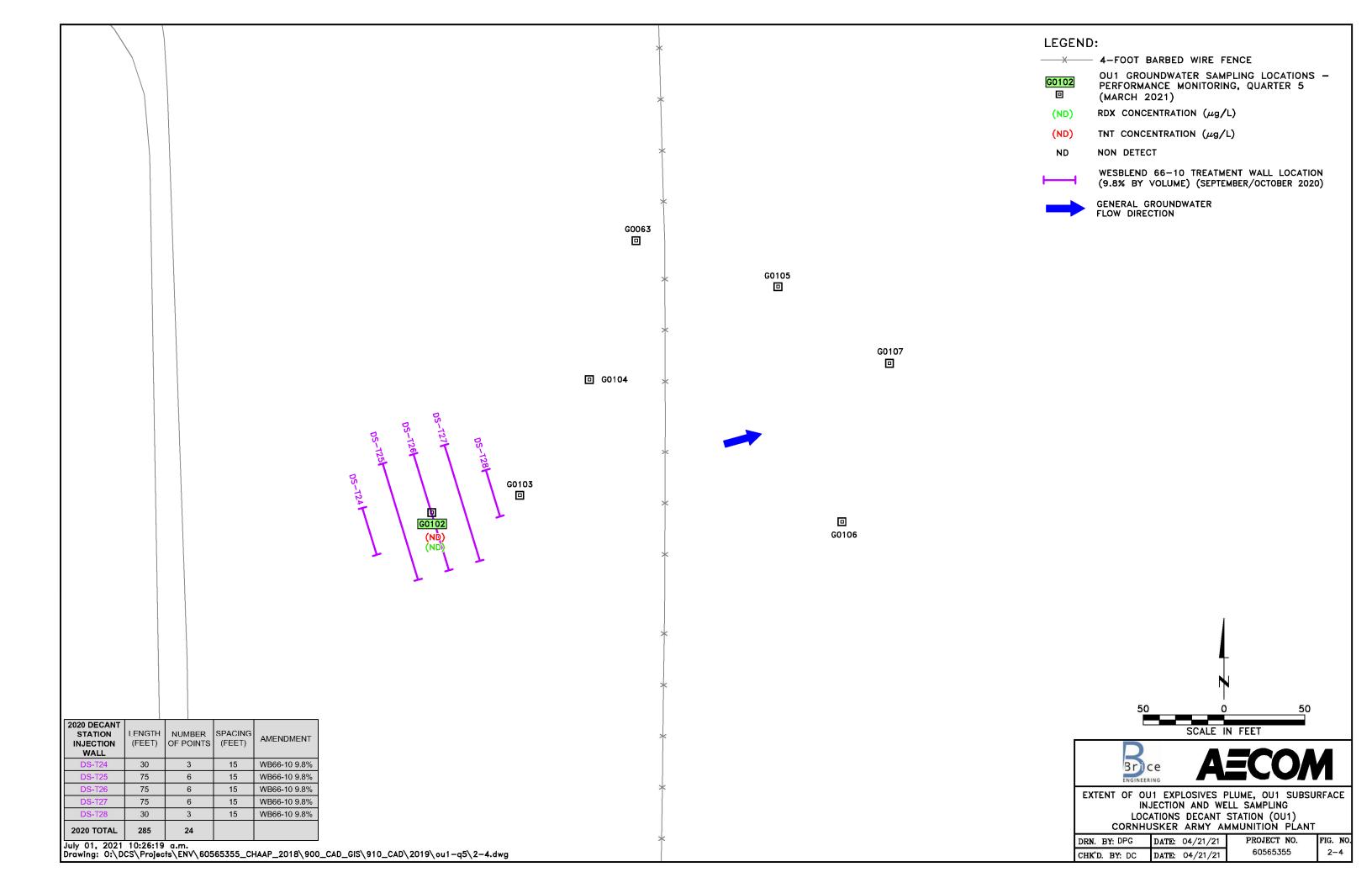

OU = Operable Unit

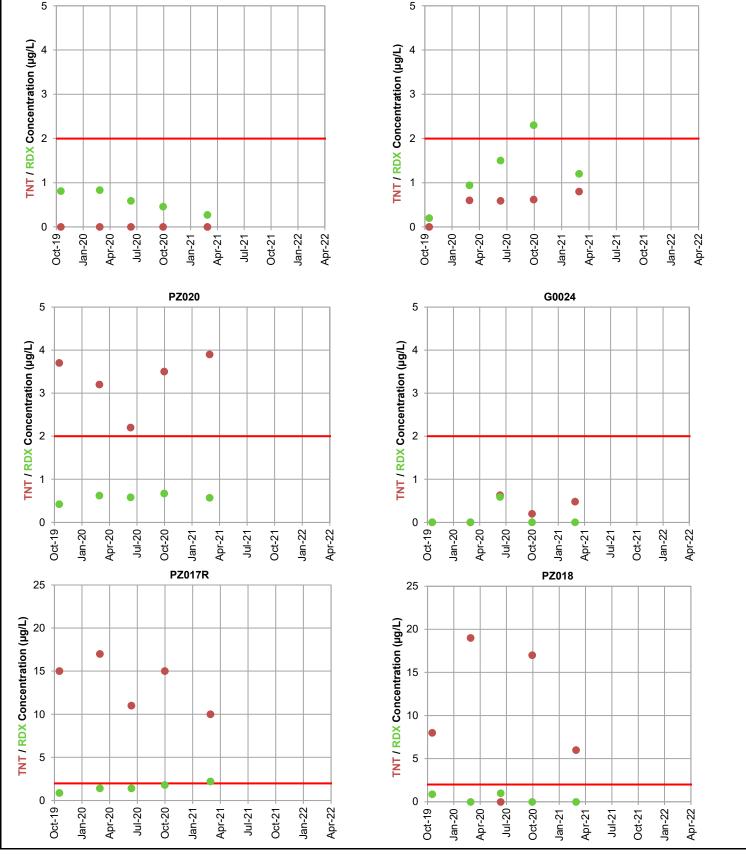

PM = performance monitoring


PZ = piezometer


TKN = total Kjeldahl nitrogen







G0091

Nonparametric Trend Analysis for TNT and RDX (OU1 Rebound Study)

		Non-	Total	Detection	Min	Max	Mean	Median	MK	
Well	Detects	detects	Samples	Frequency	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Result	Trend
G0091	0/5	5/0	5 / 5	ND / 100%	ND / 0.27	ND / 0.83	ND / 0.59	ND / 0.59	-8 / -8	ND / D
NW020	4/5	1/0	5 / 5	80% / 100%	ND / 0.20	0.80 / 2.3	0.52 / 1.2	0.60 / 1.2	8/6	I / NT
PZ020	5 / 5	0/0	5 / 5	100% / 100%	2.2 / 0.42	3.9 / 0.67	3.3 / 0.57	3.5 / 0.58	2/2	NT / NT
G0024	3 / 1	2/4	5 / 5	60% / 20%	ND / ND	0.63 / 0.59	0.26 / 0.12	0.20 / ND	5 / -5	NT / NT
G0077	5/5	0/0	5 / 5	100% / 100%	2.7 / 0.19	3.6 / 0.91	3.2 / 0.54	3.3 / 0.46	8 / 0	I/S
PZ017R	5/5	0/0	5 / 5	100% / 100%	10 / 0.87	17 / 2.2	14 / 1.5	15 / 1.4	-5 / 9	S/I
PZ018	4/2	1/3	5 / 5	80% / 40%	ND / ND	19 / 1.0	10 / 0.38	8.0 / ND	-2 <i>I</i> -4	S / NT

Notes:

NW020

Trend analysis performed using Mann-Kendall test at 0.05 significance level. Only wells with detections are shown.

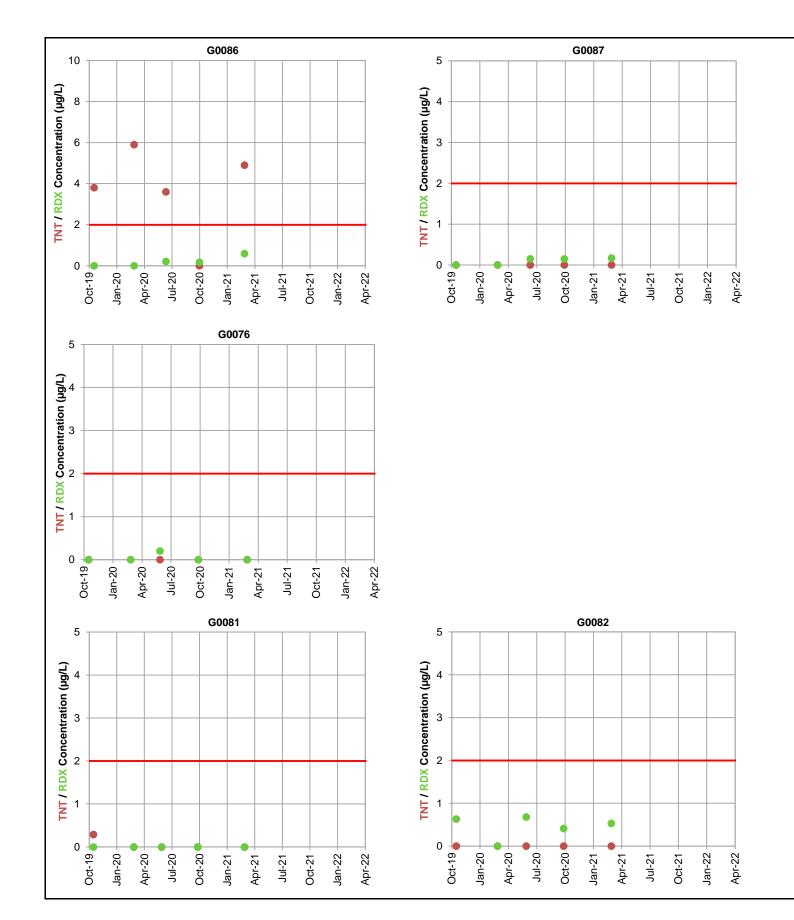
 μ g/L = micrograms per liter MK = Mann-Kendall OU = Operable Unit

TNT = 2,4,6-trinitrotoluene RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

I = Increasing S = Stable NT = No Trend

5					G0	077					
J											
(7/g	-										
TNT / RDX Concentration (µg/L)						•					
s trati											
ncer											
္ဟ 2 ×											
8											
F '						•					
0		•									
Ū	Oct-19 -	Jan-20	02-lide	24 6	2 2	4 5	Apr-21	2 dil	Oct-2	Apr-22	
	ő	Jar	} =	5	3 2	ק ל כ	} =	5	3 <u>t</u>	P g	

Mann-Kendall Analysis for TNT and RDX Former Facility Boundary Wells (OU1) Cornhusker Army Ammunition Plant


- = Health Advisory Level (HAL) (1994) TNT/RDX

D = Decreasing

ND = No Detections

Drawn By:	Date:
DC	4/30/2021
Checked By:	Project No.:
JO	60565355

Figure 4-1

Nonparametric Trend Analysis for TNT and RDX (OU1 Rebound Study)

		Non-	Total	Detection	Min	Max	Mean	Median	MK	
Well	Detects	detects	Samples	Frequency	(µg/L)	(µg/L)	(µg/L)	(µg/L)	Result	Trend
G0086	4/3	1/2	5/5	80% / 60%	ND / ND	5.9 / 0.59	3.6 / 0.19	3.8 / 0.17	-2/6	S/NT
G0087	0/3	5/2	5/5	ND / 60%	ND / ND	ND / 0.17	ND / 0.09	ND / 0.15	-6/8	ND/I
G0076	0/1	5/4	5/5	ND / 20%	ND / ND	ND / 0.20	ND / 0.04	ND / ND	-6 / -2	ND/S
G0081	1/0	4/5	5/5	20% / ND	ND / ND	0.29 / ND	0.06 / ND	ND / ND	-7 / -5	PD / ND
G0082	0/4	5/1	5/5	ND / 80%	ND / ND	ND / 0.68	ND / 0.45	ND / 0.53	-6 / 0	ND/S

Notes:

Trend analysis performed using Mann-Kendall test at 0.05 significance level. Only wells with detections are shown.

μg/L = micrograms per liter MK = Mann-Kendall OU = Operable Unit — = Health Advisory Level (HAL) (1994) TNT/RDX

TNT = 2,4,6-trinitrotoluene RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

I = Increasing PD = Probably Decreasing S = Stable NT = No Trend ND = No Detections

Mann-Kendall Analysis for TNT and RDX
Upgradient Wells (OU1)
Cornhusker Army Ammunition Plant

Drawn By:	Date:	
DC	4/30/2021	
Checked By:	Project No.:	
JO	60565355	

Figure 4-2

Appendix A
Well Drilling Licenses

Public Health Licensure Unit Certification of Licensure

This certificate serves as primary source verification of licensure in the State of Nebraska as of the close of the business day before 2/12/2021.

Name: Corey S Anderson

Type: WD-PIC Number: 39516

Status:

Issued: 01/02/2011 **Expiration:** 12/31/2022

Education: None on record at this time

Disciplinary/Non-Disciplinary Information:

No disciplinary/non-disciplinary actions taken against this license.

If you have questions about this information, please contact the Licensure Unit at (402) 471-2115 or DHHS.LicensureUnit@nebraska.gov.

Public Health Licensure Unit Certification of Licensure

This certificate serves as primary source verification of licensure in the State of Nebraska as of the close of the business day before 4/6/2021.

Name: Jesse V Kalvig

Type: Well Drilling Contractor

Number: 19210 Status: Active

Issued: 09/19/2000 **Expiration:** 12/31/2022

Education: None on record at this time

Disciplinary/Non-Disciplinary Information:

No disciplinary/non-disciplinary actions taken against this license.

If you have questions about this information, please contact the Licensure Unit at (402) 471-2115 or DHHS.LicensureUnit@nebraska.gov.

Appendix B
OU1 Rebound Study and Performance Monitoring Completed Field Forms

WATER SAMPLE COLLECTION FIELD SHEET

DROIECT NAME CHAAROII	1 Rebound Study- Direct Push GW	W (Samoon Boint) DROIECT NO.	(05(5255
		V (Screen Point) PROJECT NO.	60565355
SAMPLE NO. NW 05	OR-DPO5-2	SAMPLE DEPTH.	20`
DATE/TIME COLLECTED SAMPLE METHOD	2-22-21 @ 13 Peristaltic Pump w/ Tubing	O() PERSONNEL	BE JO
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	N A N A N A
SAMPLE CONTAINERS, PRES	SERVATIVES, ANALYSIS		
Sample Container 2 - 500mL Amber			Analysis Requested Explosives + MNX (8330A)
	_ Jo		
WELL PURGING DATA		,	
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	3-22-21 1335 1300 3 19,33 NTV	PID Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
GENERAL COMMENTS			
4			
			-
	Pal		

WATER SAMPLE COLLECTION FIELD SHEET

PROJECT NAME CHAAP OUI I	Rebound Study- Direct Push	GW (Screen Point) PROJECT NO.	60565355
SAMPLE NO. WW05	OR-DP05-	SAMPLE DEPTH.	35`
DATE/TIME COLLECTED SAMPLE METHOD	2-22-21 Peristaltic Pump w/ Tubing	@ 1355 PERSONNEL	BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	NA NA NA
SAMPLE CONTAINERS, PRESE	RVATIVES, ANALYSIS		
Sample Container 2 - 500mL Amber	Preservative 6°C		Analysis Requested Explosives + MNX (8330A)
	TO		
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	2-22-21 1325 1355 3 795 N1	PID Measurements Background Breathing Zone Well Head Purge Water	ND ND ND ND
GENERAL COMMENTS			

WATER SAMPLE COLLECTION FIELD SHEET

PROJECT NAME CHAAP OU	J1 Rebound Study- Direct Push	h GW (Screen Point) PROJECT NO.	60565355			
SAMPLE NO. NWOS	50R - DP05 -		60`			
DATE/TIME COLLECTED SAMPLE METHOD	2-22-21 @ Peristaltic Pump w/ Tubing	1500 PERSONNEL	B E J O			
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO DUPLICATE SAMPLE NO MS/MSD SAMPLE NO	NA NA NA			
SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS						
Sample Container 2 - 500mL Amber	<u>Preservative</u> 6°C		Analysis Requested Explosives + MNX (8330A)			
	Jo					
WELL PURGING DATA						
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	2-22-21 1430 1500 3 1756 N	PID Measurements Background Breathing Zone Well Head Purge Water	ND ND ND ND			
GENERAL COMMENTS						

PROJECT NAME CHAAP OUT	Rebound Study- Di	rect Push GW (S	Screen Point) PROJECT NO.	60565355	_
SAMPLE NO. OSO	21-DP	25-25	SAMPLE DEPTH.	25° bgs	-
DATE/TIME COLLECTED SAMPLE METHOD	Peristaltic Pump v		1315 PERSONNEL	BE	- -
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	NO NO NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	NA 05501-DP05- NA	25@0800
SAMPLE CONTAINERS, PRES	ERVATIVES, ANA	LYSIS		· <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	•
Sample Container 4 \$\mathcal{E}\$ 500mL Amber		Preserva 6°C		Analysis Requested Explosives + MNX (8330A)	·
	- - JO -				
WELL PURGING DATA					ı
Date Time Started	2-23 1241	-21	PID Measurements Background	ND	
Time Completed Purge Volume (gal)	13 15 3		Breathing Zone _ Well Head _	N D N D	
Sample Turbidity Depth to Water (ft bgs)	1070 4.7	NTU	Purge Water_	ND	
GENERAL COMMENTS					•
	**				
			The second secon		
		*			

PROJECT NAME CHAAP OUI	Rebound Study- Direct Push GW	(Screen Point) PROJECT NO.	60565355
SAMPLE NO. OSO	01-DP05-35	SAMPLE DEPTH.	35 695
DATE/TIME COLLECTED SAMPLE METHOD	2-23-21 @ l Peristaltic Pump w/ Tubing	+10 PERSONNEL	BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES NO YES NO	SPLIT SAMPLE NO DUPLICATE SAMPLE NO MS/MSD SAMPLE NO	N A N A N A
SAMPLE CONTAINERS, PRES	ERVATIVES, ANALYSIS		
Sample Container 2 - 500mL Amber		rvative °C	Analysis Requested Explosives + MNX (8330A)
	JO		
WELL PURGING DATA		<u> </u>	
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	2-23-21 1340 1410 3 417 NTU 3,39	PID Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
GENERAL COMMENTS			
	Table 1 Page Market		
18 F. W 18 (19) - 17 S. J.	E 1.27 (A)	~~~	
		7,640.7	

PROJECT NAME CHAAP OUI I	Rebound Study- D	irect Push GV	W (Screen Point)	PROJECT NO	60565355
SAMPLE NO. OSOOI	- DPO	5 - 45	s	AMPLE DEPTH.	45 695
DATE/TIME COLLECTED SAMPLE METHOD	2-23-6 Peristaltic Pump v	21 @	1515	_ PERSONNEL_	BE
SAMPLE METHOD	renstance rump v	w/ Tubing			
SAMPLE MEDIA:	Groundwater	۵			h
SAMPLE QA SPLIT:	YES	(NO)	SPL	IT SAMPLE NO.	NA
SAMPLE QC DUPLICATE:	YES	NO	DUPLICA"	ΓE SAMPLE NO	$\mathcal{N}A$
MS/MSD REQUESTED	YES	(NO)	MS/MS	SD SAMPLE NO.	NA
SAMPLE CONTAINERS, PRESE	RVATIVES, ANA	LYSIS			
Sample Container		Pre	servative		Analysis Requested
2 - 500mL Amber		110	<u>6°</u> C		Explosives + MNX (8330A)
			B	- 	
	- 12				
- AND SPECIAL AREA - APPEN	- 10 -				
WELL PURGING DATA					
Date	2-23-	-21	P	ID Measurements	
Time Started	1446	3		Background	$\mathcal{N} \mathcal{D}$
Time Completed	151	<u> </u>		Breathing Zone	ND
Purge Volume (gal)	3	<u> </u>		Well Head	- Nh
Sample Turbidity	984	NTI		Purge Water	N [*] h
Depth to Water (ft bgs)	10	15		Turgo Water_	
Departe Water (it bgs)					
GENERAL COMMENTS					
					4

PROJECT NAME CHAAP OUT	Rebound Study- Dire	ct Push GW (S	Screen Point)	PROJECT NO	60565355
SAMPLE NO. OSOC	13-DP05	- 25	SA	AMPLE DEPTH	25 bgs
DATE/TIME COLLECTED SAMPLE METHOD	$\frac{2-23}{\text{Peristaltic Pump w/}}$	Q Q Tubing	0900	PERSONNEL_	BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	NO NO NO	DUPLICAT	T SAMPLE NO E SAMPLE NO D SAMPLE NO	N A N A N A
SAMPLE CONTAINERS, PRES	ERVATIVES, ANALY	YSIS	-		
Sample Container 2 - 500mL Amber		Preserv 6°0			Analysis Requested Explosives + MNX (8330A)
	NÁ =				
WELL PURGING DATA					
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	2-23- 082(090) 882	NTU S NTU	PI	D Measurements Background _ Breathing Zone _ Well Head _ Purge Water _	ND ND ND ND
GENERAL COMMENTS					<u></u>

PROJECT NAME CHAAP OUI I	Rebound Study- Direc	ct Push GW (Scre	en Point)	PROJECT NO.	60565355
SAMPLE NO. OSOO	3 - DP05	- 35	Sz	AMPLE DEPTH.	35 bgs
DATE/TIME COLLECTED SAMPLE METHOD	$\frac{2-23-2}{\text{Peristaltic Pump w/ } 1}$	101 (a) 101	5	PERSONNEL_	BE
SAMI LE METHOD	r cristanic r unip w/ i	rubing	76-m	-	
SAMPLE MEDIA:	Groundwater				A / A
SAMPLE QA SPLIT:	YES	(NO)	SPLI	T SAMPLE NO	/V / 1
SAMPLE QC DUPLICATE:	YES	(NO)	DUPLICAT	E SAMPLE NO	N A
MS/MSD REQUESTED	YES	(NO)	MS/MS	D SAMPLE NO	NA
SAMPLE CONTAINERS, PRESE	RVATIVES, ANALY	/SIS			<u> </u>
Sample Container		Preservativ	A		Analysis Requested
2 - 500mL Amber		<u>11€3€174117</u> 6°C	<u> </u>		Explosives + MNX (8330A)
	-	** <u></u>		-	(000011)
				-	
	τ_{α}			_	
	- 50 —		-		
WELL PURGING DATA					
Date	2-23-	2	Dī	D Measurements	
Time Started	7 6 2 5		11	Background	Λ/D
Time Completed	1 / 1 / 5			Breathing Zone	- 1/ K
Purge Volume (gal)	101-			Well Head	10 D
Sample Turbidity	1513	NTI		Purge Water	1 V V
Depth to Water (ft bgs)	16 9	10 10		ruige water_	IV ID
Depui to water (it ogs)	10, 1				
GENERAL COMMENTS		-0.50			
			·		····
				700-7	

PROJECT NAME CHAAP OUI I	Rebound Study- Direct Push GW	(Screen Point) PROJECT NO.	60565355
SAMPLE NO. OSOO		_45 SAMPLE DEPTH.	45 bgs
DATE/TIME COLLECTED SAMPLE METHOD	2-23-21 (a) 11 Peristaltic Pump w/ Tubing	PERSONNEL	BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO NO	SPLIT SAMPLE NO DUPLICATE SAMPLE NO MS/MSD SAMPLE NO	N Á N Á 05003 - DP05 - 4
SAMPLE CONTAINERS, PRESE	RVATIVES, ANALYSIS		
Sample Container 6 25 500mL Amber		ervative S°C	Analysis Requested Explosives + MNX (8330A)
	To		
WELL PURGING DATA			
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	2-23-21 1050 1120 3 104 NTU 4,68	PID Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
GENERAL COMMENTS			
		700-18A-0-0-A	<u>,</u>

SITE NAME	СНААР	PROJECT NO.		60565355
SAMPLE NO.	CA210-5	WELL NO.		CA210
DATE/TIME COLLECTED SAMPLE METHOD	3-2-21 @	335 PERSONNEL	6 <u>C</u>	-
	PRO-ACTIVE SS MO	NSOON		
SAMPLE MEDIA:	Groundwater	7	۸،	Á
SAMPLE QA SPLIT:	YES NO	SPLIT SAMPLE NO.		4
SAMPLE QC DUPLICATE:		DUPLICATE SAMPLE NO.		
MS/MSD REQUESTED	YES NO	MS/MSD SAMPLE NO.		<u> </u>
	PRESERVATIVES, ANALYS	SIS		
Sample Container	<u>Preservative</u>	Analysis Requ	<u>ested</u>	
2 - 500 mL Amber	6°C	Explosives + N	INX (8330A)	
3 - 40 mL VOA	6°C, HCl	Methane (RSK		
1 - 500 mL HDPE	6°C, H₂S0₄		NH ₃ (350.1), NO ₂ /NO ₃ (35	3.2)
1 - 250 mL HDPE	6°C	SO ₄ (9056A),	Alkalinity (2320B)	
1 - 250 mL HDPE	6°C, ZnOAc/N			
1 - 250 mL Amber	6°C	DOC (9060A)		
WELL PURGING DATA				
ъ.	> 1 11		epth (ft BTOC)	16.85
Date	>-d-d1		ater (ft BTOC)	11.48
Time Started	1055		Column Length	5.37
Time Completed PID Measurements	1235		Volume (per ft)	<u> </u>
Background	· N D		ter in Well (L)	13,26
Breathing Zone	- 'V N		m to Purge (L)	37
Well Head	N D		ctual Purge (L)	20
Purge Water	ND			<u> </u>
Time Amount Purged (L)	pH Temperature (Celsius)	Conductivity Dissolved (mS/cm) Oxygen (mg/L)		(ft BTOC) (L/min)
1305 5.0	6.65 12.17	1.548 0.31	190.7 0.17	7 11.49 0.5
1310 7.5	671 233	1.548 0.28	185.8 0.08	
1315 10.0	6.73 12.59	1,547 0.27	183.6 0.19	11.46
1320 12.5	6.74 13.07	1,550 0,25	181 2 3.01	11.47
1325 15.0	6.74 3.00	1.549 0.20	179.6 1.45	11.46
1330 17.5	6.75 3.03	1.545 0.18	1785 0.58	11.46
13 35 20.0	6.75 3.17	1.545 0.21	177.6 0.41	11,46
			,,,	1,10
	+a			
	10			
FIELD EQUIPMENT AND				
Water Louis Duri	Model	Calibration	. 6	
Water Level Probe	Heron		st Calibrated Length	Call and I Wall
Water Quality Meter	Aqua TROLL 500 w/ flow thro	ough cell Twice Daily Ca	dibration Verification also	Calibrated Weekly
GENERAL COMMENTS				
A . (1)	g/L			
Multi-Parameter Probe Unit #			100	
Field Parameters Measured in	Flow-Through Cell		7.	
	***			-
	4 ft			
Pump Rate = 0.5 L/	min ft		<u>ic (7-year average low and</u>	high / Q4 / Avg in Bold)
Pump Rate = 0.5 L/ Well Diameter = 4"		ORP	61.3 210.0	210.0 126.7
Pump Rate = 0.5 L/		ORP DO	61.3 210.0 0.17 1.99	210.0 126.7 0.17 0.77
Pump Rate = 0.5 L/ Well Diameter = 4"		ORP	61.3 210.0	210.0 126.7

SITE NAME _		СН	AAP		PROJECT NO.		605	665355	
SAMPLE NO.		CA	211-5		WELL NO.		C	A211	
DATE/TIME CO	I I ECTED	3-2-	21 @	1220	- PERSONNEL		66	_	
SAMPLE METH			CTIVE SS MO		_ FERSONNEL	' -	70		
CAMBLEMEDI	A .	C1	,	_	_	## 1184			
SAMPLE MEDIA SAMPLE QA SP		Groundwater YES	NO	7 59117	SAMPLE NO.		NΔ		
SAMPLE QC DU		YES	NO		E SAMPLE NO.		- 1 / 1 1 A		
MS/MSD REQU		YES	NO	-	SAMPLE NO.		N A		
SAMPLE CONT	FAINEDS D	DESEDVATI	VEC ANALYS	-				<u> </u>	
Sample Container		RESERVATI	Preservative	71 .5	Analysis Requ	ested			
2 - 500 mL Ambe	- er		6°C		Explosives + N				
3 - 40 mL VOA			6°C, HCl		Methane (RSK			,	
1 - 500 mL HDPI	Е		6°C, H ₂ SO ₄		TKN (351.2),	NH ₃ (350.1), N	O ₂ /NO ₃ (353.2)	
1 - 250 mL HDPI	Е		6°C		SO ₄ (9056A),	Alkalinity (232	0B)		**
1 - 250 mL HDPI			6°C, ZnOAc/N	IaOH	Sulfide (9034)				
1 - 250 mL Ambe			6°C		DOC (9060A)		··		
WELL PURGIN	IG DATA				W 11 5	4 (6 pmo e		40.10	
Date		3 - 2	2-21			epth (ft BTOC) /ater (ft BTOC)		43.10	
Time Started		- 1 1	35			Column Length		31.44	
Time Completed		12	20		_	Volume (per ft)		2,47	1
PID Measuremen	<u>ts</u>		1/ 0			ter in Well (L)		77,66	
Background		 	<u> </u>			olumes to Purge		NA NA	
Breathing Zone Well Head	e		- N R		_	um to Purge (L) ctual Purge (L)		20	
Purge Water			ND		_ ^	ctual Fulge (L)		201	
					-		-		
Time	REMENTS Amount	pН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Water	Purge Rate
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)	(m V)	(NTU)	(ft BTOC)	(L/min)
1140	2.5	6.74	12.25	1.003	0.75	168.5	0.00	11.66	0.5
1145	5.0	6.74	12.29	1.006	0.73	165.4	9.99	11.67	
1150	7, 5	6.74	12.17	1.009	0.77	164.0	10.71	11.64	
1155	10.0	6.44	12.26	1.014	0.77	162.9	11.10	11.64	
1200	12.5 15.0	6.73	12.46	1.013	0.76	162.1	9.21	11000	
1210	17.5	6.73	12.68	1.020	0.75	162.0	0.02	11.63	
215	20.0	6.72	12.74	1.025	0.75	162,1	0.03	11.63	
	22.5	b. 72	12.88	1.026	0.75	162, 3	0.05	11.63	
								1,,, 02	
		$-\mathcal{J}$	0						
FIELD EQUIPM	(ENT AND	CALIBRATIC)N	l.,	<u> </u>	<u></u>	<u> </u>		
I III I I QUII II		Model	,,,,		Calibration				
Water Level Prob		Heron		_	Checked Again	nst Calibrated L	ength		
Water Quality Me	eter	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily C	alibration Verif	ication also Ca	librated Weekly	
GENERAL CON	MENTS			.					_
Ferrous Iron = <i>O</i>	,08 mg								
Multi-Parameter I									
Field Parameters			Cell					-	
Pump Placement I	<u> </u>				TT:	rio (7 magazarea	000 love a - 11'	ch / O4 / A:	Pold)
$\frac{\text{Pump Rate} = 2}{\text{Well Diameter} = 4}$	<u>),5 </u>	min		<u></u>	ORP Histo	33.6	age low and hi	gh / Q4 / Avg in 188.2	119.3
Screen Interval =					DO	0.10	0.93	0.10	0.56
				- '	PH	6.45	6.72	6.53	6.53
					Cond.	0.662	1.110	0.834	0.834

SITE NAME		СН	AAP		PROJECT NO.	•	605	65355	- 10
SAMPLE NO.		CA	212-5		WELL NO.			A212	
DATE/TIME C SAMPLE MET		$\frac{3-\lambda-2}{\frac{PRO-A}{2}}$	CTIVE SS MO	025 NSOON	_ PERSONNEL _	. <u>G</u> 	0	· · · · · · · · · · · · · · · · · · ·	
SAMPLE MED SAMPLE QA S SAMPLE QC I MS/MSD REQ	SPLIT: OUPLICATE:	Groundwater YES YES YES	NO NO	DUPLICATI	T SAMPLE NO. E SAMPLE NO. O SAMPLE NO.		/\	VA VA	
SAMPLE CON	NTAINERS, P	RESERVATI	VES, ANALYS	SIS					
Sample Contain	•		Preservative		Analysis Requ				
2 - 500 mL Am 3 - 40 mL VOA			6°C, HCl		Explosives + Methane (RSK				
1 - 500 mL HD			6°C, HC1			NH ₃ (350.1), NO	D ₂ /NO ₂ (353.2)	`	
1 - 250 mL HD			6°C			Alkalinity (2320		,	
1 - 250 mL HD			6°C, ZnOAc/N	JaOH	Sulfide (9034)				
1 - 250 mL Am	ber		6°C		DOC (9060A)				
WELL PURG	NG DATA					'' '			
Date Time Started Time Complete PID Measureme Background Breathing Zo Well Head Purge Water	ents ne	3-2	1-21 945 ND ND ND ND		Depth to W Water (Well Casing of Water (Volume of Water (Casing Volume of Mater (Minimum	epth (ft BTOC) /ater (ft BTOC) /ater (ft BTOC) Column Length Volume (per ft) ater in Well (L) olumes to Purge um to Purge (L) actual Purge (L)		67.12 11.64 55.48 2.47 137.04 NA 20	
FIELD MEAS	Amount	рН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Water	Donne Data
Time	Purged (L)	pH	(Celsius)	(mS/cm)	Oxygen (mg/L)		(NTU)	(ft BTOC)	Purge Rate (L/min)
0950 0955 1000 1005 1010 1015 1020 1025	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	6.94 6.99 6.99 6.98 6.98 6.97 6.97	11.09 11.21 11.20 11.39 11.45 11.43 11.49 11.17	0.631 0.625 0.626 0.623 0.623 0.621	0.17 0.12 0.10 0.08 0.07 0.06 0.05 0.05	165.8 163.5 161.6 161.1 161.2 161.6 161.4	0.16 4.64 3.74 19.51 2.59 2.91 3.41 2.64	11.64 11.65 11.63 11.63 11.64 11.64	0.5
FIELD EQUIP			N						
Water Level Pro Water Quality M	be 1eter	Model Heron Aqua TROLL	500 w/ flow thr	ough cell		nst Calibrated Lalibration Verifi		librated Weekly	
Ferrous Iron = (Multi-Parameter Field Parameter Pump Placemen	Probe Unit #	65390							
Pump Rate =	0.5 L	min			<u>Histo</u>	ric (7-year avera	ge low and hi	gh / Q4 / Avg in I	3old)
Well Diameter =					ORP	22.3	167.4	167.4	109.3
Screen Interval	= 57.0 - 67.0	<u>.</u>	n=//	, <u></u>	DO	0.13	0.89	0.13	0.47
	118				PH Cond.	0.496	7.05 0.732	6.82 0.615	6.82 0.615
							-		

SITE NAME		СН	AAP	·	PROJECT NO.		6056	5355	
SAMPLE NO.	•	CAZ	213-5		WELL NO.		CA	213	
DATE/TIME (SAMPLE ME		3-2-2 PRO-A	L (a) O		_				
SAMPLE ME	DIA·	Groundwater							
SAMPLE QA		YES	NO	SPLIT	SAMPLE NO.		N	A	
-	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO.		N	4	_
MS/MSD REC	QUESTED	YES	NO		SAMPLE NO.		N 7	4	
SAMPLE CO	NTAINERS, P	RESERVATI	VES. ANALYS	SIS					
Sample Contai	•		Preservative		Analysis Requ	<u>ested</u>			
2 - 500 mL An	nber		6°C		Explosives + N	MNX (8330A)			
3 - 40 mL VO	A		6℃, HCl		Methane (RSK				
1 - 500 mL HI	OPE		6°C, H ₂ SO ₄		TKN (351.2),	NH ₃ (350.1), NO	O ₂ /NO ₃ (353.2)	-	
1 - 250 mL HI	OPE		6°C		SO ₄ (9056A),	Alkalinity (232)	OB)		
1 - 250 mL HI	OPE		6°C, ZnOAc/N	IaOH	Sulfide (9034)				
1 - 250 mL An	nber		6°C		DOC (9060A)		·		
WELL PURG	GING DATA		<u>,</u>						
~ .		2 -	2-71			epth (ft BTOC)		91.34	
Date Time Started			850 7-51		_	ater (ft BTOC)		12.38	
Time Started Time Complete	ed	<u>o</u>	a 00			Column Length Volume (per ft)		78.96 2.47	,
PID Measurem			700			ter in Well (L)		95.03	<u>L.,</u>
Background	<u> </u>		ND			lumes to Purge		NA	
Breathing Z	one		ND			ım to Purge (L)		20 L	
Well Head			ND		A	ctual Purge (L)		20 L	-
Purge Water	r		ND		_			•	
FIELD MEAS	SUREMENTS			,					
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0825	2.5	7.74	8.60	0.452	0.53	172.8	134.80	12.38	0.5
0830	5.0	7,71	7,90	0.450	0.51	172.1	204.74	12.38	i
0835	7.5	7.67	7,22	0.448	0.58	171.8	37, 31	12.37	
0840	10.0	7.67	5.62	0.440	0.49	173.9	35.48	12.37	
0845	12.5	7.65	5.06	0.442	0.49	175.5	44.92	12.38	
0850	15.0	7.64	4.92	0.451	0.60	175.3	54.87	12.37	
0855	17.5	7.69	5.14	0.450	0.66	169.8	47.34	12, 36	
0900	20.0	7,63	5.25	0.447	0,66	172.3	42.94	12.36	
									
				TI					
FIELD EQUI	PMENT AND	CALIBRATIC	N	*			7.		-
		Model			Calibration				
Water Level Pr		Heron	500/ Cl			nst Calibrated L			
Water Quality	Meter	Aqua TROLL:	500 w/ flow thr	ough cell	Twice Daily C	alibration Verif	ication also Cal	ibrated Weekly	
GENERAL C	OMMENTS					······································			
Ferrous Iron =									
	er Probe Unit#								
	ers Measured in		Cell					7	
Pump Placeme	* ' .	4 ft					•		
Pump Rate = Well Diameter	0.5 L	/ min				•		h / Q4 / Avg in	
Screen Interval					DO	0.09	118.3	97.9 0.09	0.58
Scient interval	1 - 17.0 - 07.0				PH	7.47	7.82	7.62	7.62
		·		NTT-10	Cond.	0.373	0.501	0.426	0.426
-						3.2.7	3.001	31,20	

SITE NAME	.	СН	AAP		PROJECT NO.		605	65355	<u> </u>
SAMPLE NO.			020-5		_ WELL NO.		NV	W020	
DATE/TIME (COLLECTED	3-3-21	Q 08	45	PERSONNEL		> C		
SAMPLE MET			CTIVE SS MO	NSOON	_		0		
SAMPLE MEI	DIA.	Groundwater			_				
SAMPLE QA		YES	NO	90117	SAMPLE NO.		Λ/ Δ		
SAMPLE QC		YES	NO				$\frac{\int V_{I}}{\Lambda I \Lambda}$		
MS/MSD REQ		YES	NO		SAMPLE NO.		$\frac{1}{N}\frac{1}{A}$		
	-		VES, ANALYS	<u> </u>			/ / / I		
Sample Contai		KESEKVAII	VES, ANALYS <u>Preservative</u>	015	Analysis Dass	antad			
2 - 500 mL An			6°C		Analysis Requ				
3 - 40 mL VO			6°C, HCl		Explosives + N			•	
1 - 500 mL HD			6°C, H ₂ SO ₄		Methane (RSK	NH ₃ (350.1), NO	(NIO (252.2)		
1 - 250 mL HD			6°C				-		
1 - 250 mL HD			6°C, ZnOAc/N	а О П		Alkalinity (2320	D)		
1 - 250 mL HL 1 - 250 mL An			6°C, ZnOAc/N	а∪п	Sulfide (9034) DOC (9060A)				
WELL PURG					200 (3000A)		**		
		2 .)_ 11			epth (ft BTOC)		29.92	
Date		3- ;	5-21		- •	ater (ft BTOC)		5.50	
Time Started			805			Column Length		14.42	
Time Complete		0	845			Volume (per ft)		<u> 3.47</u>	
PID Measurem			AZ N			ter in Well (L)	~~	35,62	
Background			ND			lumes to Purge			
Breathing Zo Well Head	one		N V			m to Purge (L)_ctual Purge (L)		30	
Purge Water			N/ N		_ ^	ctual Fulge (L)_		<u> </u>	
			.1 /		-				
FIELD MEAS			m .	0 1 2 2	D: 1 :	n			
Time	Amount	pН	Temperature	•	Dissolved	Redox (ORP)	Turbidity	Depth to Water	-
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)			(# RTOC)	(L/min)
				. ,	Oxygon (mg/L)	(mV)	(NTU)	(ft BTOC)	(1211111)
0810	25	6.76	10 43	1.5/3	5.77		, ,		
0810	2.5	6.76	10.43	1.5/2	5.77	193.8	4.06	15.50	0.5
0810	2.5 5.0 7.5	6.76	0.60	1.511	5.77 5.69		, ,	15.50	
0810	2.5 5.0 7.5		10.60	1.511	5.77 5.69 5.67	193.8 179.8 169.4	4.06 4.78 3.85	15.50	
0815 0815 0820	7.5	6.82	0.60	1.511	5.77 5.69 5.67 5.63	193.8 179.8 169.4 160.5	4.06 4.78 3.85 4.94	15.50 15.51 15.50	
0810 0815 0820 0825 0830	7.5 10.0 12.5	6.79 6.82 6.85 6.87	10.60	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60	193.8 179.8 169.4 160.5	4.06 4.78 3.85 4.94 5.55	15.50 15.51 15.50 15.49 15.50	
0815 0820 0825 0830 0835	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88	10.60 10.71 10.87 11.01	1.511	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5	4.06 4,78 3,85 4.94 5.55 5.95	15.50 15.51 15.50 15.49 15.50	
0815 0815 0825 0825 0830 0835 0845	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	
0815 0820 0825 0830 0835	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88	10.60 10.71 10.87 11.01	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5	4.06 4,78 3,85 4.94 5.55 5.95	15.50 15.51 15.50 15.49 15.50	0.50,5
0815 0820 0825 0830 0835	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835	7.5 10.0 13.5 15.0	6.79 6.82 6.85 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835 0840	7.5 10.0 13.5 15.0 17.5 20.0	6.79 6.82 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835	7, 5 (0, 0) (3, 5) (5, 0) (17, 5) (20, 0)	6.79 6.82 6.87 6.88 6.90	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506	5.77 5.69 5.67 5.63 5.60 5.59	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835 0840	7, 5 (0, 0) (3, 5) (5, 0) (17, 5) (20, 0)	6,79 6.82 6.87 6.88 6.90 6.90	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506	5.77 5.69 5.63 5.60 5.59 5.55 5.55	193.8 179.8 169.4 160.5 152.8 146.0	4.06 4.78 3.85 4.94 5.55 5.95 6.36	15.50 15.51 15.50 15.49 15.50 15.50 15.49	0.50,5
0815 0820 0825 0830 0835 0840 0845	7, 5 (0, 0) (3, 5) (5, 0) 17, 5 20, 0 PMENT AND	6,79 6,83 6,87 6,88 6,90 6,90 CALIBRATIO Model Heron	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again	193.8 179.8 169.4 160.5 152.8 146.0 143.6	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49	0.50,5
0815 0820 0825 0830 0835 0840 0845 FIELD EQUII	7, 5 (0, 0) 13, 5 15, 0 17, 5 20, 0 PMENT AND obe Meter	6,79 6,83 6,87 6,88 6,90 6,90 CALIBRATIO Model Heron	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49	0.50,5
0815 0820 0825 0830 0835 0840 0845	7, 5 (0, 0) 13, 5 15, 0 17, 5 20, 0 PMENT AND obe Meter OMMENTS	6,79 6,83 6,87 6,88 6,90 6,90 CALIBRATIO Model Heron Aqua TROLL	10.60 10.71 10.87 11.01 11.10 10.96 11.81	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49	0.50,5
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Paramete	7, 5 (0, 0) 13, 5 15, 0 17, 5 20, 0 PMENT AND obe Meter OMMENTS 0, 15 mg er Probe Unit #	6,79 6,83 6,87 6,88 6,90 6,90 CALIBRATIO Model Heron Aqua TROLL	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49	0.50,5
FIELD EQUII Water Level Prewater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter	7, 5 (0, 0) 13, 5 15, 0 17, 5 20, 0 PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in	CALIBRATIO Model Heron Aqua TROLL	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49	0.50,5
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen	7, 5 (0, 0) 13, 5 15, 0 17, 5 20, 0 PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in	CALIBRATIO Model Heron Aqua TROLL	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.67 5.63 5.60 5.59 5.55 5.55 Calibration Checked Again Twice Daily Ca	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.49 15.48	0.5
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemer Pump Rate =	PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in nt Depth = 3	CALIBRATIO Model Heron Aqua TROLL	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.67 5.63 5.60 5.59 5.55 5.54 Calibration Checked Agair Twice Daily Ca	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.48 15.48	0,5
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen Pump Rate = Well Diameter	PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in nt Depth = 3 O. 5 4"	6,79 6,83 6,87 6,88 6,90 6,90 6,90 CALIBRATIO Model Heron Aqua TROLL: Flow-Through 6 533 9	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.67 5.63 5.60 5.59 5.55 5.54 Calibration Checked Again Twice Daily Ca	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.48 15.48 15.48	30ld) 113.9
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemer Pump Rate =	PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in nt Depth = 3 O. 5 4"	6,79 6,83 6,87 6,88 6,90 6,90 6,90 CALIBRATIO Model Heron Aqua TROLL: Flow-Through 6 533 9	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.67 5.63 5.60 5.59 5.55 5.54 Calibration Checked Again Twice Daily Ca	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 142. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57 ength ention also Cal	15.50 15.50 15.49 15.50 15.49 15.48 15.48 15.48 15.48	30ld) 113.9 4.50
FIELD EQUII Water Level Prowater Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen Pump Rate = Well Diameter	PMENT AND obe Meter OMMENTS O. 15 mg or Probe Unit # rs Measured in nt Depth = 3 O. 5 4"	6,79 6,83 6,87 6,88 6,90 6,90 6,90 CALIBRATIO Model Heron Aqua TROLL: Flow-Through 6 533 9	10.60 10.71 10.87 11.01 11.10 10.96 11.81 500 w/ flow throw	1.511 1.509 1.507 1.506 1.505 1.504	5.77 5.69 5.67 5.63 5.60 5.59 5.55 5.54 Calibration Checked Again Twice Daily Ca	193. 8 179. 8 169. 4 160. 5 152. 8 146. 0 143. 6 138. 9	4.06 4.78 3.85 4.94 5.55 6.36 6.57	15.50 15.50 15.49 15.50 15.49 15.48 15.48 15.48	30ld) 113.9

		CE	IAAP	***	PROJECT NO	•	6056	55355	
SAMPLE NO.	-	NW	/021-5		_ WELL NO	-	NV	V021	
DATE/TIME (COLLECTED	3-3-	21 @ 1	.005	PERSONNEL		To		
SAMPLE ME			ACTIVE SS MO		_		GC		
SAMPLE MEI	DIA·	Groundwater	•						3,5-5,
SAMPLE QA		YES	NO] SPLI	Γ SAMPLE NO		NA		
SAMPLE QC		YES	NO		E SAMPLE NO		NA	1.00	
MS/MSD REQ	QUESTED	YES	NO		SAMPLE NO		NA		
SAMPLE CO	NTAINERS, P	RESERVATIV	ES, ANALYSI	<u>-</u>					-
Sample Contai			Preservative	-	Analysis Requ	ested			
2 - 500 mL An	nber		6°C		Explosives + N	/NX (8330A)			
3 - 40 mL VO	A		6°C, HCl	***	Methane (RSK		***************************************		11
1 - 500 mL HE	PE		6°C, H ₂ SO ₄			NH ₃ (350.1), NO	₂ /NO ₃ (353.2)		,
1 - 250 mL HE	PE		6°C			Alkalinity (2320)			
1 - 250 mL HD	PE		6°C, ZnOAc/N	аОН	Sulfide (9034)				
1 - 250 mL Am			6°C		DOC (9060A)	***			
WELL PURG	ING DATA								
		7	_) -1			Depth (ft BTOC)		45.75	
Date			<u>-}-21</u>		_	Vater (ft BTOC)		15.72	
Time Started			0925		_	Column Length		30.03	
Time Complete			1003	U 211-122-11	_	Volume (per ft)		1.47 L	•
PID Measurem Background			M/ N			ater in Well (L) olumes to Purge		74.17 NA	
Breathing Zo			N K		_	um to Purge (L)		20 L	
Well Head	one		V K		-	Actual Purge (L)		30 1	 .
Purge Water	•		Ν̈́N		-	retuur r urge (2)		av L	
FIELD MEAS				* **** ***					
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0930	2.5	6.67	11.86	1.032	0.04	-9.5	65.34	15.72	0.5
0935	5.0	6.67	11.89	1.029	0.04	-13.4	36.69	15.74	l l
0940	7.5	/ / /	17 . ~		0.01				
		6.69	12.05	0.997	0.03	-43.3	30.16	15.77	
0945	10.0	6.70	12.18	0.943	0.03	-43.3 -73.1	30.16	15.77	
0945	10.0	6.70 6.73	10.00	× · · ·	0.03	-43.3 -73.1 -90.9	30.16	15.77 15.79	
0945 0950 0455	10.0 12.5 15.0	6.70	12.18	0.943 0.924 0.914	0.03	-103. 9	30.16	15.77	
0945 0950 0455 Ø 1000	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75	12.18	0.943 0.924 0.914 0.984	0.03	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0945 0950 0455	10.0 12.5 15.0	6.70	12.18	0.943 0.924 0.914	0.03	-103. 9	30.16	15.77 15.79	
0945 0950 0455 Ø 1000	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75	12.18	0.943 0.924 0.914 0.984	0.03	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0945 0950 0455 Ø 1000	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75	12.18	0.943 0.924 0.914 0.984	0.03	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0945 0950 0455 Ø 1000	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75	12.18	0.943 0.924 0.914 0.984	0.03	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0945 0950 0455 Ø 1000	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75	12.18	0.943 0.924 0.914 0.984	0.03	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0945 0950 0955 Ø 1000 1005	10.0 12.5 15.0 17.5	6.70 6.73 6.74 6.75 6.79	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984	0.03 0.03 0.04 0.04 0.04	-103.9	30.16 23.01 16.44 21.14 12.72	15.77 15.79 15.79 15.79 15.79	
0950 0950 0955 0 1000 1005	10. O 12, 5 15, 0 17, 5 20. 0	6.70 6.73 6.74 6.75 6.79	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984	6, 63 0.03 0.04 0.04 0.04 0.04	-103.9 -115.8 -110.2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
0950 0950 0955 0 1000 1005 FIELD EQUII	10. O 12. 5 15. 0 17. 5 20. 0 PMENT AND O	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103. 9 -115. 8 -110. 2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
0950 0950 0955 0 1000 1005	10. O 12. 5 15. 0 17. 5 20. 0 PMENT AND O	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103.9 -115.8 -110.2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
0950 0950 0955 0 1000 1005 FIELD EQUII	10, O 12, 5 15, 0 17, 5 20, 0	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103. 9 -115. 8 -110. 2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron =	10, O	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103. 9 -115. 8 -110. 2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Paramete	PMENT AND obe Meter OMMENTS O. 8 mg/er Probe Unit #	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103. 9 -115. 8 -110. 2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL Corrous Iron = Multi-Parameter Field Parameter	PMENT AND obe Meter OMMENTS O. 8 mg/er Probe Unit # rs Measured in 1	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	6, 63 0.03 0.04 0.04 0.04 0.04	-103. 9 -115. 8 -110. 2	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete Pump Placemen	PMENT AND obe Meter OMMENTS O. 8 mg/er Probe Unit # rs Measured in 1	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	Calibration Checked Again Twice Daily Ca	-103. 9 -115. 8 -110. 2 ast Calibrated Le	30.16 23.01 16.44 21.14 12.72 15.22	15.77 15.79 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete Pump Placemen Pump Rate =	PMENT AND of the proper Probe Unit # rs Measured in Int Depth = 4	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	Calibration Checked Again Twice Daily Calibration	ast Calibrated Le alibration Verific	30. 16 23.0(16.44 21.14 12.72 15.22 Ingth ation also Calib	15.77 15.79 15.79 15.79 15.79 15.79	
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Pump Placemen Pump Rate = Well Diameter	PMENT AND of the property of t	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	Calibration Checked Agair Twice Daily Calibration	ast Calibrated Le alibration Verification Coric (7-year aver-	30. 16 23.01 16.44 21. 14 12. 72 15. 22 15. 22	15.77 15.79 15.79 15.79 15.79 15.79 15.79	105.7
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete Pump Placemen Pump Rate =	PMENT AND of the property of t	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	Calibration Checked Again Twice Daily Co	ast Calibrated Le alibration Verification Ve	30. 16 23.01 16.44 21. 14 12. 72 15. 22 15. 22 15. 22	15.77 15.79 15.79 15.79 15.79 15.79 15.79 15.79	105.7 0.43
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Pump Placemen Pump Rate = Well Diameter	PMENT AND of the property of t	6.70 6.73 6.74 6.75 6.79 CALIBRATIO Model Heron Aqua TROLL	12.18 12.62 12.05 12.44 12.51	0.943 0.924 0.914 0.984 0.982	Calibration Checked Agair Twice Daily Calibration	ast Calibrated Le alibration Verification Coric (7-year aver-	30. 16 23.01 16.44 21. 14 12. 72 15. 22 15. 22	15.77 15.79 15.79 15.79 15.79 15.79 15.79	105.7

GENERALI	TORMATIO								
SITE NAME		СН	AAP	***	_PROJECT NO.		6050	55355	
SAMPLE NO.		NW	022-5		_ WELL NO.		NV	V022	
DATE/TIME (COLLECTED	3-3-	21 @1	125	PERSONNEL	,	TO		
SAMPLE MET			CTIVE SS MOI		_ 1213011122	·	(2)		
				7741-2					-
SAMPLE MEI		Groundwater	r	1			111		
SAMPLE QA		YES	NO	1	T SAMPLE NO.		<u>Ņ</u> , Ā		
SAMPLE QC		YES	NO NO	1	E SAMPLE NO.		N/4		
MS/MSD REQ	OESTED	YES	NO	MS/MS	D SAMPLE NO.		N/A		
SAMPLE CO	NTAINERS, P	RESERVATIV	ES, ANALYSIS	3					
Sample Contain	ner		Preservative		Analysis Reque	ested			
2 - 500 mL Am			6°C		Explosives + N	INX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL HD			6°C, H ₂ SO ₄			NH ₃ (350.1), NO			-
1 - 250 mL HD			6°C			Alkalinity (2320	(B)		
1 - 250 mL HD			6°C, ZnOAc/Na	аОН	Sulfide (9034)				
1 - 250 mL Am			6°C		DOC (9060A)				
WELL PURG	ING DATA				Wall	Depth (ft BTOC)		66.60	
Date		3-	}- 2 l			Vater (ft BTOC)		66.60	
Time Started			045	<u> </u>	_ •	Column Length		50,93	
Time Complete	ed		125		Well Casing	Volume (per ft)	1	2.47	,,
PID Measurem	ents		W/N			ater in Well (L)		125.80	
Background			ND			olumes to Purge		NA	
Breathing Zo	one		- N, R			um to Purge (L)		<u> 20</u>	
Well Head Purge Water			ND			Actual Purge (L)		۵0	
Turge water			N D						
FIELD MEAS	UREMENTS								
Time	Amount	pН	Temperature	Conductivity		Redox (ORP)	Turbidity	Depth to Water	Purge Rate
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
1186	1	180	1) 7)	1350	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10.0	700	15/0	0.5
1020	5.0	6.90	13.72	1.276	0.13	14.3	7.80	15.68	0.5
ILA A	7.5	6 41	12.92	1.260	0.10	4.3	12.23	15.67	
1100	18.0	6.42	13.40	1363	0.09	- 9 2	8.70	15.68	
1110	12.5	693	12.37	1.252	1 10	-12 8	0.70	15 (9	
1115	15.0	6 94	13.45	1,222	0.00	-15.5	11,46	15.69	
1120	17.5	6,45	13,56	1.773	0.08	-17,6	10,46	5.68	
1125	20.0	6.97	13.58	1.257	0.08	-19.9	20.04	15.68	
					-,00	11,	20,0	7, 08	
			Ta						
			00						
FIELD EQUII	PMENT AND	CALIBRATION	N		.				
Water Level Pr	a la a	Model Uses			Calibration	C-121	1		
Water Quality I		Heron Aqua TROLL 5	600 w/ flow thro	ugh cell	Checked Again		engtn cation also Calib	roted Weekly	
water Quarty		7 Aqua TROEE S	OO W/ HOW till O	ugii celi	Twice Daily Ca	moration verm	cation also Cano	rated weekly	
GENERAL CO								_	
Ferrous Iron =	· · · · · · · · · · · · · · · · · · ·								1
Multi-Paramete		653 94							
		Flow-Through C	eil						
Pump Placement Pump Rate =	$\frac{\text{nt Depth} = 6}{O_{\bullet} 5}$				LI	orio (7 voca osse	aga low and hi-	h / O/ / Av- :- P	old)
Well Diameter		L/min			ORP	-34.9	207.7	h / Q4 / Avg in <u>B</u> -34.9	64.5
Screen Interval				,,,	DO	0.05	1.15	0.05	0.43
					PH	6.77	7.14	6.98	6.98
			-		Cond.	0.964	1.390	1.280	1.144

SITE NAME	СНААР		PROJECT NO.		605	65355	
SAMPLE NO.	NW060-5		WELL NO.		NV	V060	
DATE/TIME COLLECTED SAMPLE METHOD	3-1-21 @ 1 PRO-ACTIVE SS MO	310 nsoon	_ _ PERSONNEL _	<i>7</i>	TO		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	YES NO DUPLICAT		F SAMPLE NO. E SAMPLE NO. O SAMPLE NO.		NA NA NA		
SAMPLE CONTAINERS, I Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 1 - 500 mL HDPE 1 - 250 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber	PRESERVATIVES, ANALYS Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/N 6°C		SO ₄ (9056A), A Sulfide (9034)	INX (8330A)			
WELL PURGING DATA	6℃		DOC (9060A)				
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water	3-1-21 1230 1310 ND ND ND		Depth to W Water (Well Casing V Volume of Wa Casing Vo	epth (ft BTOC) ater (ft BTOC) Column Length Volume (per ft) ter in Well (L) lumes to Purge m to Purge (L) ctual Purge (L)		20.15 13.94 6.21 2.47 15.34 NA 20	L
FIELD MEASUREMENTS Time Amount Purged (L)	pH Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
235 2.5 240 5.6 245 7.5 250 16.6 255 2.5 300 15.6 305 17.5 310 20.6	6.59 .54 6.57 .44 6.56 .36 6.57 .38 6.56 .32 6.56 .35 6.56 .40 6.56 .40	0.208 0.207 0.206 0.205 0.204 0.204 0.204	10.20 10.21 10.23 10.23 10.22 10.22 10.23	179,5 184,5 186.3 188.5 191.3 194.3 194.8	0,94 0,29 0,07 0,06 0.07 0.07 0.05 0,05	13.94 14.00 14.00 14.00 14.00 13.99 13.98	0.5
	Jo						
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	CALIBRATION Model Heron Aqua TROLL 500 w/ flow three	ough cell	Calibration Checked Again Twice Daily Ca			librated Weekly	
GENERAL COMMENTS Ferrous Iron = 0,00 mg Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 1	653996	, collè					
Pump Rate = 0.5	L/min					gh / Q4 / Avg in I	
Well Diameter = 4" Screen Interval = 10.0 - 20.0			ORP DO PH Cond.	29.2 9.26 5.82 0.065	171.6 10.75 6.46 0.200	156.7 9.26 6.04 0.200	121.9 10.21 6.04 0.104

SITE NAME	СНААР	PROJECT NO.	60	565355			
SAMPLE NO.	NW061-5	WELL NO.	N	W061			
DATE/TIME COLLECTI	ED 3-1-21 @ 155	PERSONNEL_	6C				
SAMPLE METHOD	PRO-ACTIVE SS MONSOOI	N	TO				
SAMPLE MEDIA:	Groundwater						
SAMPLE QA SPLIT:	YES NO	SPLIT SAMPLE NO.	NA		_		
SAMPLE QC DUPLICA		LICATE SAMPLE NO.					
MS/MSD REQUESTED		AS/MSD SAMPLE NO	N A				
	RS, PRESERVATIVES, ANALYSIS						
Sample Container 2 - 500 mL Amber	<u>Preservative</u> 6°C	Analysis Reques Explosives + M					
3 - 40 mL VOA	6℃, HCl	Methane (RSK		-			
1 - 500 mL HDPE	6°C, H ₂ S0 ₄		H ₃ (350.1), NO ₂ /NO ₃ (353.2	2)	***************************************		
1 - 250 mL HDPE	6°C	SO ₄ (9056A), A	lkalinity (2320B)				
1 - 250 mL HDPE	6℃, ZnOAc/NaOH	Sulfide (9034)					
1 - 250 mL Amber WELL PURGING DAT	6°C	DOC (9060A)			_		
WELL PUKGING DAT	A	Well Der	pth (ft BTOC)	44.90			
Date	3-1-21		ater (ft BTOC)	13.62			
Time Started	1505		olumn Length	31,28			
Time Completed PID Measurements	13 3 0	Well Casing V Volume of Wate		77,26			
Background	ND		umes to Purge	N A			
Breathing Zone	N Ď	Minimun	n to Purge (L)	\$ 6			
Well Head		Ac	Actual Purge (L) 22.5				
Purge Water	N_D						
FIELD MEASUREMEN Time Amour Purged (nt pH Temperature Cond	uctivity Dissolved S/cm) Oxygen (mg/L)	Redox (ORP) Turbidity (mV) (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)		
1510 2.5	7.13 12.32 0.0	136 0.04	16.2 546.7		0.5		
1515 5.0	7.13 2.07 0.3	589 0.04	15.6 631.09				
1520 7.5	7, 13 12.09 0.9	145 0.03	17.0 61.60		-		
1525 10.0		743 0.03	23.2 8.88	13.64			
1535 15.0		149 0.03	23.2 8,88	13.65			
1540 17.6		1/ 0.1//	aq. 0 7.66	13.66			
1545 20.0	7 7 7 9		31.0 8.24	13.65	Y		
1520 22.3	7.13 11.70 0.9	141 0.03	35.3 8.27	13.65			
	Ta						
FIELD EQUIPMENT A	ND CALIBRATION Model	Calibration					
Water Level Probe	Heron	· · · · · · · · · · · · · · · · · · ·	at Calibrated Length				
Water Quality Meter	Aqua TROLL 500 w/ flow through ce		libration Verification also C	alibrated Weekly			
GENERAL COMMENT	rs						
Ferrous Iron = 0.00	mg/L						
Multi-Parameter Probe Un							
Field Parameters Measure Pump Placement Depth =							
Pump Rate = 0.5	42 ft L/ m/n	Histori	c (7-year average low and h	igh / O4 / Avo in F	Bold)		
Well Diameter = 4"	-/ 13/13	ORP	0.1 196.8	196.8	128.6		
Screen Interval = 40.3 - 43	5.3	DO	0.18 0.68	0.22	0.37		
		PH	6.59 7.01	6.90	6.90		
		Cond.	0.308 1.070	1.070	0.713		

SITE NAME		СНААР			PROJECT NO.		6056	60565355		
SAMPLE NO.		NW)62-5		_ WELL NO.		NW	/062		
DATE/TIME O		3-1-2 PRO-A	CTIVE SS MO	420 nsoon	PERSONNEL		<u>0</u>			
SAMPLE MEI	ΜΔ.	Groundwater								
SAMPLE QAS		YES	NO	, 1 cd tt	SAMPLE NO.		NA			
SAMPLE QC I		YES	NO	1	SAMPLE NO.		N/ A			
MS/MSD REQ		YES	NO	1	SAMPLE NO.		NÃ			
SAMPLE CO	NTAINERS, F	PRESERVATIV	VES, ANALYS	is		 -				
Sample Contain			Preservative	-2-2	Analysis Requ	ested				
2 - 500 mL Am			6°C		Explosives + N					
3 - 40 mL VOA			6°C, HCl		Methane (RSK					
1 - 500 mL HD			6°C, H ₂ SO ₄			NH ₃ (350.1), NO	₀ /NO ₀ (353.2)	· .		
1 - 250 mL HD			6°C			Alkalinity (2320		·		
1 - 250 mL HD			6°C, ZnOAc/N	·OH	Sulfide (9034)	-		78 103 1		
1 - 250 mL Am			6°C	aOH	DOC (9060A)			<u> </u>		
WELL PURG			0.0		DOC (9000A)	1				
Date Time Started Time Complete PID Measurem Background Breathing Zo Well Head Purge Water	ed ents one	3~	-2 40 420 ND ND ND	:	Depth to W Water (Well Casing Y Volume of Wa Casing Vo	epth (ft BTOC) Vater (ft BTOC) Column Length Volume (per ft) ter in Well (L) clumes to Purge im to Purge (L) ctual Purge (L)		63.45 13.94 49.51 2.47 122.29 NA 20 L 20 L	L	
FIELD MEAS	UREMENTS									
Time	Amount Purged (L)	рН	Temperature (Celsius)	•	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)	
1345 1350 1355 1400 1405 1410 1415 1420	2.5 5.0 7.5 10.0 11.5 15.0 17.5 20.0	7.38 7.39 7.40 7.40 7.40 7.40 7.41	12.48 12.48 12.40 12.47 12.47 12.48 12.35	0.883 0.877 0.884 0.885 0.885 0.885 0.883	0.10 0.07 0.06 1.06 0.06 0.05	-39.5 ~59.1 -75.6 -81.2 -88.6 -93.9 -96.8 -100.6	157.32 241,82 264.36 312,18 318.52 18.96 32.75 30.26	13,94 13,94 13,95 13,95 13,95 13,95 13,95	0,5	
) (
Water Level Pre Water Quality Mater Quality Mater Quality Mater Quality Materials Iron = (Multi-Parameter Multi-Parameter Mult	obe Meter OMMENTS O.73 mg	Model Heron Aqua TROLL :	500 w/ flow thro	ough cell		nst Calibrated Le		ibrated Weekly		
Field Parameter										
Pump Placemen		ft ft								
Pump Rate =	0.5 L	-/min			Histo	ric (7-year avera	ge low and hig	h/Q4/Avg in B	sold)	
Well Diameter		/			ORP	-67.0	38.6	-62.2	-26.6	
Screen Interval	= 58.1 - 63.1				DO	0.15	0.65	0.15	0.35	
					PH	6.71	8.11	7.29	7.29	
					Cond.	0.270	0.850	0.850	0.601	

SITE NAME	СНААР		PROJECT NO.		605	65355	
SAMPLE NO.	NW070-5		WELL NO.		NV	V070	
DATE/TIME COLLECTED SAMPLE METHOD	3-1-21 @ 1 PRO-ACTIVE SS MO	9927 NSOON	PERSONNEL_	() (T ()		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	DUPLICATE	SAMPLE NO SAMPLE NO SAMPLE NO		NA NA NA		
·	PRESERVATIVES, ANALYS	SIS					-
Sample Container	<u>Preservative</u> 6°C		Analysis Reque				
2 - 500 mL Amber 3 - 40 mL VOA	6°C, HCl		Explosives + M Methane (RSK				
1 - 500 mL HDPE	6°C, H ₂ SO ₄		TKN (351.2), N		₀/NO₂ (353.2)	1	
1 - 250 mL HDPE	6°C	·	SO ₄ (9056A), A				
1 - 250 mL HDPE	6°C, ZnOAc/N	aOH	Sulfide (9034)		<u> </u>		
1 - 250 mL Amber	6°C		DOC (9060A)	-			
WELL PURGING DATA				<u> </u>			
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water FIELD MEASUREMENTS	3-1-2 0840 0920 ND ND		Depth to Wa Water C Well Casing V Volume of Wat Casing Vol Minimu			20.91 10.57 10.34 2.47 25.54 NA 20	L
Time Amount Purged (L)	pH Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0845 2.5 0855 7.5 0400 10.0 0405 12.5 0410 15.0 0415 12.5 0420 28.0	7.16 13.02 7.14 13.24 7.15 13.68 7.17 14.10 7.18 13.48 7.20 13.52 7.22 13.60 7.24 13.59	0.941 0.941 0.935 0.935 0.936 0.930 0.930	0,21 0.18 0.15 0.12 0.11 0.04 0.08	168.2 168.3 167.8 166.4 166.4 165.6 166.2	0.38 0.31 0.14 0.12 0.11 0.09 0.10 1.01	10.57 10.58 10.58 10.58 10.58 10.61	0.5
FIELD EQUIPMENT ANI Water Level Probe Water Quality Meter	OCALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	ough cell	Calibration Checked Agains Twice Daily Ca			librated Weekly	
Multi-Parameter Probe Unit Field Parameters Measured in Pump Placement Depth =	Flow-Through Cell ft						
Pump Rate = () . 5 Well Diameter = 4"	L/Min		ORP Histor	ic (7-year avera -307.4	ge low and his 127.0	gh / Q4 / Avg in F 107.0	
Screen Interval = $10.6 - 20.6$			DO DO	0.12	1.59	0.12	-20.1 0.62
			PH	6.51	7.25	6.86	6.86
14 PA - PA			Cond.	0.096	0.910	0.910	0.346

SITE NAME	CHAAP PROJECT NO. 60565355				65355	100000
SAMPLE NO.	NW071-5	WELL	NO	NV	W071	
DATE/TIME COLLECTEI SAMPLE METHOD	9-/-2 @ PRO-ACTIVE SS MC		NEL	G (J 0		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE DUPLICATE SAMPLE MS/MSD SAMPLE	NO	NA NA NA		
SAMPLE CONTAINERS Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 1 - 500 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber WELL PURGING DATA Date Time Started Time Completed PID Measurements Background	PRESERVATIVES, ANALY Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/l 6°C 3 - / - 2	Analysis I Explosive Methane (TKN (351 SO ₄ (9056 NaOH Sulfide (9) DOC (906 Wo Depth Wi Well Cas Volume o	s + MNX (8330A) RSK 175) .2), NH ₃ (350.1), NO A), Alkalinity (2320)	OB)	60.43 10.39 50.04 3.47 L	
Breathing Zone Well Head Purge Water	ND ND ND		nimum to Purge (L) Actual Purge (L)		20 20	
Time Amount Purged (L	pH Temperature	Conductivity Dissolve (mS/cm) Oxygen (n	` ,	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1025 2.5 1030 5.0 1035 7.5 1040 10.0 1045 12.5 1050 15.0 1055 17.5 1100 20.0	6.56 11.46 6.58 10.28 6.57 10.35 6.57 10.46 6.59 10.47 6.59 10.87 6.61 11.53 6.61 11.55	0.680 .86 0.683 .86 0.684 .9 0.685 .9 0.685 .9 0.685 .9 0.685 .9	9 94.9 1 99.8 + 102.2 103.7 3 104.8 3 106.7	13.25 14.25 17.55 17.42 19.50 15.37 14.63 12.84	10.39 10.39 10.38 10.38 10.38 10.38	0.5
FIELD EQUIPMENT AN Water Level Probe Water Quality Meter	D CALIBRATION Model Heron Aqua TROLL 500 w/ flow th		1 Against Calibrated L ly Calibration Verifi		librated Weekly	
GENERAL COMMENTS Ferrous Iron = 0. 1 8 Multi-Parameter Probe Unit Field Parameters Measured Pump Placement Depth = Pump Rate = 0.5 L Well Diameter = 4" Screen Interval = 55.2 - 60.3	ng/L # 653 496 in Flow-Through Cell ft	ORP DO	listoric (7-year avera -151.2 0.46	nge low and hig 158.1 3.43	gh / Q4 / Avg in F 130.0 0.46	3old) 56.2 2.27
		PH Cond.	6.32 0.519	6.62	6.42 0.610	6.42

SITE NAME		СНА	AP		PROJECT NO		605	65355	
SAMPLE NO.		G0024	4-5		WELL NO		G	0024	
DATE/TRACE	OLI ECTED	3-3-2	21 @	1337			6 C		
DATE/TIME O			TIVE SS MO	NSOON	PERSONNEI	-	<u></u>		_
SAMIFLE ME	шор	FRO-AC	11 VE 33 MC	MSOON			10		
SAMPLE MEI		Groundwater					11/	1	
SAMPLE QA		YES	NO		Γ SAMPLE NO		/V/	1	
SAMPLE QC 1		YES	NO	8	E SAMPLE NO		N	<u> </u>	
MS/MSD REQ	DUESTED	YES	NO	MS/MSI	SAMPLE NO	· 	<u> </u>	-	
SAMPLE CO	NTAINERS, F	PRESERVATIVE	ES, ANALYS	SIS			-tota		
Sample Contain	<u>ner</u>	<u>P</u>	reservative		Analysis Requ	<u>iested</u>			
2 - 500 mL Am			℃			MNX (8330A)			
3 - 40 mL VOA			°C, HCl		Methane (RSI				
1 - 500 mL HD 1 - 250 mL HD			°C, H ₂ S0 ₄			NH ₃ (350.1), NO)	
1 - 250 mL HD				In OU		Alkalinity (232	OB)		
1 - 250 mL HD 1 - 250 mL Am			°C, ZnOAc/N °C	ча∪П	Sulfide (9034) DOC (9060A)				<u> </u>
WELL PURG					200 (200011)				
		· .)) (Well D	epth (ft BTOC)		33.28	
Date		<u> </u>	7-91			Vater (ft BTOC)		12.69	
Time Started	_		320			Column Length		20,59	ļ
Time Complete		1_3	30			Volume (per ft)		2.47	
PID Measureme	<u>ents</u>	۸/	<i>r</i> 10			ater in Well (L)		50.85	-
Background Breathing Zo	na.		- K			olumes to Purge um to Purge (L)		N A 2 0	
Well Head	ле	— N	r K			ann to Purge (L) Actual Purge (L)		20 20	
Purge Water		/N	- K		- "	ictual i uige (L)		~ U	
_	UREMENTS Amount	pH 7	-ν Γemperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Water	Purge Rate
FIELD MEAS Time 12.55 13.00 13.05 13.10 13.15 13.20 13.25 13.30	Amount Purged (L) 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	pH 1	(Celsius) 13.17 13.23 13.62 13.49 13.55 13.72 13.65	Conductivity (mS/cm) 0.663 0.663 0.664 0.664 0.663 0.661 0.654	Dissolved Oxygen (mg/L 5.28 5.28 5.28 5.26 5.30 5.30 5.31		Turbidity (NTU) (), 29 (), 28 (), 56 1, 78 7, 04 3, 69 6, 31 5, 52	Depth to Water (ft BTOC) 12.69 12.70 12.73 12.77 12.79 12.78	Purge Rate (L/min)
FIELD MEAS Time 12.55 13.00 13.05 13.15 13.25 13.30 FIELD EQUIP Water Level Prowater Quality Means and the second seco	Amount Purged (L) \$\int_{\text{N}} \int_{\text{N}} \int_{\text{O}} \int_{\text{N}} \int_{\tex	6.56 6.56 6.56 6.56 6.58 6.61 6.64 6.64 6.64 6.64 6.64 6.64 6.64	(Celsius) 13.17 13.23 13.62 13.72 13.65 13.64	0.663 0.663 0.664 0.664 0.661 0.659 0.659	Oxygen (mg/L 5.28 5.28 5.28 5.28 5.30 5.30 5.31 Calibration Checked Again Twice Daily C	(mV) 157.6 163.1 166.7 172.1 173.7 174.6 175.4 alibration Verification	(NTU) (), 2 9 (), 2 9 (), 2 9 (), 3 9 (), 7 8 (), 7	(ft BTOC) 12. 6 9 12. 70 12. 73 12. 77 12. 78 12. 78	(L/min)
FIELD MEAS Time 13.5 13.0 13.5 13.25 13.25 13.30 FIELD EQUIP Water Level Prowater Quality Means and the second se	Amount Purged (L) \$\frac{1}{2}, \frac{5}{5}, \t	6.56 6.56 6.56 6.56 6.58 6.61 6.64 CALIBRATION Model Heron Aqua TROLL 500	(Celsius) 13.17 13.23 13.62 13.72 13.65 13.64	0.663 0.663 0.664 0.664 0.661 0.659 0.659	Oxygen (mg/L 5.28 5.28 5.28 5.28 5.30 5.30 5.31 Calibration Checked Again Twice Daily C	(mV) 157.6 163.1 166.7 172.1 173.7 174.6 175.4 anst Calibrated Lealibration Verification	(NTU) (), 2 9 (), 2 9 (), 2 9 (), 3 9 (), 7 8 (), 7 8 (), 7 9 (), 3 1 (), 5 1 (), 7 8 (), 7	(ft BTOC) 12. 6 9 12. 70 12. 73 12. 77 12. 78 12. 78 12. 78 12. 78	(I/min)
FIELD MEAS Time 12.55 13.00 13.05 13.15 13.20 13.25 13.30 FIELD EQUIP Water Level Prowater Quality Means and the second	Amount Purged (L) 2, 5 10, 0 12, 5 15, 0 17, 5 20, 0 PMENT AND of the probe Unit # s Measured in at Depth = 2 0, 5 L 4"	6.56 6.56 6.56 6.56 6.58 6.61 6.64 6.64 6.64 6.64 6.64 6.64 6.64	(Celsius) 13.17 13.23 13.62 13.72 13.65 13.64	0.663 0.663 0.664 0.664 0.661 0.659 0.659	Oxygen (mg/L 5.28 5.28 5.28 5.28 5.30 5.30 5.31 Calibration Checked Again Twice Daily C	(mV) 157.6 163.1 166.7 172.1 173.7 174.6 175.4 alibration Verification	(NTU) (), 2 9 (), 2 9 (), 2 9 (), 3 9 (), 7 8 (), 7	(ft BTOC) 12. 6 9 12. 70 12. 73 12. 77 12. 78 12. 78	(I/min)
FIELD MEAS Time 13.55 13.00 13.55 13.10 13.25 13.25 13.30 FIELD EQUIP Water Level Pro Water Quality M GENERAL CO Ferrous Iron = 6 Multi-Parameter Cump Placemen Dump Rate = Well Diameter =	Amount Purged (L) 2, 5 10, 0 12, 5 15, 0 17, 5 20, 0 PMENT AND of the probe Unit # s Measured in at Depth = 2 0, 5 L 4"	6.56 6.56 6.56 6.56 6.58 6.61 6.64 6.64 6.64 6.64 6.64 6.64 6.64	(Celsius) 13.17 13.23 13.62 13.72 13.65 13.64	(mS/cm) 0.663 0.663 0.664 0.664 0.663 0.659 0.659	Oxygen (mg/L 5.28 5.28 5.28 5.28 5.30 5.30 5.31 Calibration Checked Again Twice Daily C	(mV) 157.6 163.1 166.7 172.1 173.7 174.6 175.4 and Control of the control	(NTU) (), 2 9 (), 2 9 (), 2 9 (), 3 9 (), 7 8 (), 7 8 (), 7 9 (), 3 1 (), 5 2 () () () () () () () () () ((ft BTOC) 12. 6 9 12. 7 0 12. 7 3 12. 7 7 12. 7 8 12. 7 8 12. 7 8 12. 7 8	(I/min) 0,5 104.4

SITE NAME		СН	[AAP		_PROJECT NO)	605	65355	
SAMPLE NO.	•	G0	070-5	_	WELL NO).	G	0070	
DATE/TIME (COLLECTED	3-1-2	1/16	00	_ PERSONNE	_ A	E,	T B	
SAMPLE ME	THOD	PRO-A	CTIVE SS MC	ONSOON	_				
SAMPLE MEI		Groundwater YES	NO	T entr	T SAMPLE NO		n!	A	
SAMPLE QC		YES	NO	4	E SAMPLE NO		1/	A-	
MS/MSD REC		YES	NO	4	D SAMPLE NO		G0070-5	MS/MSD	
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALYS	SIS					
Sample Contai			Preservative		Analysis Req				
2 - 500 mL An			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl 6°C, H ₂ S0 ₄		Methane (RS)	K 175) NH ₃ (350.1), NO	NO (252.2)	<u> </u>	
1 - 250 mL HE			6°C			Alkalinity (2320			
1 - 250 mL HE			6°C, ZnOAc/N	JaOH	Sulfide (9034		,Б)		
1 - 250 mL An			6°C	14011	DOC (9060A	•			
WELL PURG					200 (3000)			102	
Data		.	-1-2	ı		Depth (ft BTOC)		82.65	
Date Time Started		15 +4		•		Vater (ft BTOC)		14.03	
Time Started Time Complete	ed	1> 14	20 1(0N)			Column Length Volume (per ft)		66.62	
PID Measurem			1600					2,47	
Background			ND		Volume of Water in Well (L) Casing Volumes to Purge Minimum to Purge (L) Actual Purge (L)				
Breathing Zo			1						
-	one		-						
	Well Head								
	•		1/		_ ′	Actual Turge (L)			
Purge Water	SUREMENTS		L						
Purge Water FIELD MEAS Time 181425 151430	SUREMENTS Amount Purged (L) 2.5 5.0	pH 6.94 6.89	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox	Turbidity (NTU) 0,45 0.51	Depth to Water (ft BTOC)	(L/min)
FIELD MEAS Time NOTE: 15 142 5	SUREMENTS Amount Purged (L)	6.94	(Celsius)	(mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	(L/min)
Purge Water FIELD MEAS Time 181425 151430	SUREMENTS Amount Purged (L) 2.5 5.0 7.5	6.94	(Celsius)	(mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU) 0,45 0.51	Depth to Water (ft BTOC)	(L/min)
FIELD MEAS Time 15 14 2 5 15 14 3 0 15 14 3 5	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5	6.94 6.89 6.88 6.90	(Celsius) 11,69 11,80 12.60 12.10	(mS/cm) ,427 ,426 ,426 ,426 ,426	Dissolved Oxygen (mg/L 2.4 2.29 2.15	Redox) (mV) 130.1 117.0	Turbidity (NTU) 0,45 0.51 0.47	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22	(L/min) .500 .500 .500
FIELD MEAS Time 15 14 2 5 15 14 3 0 15 14 3 5 15 14 4 0	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5	6.94 6.89 6.88	(Celsius) 11,69 11,80 11,90 12.6	(mS/cm) ,427 ,426 ,426	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95	Redox (mV) 130.1 117.0 108.9	Turbidity (NTU) 0.45 0.51 0.47 0.45	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22	(1/min) .500 .500 .500 .500
Purge Water FIELD MEAS Time 15 14 2 5 15 14 3 0 15 14 3 5 15 14 4 0 15 14 45 15 14 5 0	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5	6.94 6.89 6.88 6.90	(Celsius) 11,69 11,80 12.60 12.10	(mS/cm) ,427 ,426 ,426 ,426 ,426 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95	Redox (mV) 130.1 117.0 108.9 102.1 96.6	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(1/min) .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 15 14 2 5 15 14 3 0 15 14 3 5 15 14 4 0 15 14 45	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5	6.94 6.89 6.98 6.90 6.93 6.99	(Celsius) 11,69 11,60 12.60 12.10 12.00	(mS/cm) ,427 ,426 ,426 ,426 ,426 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29 0,31	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22	(1/min) .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 181425 151430 151430 151445 151445	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6.94 6.89 6.88 6.90 6.93 6.99	(Celsius) 11,69 11,60 12.60 12.10 12.00 72.11.93	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29 0,31 0,35	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 181425 151430 151430 151445 151445	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6.94 6.89 6.88 6.90 6.93 6.99	(Celsius) 11,69 11,60 12.60 12.10 12.00 †2.11.93 11.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29 0,31 0,35	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 181425 151430 151430 151445 151445	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6.94 6.89 6.88 6.90 6.93 6.99	(Celsius) 11,69 11,60 12.60 12.10 12.00 72.11.93	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29 0,31 0,35	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 181425 151430 151430 151445 151445	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 2.0	6.94 6.89 6.99 6.99 6.99 6.99	(Celsius) 11,69 11,80 12.60 12.10 12.00 12.10 12.70	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0,51 0,47 0,45 0,29 0,31 0,35	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 1864 25 15 14 30 15 14 35 15 14 45 15 14 55 16 16 00	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 2.0 PMENT AND	6.94 6.88 6.90 6.93 6.99 7.02	(Celsius) 11,69 11,60 12.60 12.10 12.00 †2.11.93 11.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22 16, 22	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 15 14 2 5 15 14 30 15 14 35 15 14 40 15 14 45 15 14 55 16 16 00	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 2.0 PMENT AND	6.94 6.89 6.90 6.93 6.99 7.02	(Celsius) 11,69 11,60 12.60 12.60 12.10 12.70 12.10 11.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 18.1425 15.1430 15.1435 15.1445 15.1455 16.1600 FIELD EQUII	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 2.0 PMENT AND obe Meter	6.94 6.99 6.99 6.99 6.99 7.02	(Celsius) 11,69 11,60 12.60 12.60 12.10 12.70 12.10 11.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 18.1425 18.1430 18.1435 18.145 18.	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 2 0 PMENT AND obe Meter OMMENTS 0.0 n	6.94 6.89 6.90 6.93 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,60 12.60 12.60 12.10 12.00 72.11.93 11.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 15 142 5 15 14 30 15 14 35 15 14 45 15 14 50 15 14 55 16 00 FIELD EQUII Water Level Pr Water Quality I	PMENT AND OMMENTS OMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS	6.94 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(Umin) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 18.1425 18.1430 18.1435 18.145 18.	PMENT AND OMMENTS OMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS OOMMENTS	6.94 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(1/min) .500 .500 .500 .500 .500 .500
Purge Water FIELD MEAS Time 15 142 5 15 14 30 15 14 35 15 14 45 15 14 50 15 14 55 16 00 FIELD EQUII Water Level Pr Water Quality I	PMENT AND OMMENTS O. O Tryobe Unit # rs Measured in	6.94 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.41 2.29 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0.51 0.47 0.45 0.29 0.31 0.35 0.37	Depth to Water (ft BTOC) 16, 22 16, 22 16, 22 16, 22 16, 22 16, 27 16, 27 16, 27	(Umin) .500 .500 .500 .500 .500 .500
FIELD MEAS Time SUP 25 SUP 30 SUP 35 SUP 40 SUP 50 SUP	PMENT AND OMMENTS O.O Trobe Unit # rs Measured in not Depth = 3 500 m	6.94 6.99 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.4 2.2 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai Twice Daily C	Redox (mV) 117.0 108.9 102.1 96.6 91.7 87.9 84.2	Turbidity (NTU) 0,45 0,45 0,45 0,45 0,45 0,29 0,31 0,35 0,37	Depth to Water (ft BTOC) 16, 22	(1/min) .500 .500 .500 .500 .500 .500
FIELD MEAS Time FIELD MEAS Time FIELD MEAS FIELD STATE FIELD STATE FIELD EQUIL Water Level Prowater Quality FIELD STATE FIELD	PMENT AND OMMENTS O.O Trobe Unit # rs Measured in not Depth = 3 500 m	6.94 6.99 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.4 2.2 2.15 2.04 1.95 1.89 1.81 1.80 Calibration Checked Agai Twice Daily C	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7 87.9 84.2 nst Calibrated Lecalibration Verific	Turbidity (NTU) 0,45 0,45 0,45 0,45 0,45 0,29 0,31 0,35 0,37	Depth to Water (ft BTOC) 16, 22	(1/min) .500 .500 .500 .500 .500 .500
FIELD MEAS Time SUP 25 SUP 30 SUP 35 SUP 40 SUP 50 SUP	PMENT AND OMMENTS O. O To Probe Unit # rs Measured in not Depth = 3 500 m 500 m 500 m 500 m 500 m	6.94 6.99 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/L 2.4 2.2 2.15 2.04 1.95 1.89 1.80 Calibration Checked Agai Twice Daily C	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7 97.9 84.2	Turbidity (NTU) O, 45 O, 51 O, 47 O, 46 O, 29 O, 31 O, 35 O, 37 ength cation also Cal	Depth to Water (ft BTOC) 16, 22	(1/min) .500 .500 .500 .500 .500 .500
FIELD EQUII Water Level Prowater Quality I GENERAL Co Ferrous Iron = Multi-Parameter Pump Placemer Pump Rate = Well Diameter Water Level Prowater Quality I	PMENT AND OMMENTS O. O To Probe Unit # rs Measured in not Depth = 3 500 m 500 m 500 m 500 m 500 m	6.94 6.99 6.99 6.99 6.99 7.02 CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 11,69 11,80 12.10 12.10 12.00 †2.11.93 i1.97	(mS/cm) ,427 ,426 ,426 ,426 ,425 ,425 ,427	Dissolved Oxygen (mg/I 2.4[2.29 2.15 2.04 1.95 1.89 1.80 Calibration Checked Agai Twice Daily C	Redox (mV) 130.1 117.0 108.9 102.1 96.6 91.7 97.9 84.2 aric (7-year avera 16.5	Turbidity (NTU) 0,45 0,51 0,45 0,45 0,45 0,29 0,31 0,35 0,37 ength cation also Cal	Depth to Water (ft BTOC) 16, 22	(I/min) .500 .500 .500 .500 .500 .500 .500 .5

SITE NAME	СНААР	P	ROJECT NO.		605	65355	
SAMPLE NO.	G0075-5		WELL NO.		G	0075	
DATE/TIME COLLECTED	3-1-21/13	30	PERSONNEL	AF	JB		
SAMPLE METHOD	PRO-ACTIVE SS MON		LENGOTTEL	$-n\nu$	<u> </u>		
SAMPLE MEDIA:	Groundwater		•				
SAMPLE MEDIA: SAMPLE OA SPLIT:	YES NO	SPLIT S	SAMPLE NO.	λ	A		
SAMPLE QC DUPLICATE:	YES NO	DUPLICATE S			1	· 	
MS/MSD REQUESTED	YES NO	MS/MSD S	SAMPLE NO.		ĵ		
SAMPLE CONTAINERS I	PRESERVATIVES, ANALYS	IS .					
Sample Container	Preservative		Analysis Reque	ested			
2 - 500 mL Amber	6°C		Explosives + M				
3 - 40 mL VOA	6°C, HCl		Methane (RSK				
1 - 500 mL HDPE	6°C, H ₂ SO ₄			NH ₃ (350.1), NO)	
1 - 250 mL HDPE	6°C			Alkalinity (2320)B)		
1 - 250 mL HDPE 1 - 250 mL Amber	6°C, ZnOAc/Na 6°C		Sulfide (9034) DOC (9060A)				
WELL PURGING DATA	0.0		DOC (3000A)				
I CATOMIN DIATA			Well De	epth (ft BTOC)		37.71	
Date	3 - 1 - 21			ater (ft BTOC)		16.0	
Time Started	1250			Column Length		21,71	
Time Completed	1330			/olume (per ft)	2.		
PID Measurements	ND	· ·		ter in Well (L)	NE	, , , , , , , , , , , , , , , , , , ,	
Background Breathing Zone			-	lumes to Purge m to Purge (L)	20		
Well Head	-			ctual Purge (L)			
Purge Water			• • • • • • • • • • • • • • • • • • • •	, , , , , , , , , , , , , , , , , , ,			
Time Amount Purged (L)	pH Temperature (Celsius)	Conductivity (mS/cm) C	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1255 2.5	6.97 13.34	1809	2.16	110.6	1.02	16,0	500
1300 5.0	6.97 13.85	.809	1.81	94.7	.89	16.0	'500
1305 7.5	6.97 14.10	1806	1,77	88.0	,56	16.0	1500
1310 10	10.97 14.00	,804	1.90	84.3	,48	16.0	.500
1315 12.5	6.97 12.52	,808	2.14	86.3	.46	16.0	500
1320 15	6.98 13.05	.808	2.29	87.3	. 43	16.00	,500
1325 17.5	6,94 13,25		2. 22	88.1	• 41	16.00	.500
1230 20	6.98 13.15	, 809	2.09	88.2	,44	16,00	,500
	T _a						
	1/2						
FIELD EQUIPMENT AND	CALIDDATION			•			
FIELD EQUIPMENT AND	Model Model	(Calibration				
Water Level Probe	Heron			st Calibrated Le	noth		
Water Quality Meter	Aqua TROLL 500 w/ flow through					ibrated Weekly	
GENERAL COMMENTS Ferrous Iron = 0,14	ng/L						
Multi-Parameter Probe Unit #							
Field Parameters Measured in							
Pump Placement Depth = 3		<u> </u>	· 				
Pump Rate = 500 m/			Histori	c (7-year avera	ge low and hig	th / Q4 / Avg in	Bold)
Well Diameter = 4"		C	RP	36.8	257.3	257.3	133.3
Screen Interval = 25-35			00	0.03	6.86	0.03	1.66
<u> </u>			H	6.44	6.83	6.72	6.60
		C	ond.	0.650	0.995	0.730	0.825

SITE NAME	СНААР	PROJECT NO.	60565355					
SAMPLE NO.	G0076-5	WELL NO.	G0076					
DATE/TIME COLLECTED SAMPLE METHOD	3-1-21 / 1445 PRO-ACTIVE SS MONSOO		RE, JB					
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED		SPLIT SAMPLE NO. LICATE SAMPLE NO. MS/MSD SAMPLE NO.	NA					
SAMPLE CONTAINERS, I Sample Container 2 - 500 mL Amber	PRESERVATIVES, ANALYSIS Preservative 6°C	Analysis Requested	2204)					
3 - 40 mL VOA 1 - 500 mL HDPE	6°C, HCl 6°C, H ₂ S0 ₄	Methane (RSK 175) TKN (351.2), NH ₃ (35	TKN (351.2), NH ₃ (350.1), NO ₂ /NO ₃ (353.2)					
1 - 250 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber	6°C 6°C, ZnOAc/NaOH 6°C	SO ₄ (9056A), Alkalini Sulfide (9034) DOC (9060A)						
WELL PURGING DATA Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water	3-21-21 1405 1445 ND	Well Depth (ft Depth to Water (ft Water Column Well Casing Volume Volume of Water in W Casing Volumes t Minimum to Po	BTOC)					
FIELD MEASUREMENTS Time Amount Purged (L)	•	•	dox Turbidity Depth to Wa V) (NTU) (ft BTOC	_				
1410 2.5 1415 5.0 1420 7.5 1425 10 1430 12.5 1435 15 1440 17.5 1445 20	6,69 12,99 1.1	42 0.13 -30 41 0.10 -31 35 0.08 -39 36 0.07 -4 37 0.06 -4 34 0.06 -4	1,7 0.14 15.79	1 .500 1 .500 1 .500 1 .500 1 .500				
	My							
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter		Calibration Checked Against Calibration Twice Daily Calibration	rated Length n Verification also Calibrated Week	dy				
Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 2.// Multi-Parameter Probe Unit # Field Parameters Measured in	CALIBRATION Model Heron Aqua TROLL 500 w/ flow through ce	Checked Against Calib		sly				
Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 2 / / r Multi-Parameter Probe Unit #	CALIBRATION Model Heron Aqua TROLL 500 w/ flow through ce	Checked Against Caliberation Twice Daily Calibration	n Verification also Calibrated Week					

SITE NAME		СН	[AAP		PROJECT NO)	605	65355	
SAMPLE NO	·	G0	077-5		_ WELL NO)	G	0077	
DATE/TIME	COLLECTED	3-3-	21 @	1500	PERSONNEI	L	\mathcal{T}_6		
SAMPLE ME			CTIVE SS MC		_ 1210011112	<u> </u>	60		 .
SAMPLE ME	יין אוע.	Groundwater	•		_				
SAMPLE QA		YES	NO	SPLIT	SAMPLE NO).	NA		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO).	NA		
MS/MSD REG	QUESTED	YES	NO	MS/MSE	SAMPLE NO), <u> </u>	NA		
SAMPLE CO	NTAINERS, F	RESERVATI	VES, ANALYS	SIS					
Sample Contain			Preservative	515	Analysis Requ	uested			
2 - 500 mL Ar			6°C		Explosives +	MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RS)		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
1 - 500 mL HI 1 - 250 mL HI			6°C, H ₂ S0 ₄			NH ₃ (350.1), NO Alkalinity (2320)	
1 - 250 mL HI			6°C, ZnOAc/N	January and the same and the sa	Sulfide (9034),)D)		
1 - 250 mL Ar			6°C	10011	DOC (9060A)	<u> </u>			·
WELL PURC			<u> </u>		(
_		7	3-11	Ì		Depth (ft BTOC)		37.70	
Date			-)-d	<u> </u>		Vater (ft BTOC)		13.07	
Time Started	ad		1720			Column Length Volume (per ft)		24,63	
Time Complete PID Measurem			1300			ater in Well (L)		60,84	
Background			Λ/ /)			olumes to Purge		N A	
Breathing Z			Ν̈́B		_	um to Purge (L)		20	
Well Head			N D		_	Actual Purge (L)		20	
Purge Water	r		ND		- -				
FIELD MEAS	CHIDEMENTS		•						
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1425	2.5	6.55	13.81	0.659	5.37	191.6	1.33	13.10	0.5
1430	5.0	6.57	13.91	0,699	5.37	191.0	1.69	13.09	
1435	7.5	6.58	13. 46	0.739	4.13	192, 9	1.53	13.10	
1440	10.0	6.58	13.96	0.744	3.97	192.9	1.46	13.08	
1445	12.5	6.59	14.14	0.7/3	3.10	143.4	0.24	13.08	
1450	15.0	6.60	14,21	0.782	3.52	193,3	0.32	13.08	
1455	1/, 5	6.60	14.23	0.793	3,34	193.1	1.08	13.08	-
1500	20.0	6.61	14.25	0.795	2.34	194,5	0.27	13.08	
									
)0						
EIELD EOIT	PMENT AND	CALIDDATIC	NAT .					<u> </u>	
THE PLANTS		Model	/11		Calibration				
Water Level Pr		Heron				nst Calibrated Le	ength		
Water Quality	Meter	Aqua TROLL:	500 w/ flow thr	ough cell		Calibration Verifi		librated Weekly	
GENERAL C	OMMENTS								<u> </u>
Ferrous Iron =		ng/L							
Multi-Paramete	er Probe Unit#	65399							
	rs Measured in		Cell						
Pump Placeme	nt Depth = 3	0 , ft							
Pump Rate =	0.5	L/min						<u>th / Q4 / Avg in I</u>	
Well Diameter					ORP	20.4	144.8	115.5	88.5
Screen Interval	= 25-35		-		DO	1.53	5.43	2.62	2.86
		·			PH	6.53	6.83	6.71	6.68
					Cond.	0.620	1.012	0.780	0.847

SITE NAME	CHAAP PROJECT				IO. 60565355			
SAMPLE NO.	G00)78-5	···-	_ WELL NO	l.	G	0078	
DATE/TIME COLLECTI SAMPLE METHOD		CTIVE SS MO	NSOON	_ PERSONNEI -		JO GC		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICA: MS/MSD REQUESTED	Groundwater YES TE: YES YES	NO NO NO	DUPLICATE	SAMPLE NO SAMPLE NO SAMPLE NO		N A N A		
SAMPLE CONTAINER	S, PRESERVATI	VES, ANALYS	SIS					
Sample Container 2 - 500 mL Amber		Preservative 6°C			MNX (8330A)			
3 - 40 mL VOA 1 - 500 mL HDPE		6°C, HCl 6°C, H ₂ S0 ₄		Methane (RSI	K 175) NH ₃ (350.1), N	O ₂ /NO ₂ (353.2	<u> </u>	
1 - 250 mL HDPE		6°C			Alkalinity (232		<i>)</i>	
1 - 250 mL HDPE		6°C, ZnOAc/N	IaOH	Sulfide (9034)				
1 - 250 mL Amber		6°C	·	DOC (9060A))		3	
WELL PURGING DAT Date Time Started Time Completed	}- - 	3-21		Depth to V Water	Depth (ft BTOC) Vater (ft BTOC) Column Length Volume (per ft)	1	62.80 13.06 49.74	
PID Measurements	V t	<i> </i>			ater in Well (L)		122.86	
Background		\mathcal{N}	·		olumes to Purge		NA	
Breathing Zone		N, D			um to Purge (L)		20	
Well Head Purge Water		~B		- -	Actual Purge (L))	22.5	
FIELD MEASUREMEN	TS							
Time Amoun Purged (. •	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1535 12 3 1540 5.1 1545 7.5 1550 10.0	6.74	15.26	0.941 0.955 0.976 0.970	0.23 0.26 0.23	28.2 14.5	9.03 17.79 14.56	13.06 13.07 13.08	0.5
1550 10.0 1555 12.5 1600 15.0	6.75	14.01 14.20 14.20	0.984	0.16	-6.d -9.3 -10.7	4.96 21.71 28.83	13.09	
1605 17.5 1610 20.0	6.75 6.76 6.78	14.34	0.948 0.948	0.12	-10.9 -10.6 -10.9	2.79 5.55 5.93	13.07	$\overline{}$
1017	0,78	11111	V. #27	0,10	-10. 1	371)	10.07	
			JO		1			
FIELD EQUIPMENT A	<u>Model</u>	N		Calibration				
Water Level Probe Water Quality Meter	Heron Aqua TROLL 5	500 w/ flow thro	ough cell		nst Calibrated L alibration Verif		librated Weekly	
GENERAL COMMENT Ferrous Iron = /, 4 (mg/L							
Multi-Parameter Probe Un Field Parameters Measured								
Pump Placement Depth =								
Pump Rate = 0.5	L/min			<u>Histo</u>	ric (7-year aver	age low and his	gh / Q4 / Avg in I	Bold)
Well Diameter = 4"	, ———			ORP	-21.2	99.4	-21.2	31.7
Screen Interval = 50-60				DO	0.09	0.45	0.09	0.28
				PH Cond.	6.78 0.878	7.10 1.280	6.78 1.070	6.92 1.082

SITE NAME		C1	НААР		_PROJECT NO		605	565355	
SAMPLE NO	·	G(0079-5		WELL NO		G	0079	
DATE/TIME	COLLECTED	3-1-	21/1	225	DED CONNEY	RE	TB		
SAMPLE ME	THOD	PRO-	ACTIVE SS MO	ONSOON	_ PERSONNEL	,) • •		
CAMPLEME	DIA				_				
SAMPLE ME SAMPLE QA		Groundwate YES	er NO	T SDI I	T SAMPLE NO		VA		
-	DUPLICATE:	YES	NO		E SAMPLE NO.		<u> </u>		
MS/MSD REC		YES	NO		O SAMPLE NO.		V	·	
CANON F. CC	AND A TAMEDO T	DECEDYA	TYTEC AND TY	TOTO.					
Sample Contain		PRESERVAT.	IVES, ANALY Preservative	S1S	Analysis Requ	ested			
2 - 500 mL Ar			6°C		Explosives + I				
3 - 40 mL VO	A		6°C, HCl		Methane (RSk	(175)			
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), NO)	
1 - 250 mL HI			6°C			Alkalinity (2320)B)		
1 - 250 mL HI			6°C, ZnOAc/	NaOH	Sulfide (9034)				
1 - 250 mL An			6°C		DOC (9060A)				
WELL PURG	SING DATA				Wall D	epth (ft BTOC)		19.62	
Date		3.	-1-2	1		/ater (ft BTOC)		16,15	
Time Started			145 -		_ •	Column Length		3,47	
Time Complete	ed		1228		_	Volume (per ft)		2.47	<u></u>
PID Measurem			ļ <i>o</i> ,			ter in Well (L)		8,57	
Background	 I		ND			lumes to Purge		NA	
Breathing Z)	·		ım to Purge (L)		~ 0	
Well Head					_ A	ctual Purge (L)		20	
Purge Water	г		4		_				
FIELD MEAS	STIDEN OF NIEC								
Time	Amount	pН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Water	Durge Date
	Purged (L)	-	(Celsius)	(mS/cm)	Oxygen (mg/L)		(NTU)	(ft BTOC)	(L/min)
1150	Purged (L)	6.65	(Celsius)	•	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	•
1155	2.5	6.65	<u> </u>	(mS/cm)	Oxygen (mg/L)		(NTU) 23, 1	(ft BTOC)	(L/min)
	2.5	10.66	11.95	(mS/cm)	3:13 3:00	(mV) 82.4 78.5	(NTU) 23.1 (9.5	(ft BTOC)	(L/min) 5-00 5-60
1155	2,5		11,95	(mS/cm) ,498 ,513	3,13 3,00 2,88	(mV)	(NTU) 23. 1 (8.5 16.1	(ft BTOC) 16.22 16.22 16.22	(L/min) 5-00 5-60 5-00
1155	2.5 5.0 7.5	6.66	11,95 12.01 12.57 12,79	(mS/cm) ,498 ,513 ,517 ,527	0xygen (mg/L) 3, 13 9,00 2,88 2,78 2,69	(mV) 82.4 78.5 77.5	(NTU) 23. 1 (8.5 16.1 13.3	(ft BTOC) 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500
1155	2.5 5.0 7.5 10 12.5	6.66 6.66 6.66	11,95 12,61 12,57 12,79 12,81	(mS/cm) ,498 ,513 ,527 ,539 ,550	0xygen (mg/L) 3, 13 9,00 2,88 2,78 2,69	(mV) 82.4 78.5 77.5 77.5 78.7 79.3	(NTU) 23, 1 (8,5 16.1 13.3 10.7	(ft BTOC) 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500
1155 (200 1205 1210 1215	2.5 5.0 7.5 10 12.5 15	6.66	11,95 12.01 12,57 12,79 12,81	(mS/cm) ,498 ,513 ,527 ,539 ,550	0xygen (mg/L) 3.13 9.00 2.88 2.28 2.49 2.69	(mV) 82.4 78.5 77.5 77.5 78.7 79.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500 500
1155 (200 1205 1210	2.5 5.0 7.5 10 12.5	6.66 6.66 6.66 6.66	11,95 12.01 12,57 12,79 12,81	(mS/cm) ,498 ,513 ,527 ,539 ,550	0xygen (mg/L) 3, 13 9,00 2,88 2,78 2,69	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500
1155 (200 1205 1210 1215 1220	2.5 5.0 7.5 10 12.5 15 17.5	6.66 6.67 6.66 6.66 6.66	11,95 12.01 12,57 12,79 12,81 12,85 12,79	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	0xygen (mg/L) 3,13 3,00 2,88 2,28 2,69 2,63 2,56	(mV) 82.4 78.5 77.5 77.5 78.7 79.3	(NTU) 23, 1 (8,5 16.1 13.3 10.7	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500 500 500
1155 (200 1205 1210 1215 1220	2.5 5.0 7.5 10 12.5 15 17.5	6.66 6.67 6.66 6.66 6.66	11,95 12.01 12,57 12,79 12,81 12,85 12,79	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	0xygen (mg/L) 3,13 3,00 2,88 2,28 2,69 2,63 2,56	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1155 (200 1205 1210 1215 1220	2.5 5.0 7.5 10 12.5 15 17.5 20	6.66 6.67 6.66 6.66 6.66	11,95 12.01 12,57 12,79 12,81 12,85 12,79	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	0xygen (mg/L) 3,13 3,00 2,88 2,28 2,69 2,63 2,56	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1155 (200 1205 1210 1215 1220	2.5 5.0 7.5 10 12.5 15 17.5	6.66 6.67 6.66 6.66 6.66	11,95 12.01 12,57 12,79 12,81 12,85 12,79	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	0xygen (mg/L) 3,13 3,00 2,88 2,28 2,69 2,63 2,56	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1155 (200 1205 1210 1215 1220 1225	2.5 5.0 7.5 10 12.5 15 17.5 20	6.66 6.66 6.66 6.66 6.67	11,95 12.01 12,57 12,79 12,81 12,85 12,85	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	0xygen (mg/L) 3,13 3,00 2,88 2,28 2,69 2,63 2,56	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3	(NTU) 23, 1 (3,5 16.1 13.3 10.7 8.5	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1155 (200 1205 1210 1215 1220 1225	2.5 5.0 7.5 10 12.5 15 17.5 20	6.66 6.66 6.66 6.66 6.67	11,95 12.01 12,57 12,79 12,81 12,85 12,85	(mS/cm) ,498 ,513 ,527 ,539 ,550 ,561	Oxygen (mg/L) 3, 13 9,00 2,88 2,69 2,63 2,56 2,51	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225 FIELD EQUID	2.5 5.0 7.5 10 12.5 15 17.5 20	6.66 6.66 6.66 6.66 6.67 CALIBRATIO Model Heron	11,95 12.01 12,57 12,79 12,81 12,85 12,79 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225	2.5 5.0 7.5 10 12.5 15 17.5 20	6.66 6.66 6.66 6.66 6.67 CALIBRATIO Model Heron	11,95 12.01 12,57 12,79 12,81 12,85 12,85	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225 1225 FIELD EQUII Water Level Pr	2.5 5.0 7.5 10 12.5 15 12.5 20 PMENT AND	6.66 6.66 6.66 6.66 6.67 CALIBRATIO Model Heron	11,95 12.01 12,57 12,79 12,81 12,85 12,79 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter	6.66 6.66 6.66 6.66 6.67 CALIBRATION Model Heron Aqua TROLL	11,95 12.01 12,57 12,79 12,85 12,85 12,89 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter	6.66 6.66 6.66 6.66 6.67 CALIBRATION Model Heron Aqua TROLL	11,95 12.01 12,57 12,79 12,85 12,85 12,89 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 60 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225	2,5 5,0 7,5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0,30 n	CALIBRATIO Model Heron Aqua TROLL	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500 500 500
FIELD EQUII Water Level Pr Water Quality I GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placement	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0.30 n er Probe Unit #	CALIBRATIO Model Heron Aqua TROLL 63 75 9 Flow-Through	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 69 2, 63 2, 56 2, 51 Calibration Checked Again	(mV) 82.4 78.5 77.5 77.5 79.3 80.3 81.8	(NTU) 23. 1 (8.5 16.1 13.3 10.7 8.5 5.9 5.0	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500 500
FIELD EQUII Water Level Pr Water Quality I GENERAL CO Ferrous Iron = Multi-Parameter Pump Placement Pump Rate =	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0.30 n er Probe Unit # rs Measured in int Depth = 15	CALIBRATIO Model Heron Aqua TROLL 63 75 9 Flow-Through	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 29 2, 69 2, 56 2, 51 Calibration Checked Again Twice Daily Calibration	(mV) 82.4 78.5 77.5 77.5 78.3 80.3 81.8 ast Calibrated Lealibration Verification	(NTU) 23. 1 (3.5 16.1 13. 3 10.7 8.5 5.9 5.0 ength cation also Ca	(ft BTOC) 16.22 16.22 16.22 16.22 16.22 16.22 16.22	(L/min) 5 00 5 00 5 00 500 500 500 500
FIELD EQUII Water Level Pr Water Quality I GENERAL Co Ferrous Iron = Multi-Paramete Pump Placemer Pump Rate = Well Diameter	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0.30 n er Probe Unit # rs Measured in at Depth = 15	CALIBRATIO Model Heron Aqua TROLL 63 75 9 Flow-Through	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Oxygen (mg/L) 3, 13 7, 00 2, 88 2, 29 2, 69 2, 56 2, 51 Calibration Checked Again Twice Daily Calibration	(mV) 82.4 78.5 77.5 77.5 78.3 80.3 81.8 ast Calibrated Lealibration Verification	(NTU) 23. 1 (3.5 16.1 13. 3 10.7 8.5 5.9 5.0 ength cation also Ca	(ft BTOC) 6.22 6.22 6.22 16.2	(L/min) 5 00 5 00 5 00 500 500 500 500
1 55 (200 1205 1210 1215 1220 1225 FIELD EQUII	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0.30 n er Probe Unit # rs Measured in at Depth = 15	CALIBRATIO Model Heron Aqua TROLL 63 75 9 Flow-Through	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Calibration Checked Agair Twice Daily Co	(mV) 82.4 78.5 77.5 77.5 79.7 79.3 80.3 81.8 sic (7-year avera 18.5 1.03	(NTU) 23. 1 (3.5 16.1 13. 3 10.7 8.5 5.9 5.0 ength cation also Ca	(ft BTOC) 16.22	(L/min) 5 00 5 00 5 00 5 00 5 00 5 00 5 00 5 00 106.1 4.77
FIELD EQUII Water Level Pr Water Quality I GENERAL Co Ferrous Iron = Multi-Paramete Pump Placemer Pump Rate = Well Diameter	2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT AND obe Meter OMMENTS 0.30 n er Probe Unit # rs Measured in at Depth = 15	CALIBRATIO Model Heron Aqua TROLL 63 75 9 Flow-Through	11,95 12.01 12,57 12,79 12,85 12,85 12,85 12,81	(mS/cm) ,496 ,513 ,527 ,539 ,550 ,561 ,569 ,575	Calibration Checked Again Twice Daily Co	(mV) 82.4 78.5 77.5 77.5 78.7 79.3 80.3 81.8 st Calibrated Leadibration Verification Ve	(NTU) 23. 1 (3.5 16.1 13. 3 10.7 8.5 5.9 5.0 ength cation also Ca	(ft BTOC) 16.22 1	(L/min) 5 00 5 00 5 00 5 00 5 00 5 00 5 00 5 00 106.1

SITE NAME		СН	AAP	· · · · · ·	_PROJECT NO)	605	565355	
SAMPLE NO)	G00	080-5		WELL NO	D	G	0080	
DATE/TIME	COLLECTED	2-28-	2\ @	1540		L		3 =	
SAMPLE ME			CTIVE SS MO		_ I EKSONNE		'	BE O	
CAMPLEAGE	TD14	<u> </u>							
SAMPLE ME SAMPLE QA		Groundwater YES	NO	SPI	T SAMPLE NO)	NA		
_	DUPLICATE:	YES	NO		E SAMPLE NO		N A		-
MS/MSD RE		YES	NO	MS/MS	D SAMPLE NO).	NA		
CAMPI E CC	ONTAINERS, I	DECEDYATE	CONTRACT ADDALES	OTO .					
Sample Conta		KESEKVAII	Preservative	212	Analysis Req	nested			
2 - 500 mL A			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RS				
1 - 500 mL HI 1 - 250 mL HI			6°C, H ₂ SO ₄			, NH ₃ (350.1), N , Alkalinity (232)	
1 - 250 mL H			6°C, ZnOAc/I	NaOH	Sulfide (9034		(JD)		
1 - 250 mL A			6°C		DOC (9060A				
WELL PURC	GING DATA								
Date) ~	28-2	\		Depth (ft BTOC)		37.70	
Time Started			500 ×	1		Water (ft BTOC) Column Length		14. 29 23. 4 1	
Time Complet	ted		540	·		Volume (per ft)		0,62	
PID Measuren						ater in Well (L)		14.51	
Background			ND D			olumes to Purge		NA	
Breathing Z Well Head	Lone		N Ď N Ď			num to Purge (L) Actual Purge (L)		30 F 30 F	
Purge Wate	r		NO	<u></u>	_	netuai i uige (L)	·	<u> </u>	
	SUREMENTS							<u>.</u>	
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1505	2,5	6.83	11.98	0.695	0.18	53.3	43.56	14.29	0,5
1510	5.0	6.82	19.01	0.710	0.13	43.6	9.08	14,29	
1515	7.5	6.82	12.15	0.710	0.10	39.9	2.72	14.29	
1520	10.0	6.82	12.00	0.710	0.09	38.7 37.8	0.25	14.29	
1530	15.0	6.82	13.25	0.707	0.09	71,9	0.00	14,29	
1535	17.5	6.82	12,27	0.706	P 0.0	55.3		14,29	
1540	20.0	6.82	12.18	0.703	P 0.0	48.7	0.86	14.29	Ψ
					-				<u> </u>
		50							
FIELD EQUI	PMENT AND		N						
Water Level Pr		Model Heron			Charled Assi	nst Calibrated L	a a.d.la		
Water Quality		Aqua TROLL 5	500 w/ flow thi	ough cell		Calibration Verif		librated Weekly	
	-								
GENERAL C		/T						:	
Ferrous Iron = Multi-Paramete	er Probe Unit #	1g/L 637698	,						
	ers Measured in								
Pump Placeme	ent Depth = 33	ft							
Pump Rate =		min					•	gh/Q4/Avg in E	
Well Diameter Screen Interval					DO DO	-16.4	160.8	148.6	62.5
SCICCII IIRCIVAI	1 – 43-33				PH	6.48	6.70	0.20 6.54	6.60
					Cond.	0.557	0.884	0.840	0.702
									

GENERAL INFORMATION

	WOMATIC		»						
SITE NAME	-	CF	IAAP		PROJECT NO	·	60:	565355	
SAMPLE NO		G0	081-5		_ WELL NO			G0081	
DATE/TIME	COLLECTED	3-2-	21/ 1	410	PERSONNEI	. P	E, J	В	
SAMPLE ME	THOD	PRO-A	ACTIVE SS MO	ONSOON	_				
SAMPLE ME	DIA:	Groundwate	r						
SAMPLE QA	SPLIT:	YES	NO	SPLIT	Γ SAMPLE NO		NA		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO		(N	4	
MS/MSD REC	QUESTED	YES	NO	MS/MSI	SAMPLE NO		VN	4	· ·
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALY	SIS					
Sample Contain			<u>Preservative</u>		Analysis Requ				
2 - 500 mL Ar			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSI		O (NO. (252.0	<u> </u>	
1 - 500 mL HI 1 - 250 mL HI			6°C, H ₂ S0 ₄			NH ₃ (350.1), N Alkalinity (232		2)	_
1 - 250 mL HI			6°C, ZnOAc/I	NoOH	Sulfide (9034)		:ОБ)		
1 - 250 mL An			6°C	NaOn	DOC (9060A)				
WELL PURG					200 (7000A)				
			. 71		Well D	Depth (ft BTOC))	41.30	
Date		-	2-21			Vater (ft BTOC)		15.94	
Time Started		13:	30		Water	Column Length	1	25.40	9
Time Complet	ed	141	0			Volume (per ft)		0.62	_
PID Measurem		•	· 🔿			ater in Well (L)		15,78	
Background			ND			olumes to Purge		NA	
Breathing Z	one		1 NO		-	um to Purge (L)		20	
Well Head			NO		_ A	Actual Purge (L)		20	
Purge Water	•		ND		-				
FIELD MEAS	SUREMENTS					**			,
Time	Amount	pН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Wate	r Purge Rate
	Purged (L)	•	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV)	(NTU)	(ft BTOC)	(L/min)
1335	2.5	4.21	13,9	0.859	0,17	10.3	6.9	15.84	.500
1340	5.0	6,27	14.38	0.856	0.13	0.3	4.5	15.84	.500
1345	7.5	6.34	14,62	0,863	0.10	ーチ・マ	4.3	15,84	.500
1350	112	6.40	14,67	6,872	0,09	-13.3	4,1	15.84	.500
1355	12.5	6,45	14,78	0,875	0.07	-17,5	4,2	15.84	.500
1400	15	6.48	14.90	0.873	0.06	-2017	3.9	15.84	500
1405	17.5	6,50	15.03	0.884	0.65	-23.1	3.6	15.84	500
1410	20	6,51	15.11	0.891	0105	-25.1	3.5	15.85	500
				<i>U</i>				. ,	
				M					
				IIN					
FIELD EQUI	PMENT AND		ON						
W. T. ID.		<u>Model</u>			Calibration				
Water Level Pr		Heron	500/ fl 4b-	t11		nst Calibrated I		11 1337 11	
Water Quality	Meier	Aqua TROLL	500 w/ flow thr	ougn cen	Twice Daily C	andration vent	ication also Ca	librated Weekly	
GENERAL C	OMMENTS								
Ferrous Iron =		ng/L							
Multi-Paramete			78						
Field Paramete									
Pump Placemen	nt Depth = 3	6 ft							
Pump Rate =	<u></u>	1/min		· · · · · · · · · · · · · · · · · · ·	<u>Histo</u>	ric (7-year aver	age low and hi	gh / Q4 / Avg in	Bold)
Well Diameter					ORP	14.9	174.2	32.7	85.3
Screen Interval	= 28-38				DO	0.07	1.63	0.07	0.55
					PH	6.00	6.46	6.31	6.25
					Cand	0.550	1.000	0.550	0.770

Cond.

0.550

1.020

0.550

0.770

SITE NAME		СН	IAAP		PROJECT NO)	605	565355	
SAMPLE NO.	•	G0	082-5		WELL NO).	G	0082	
DATE/TIME (COLLECTED	3-2-	-21/1.	245	– PERSONNEI	Re	E . J	B	
SAMPLE ME			CTIVE SS MC	NSOON	_ 121150111121		-		
SAMPLE ME	DIA.	Groundwater	•		_				
SAMPLE QA		YES	NO	SPLIT	Γ SAMPLE NO	. <i>N</i>	A		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO	· 1	NA		
MS/MSD REC	QUESTED	YES	NO	MS/MSI	SAMPLE NO	. 4	NA		
CAMPLE CO	NITA INTERE	DECENYA TY	NIEC ANIAL N	oro					
Sample Contai		PRESERVATI	Preservative	919	Analysis Requ	nested			
2 - 500 mL An			6°C			MNX (8330A)			
3 - 40 mL VO	A		6°C, HCl		Methane (RS)		•		
1 - 500 mL HI	OPE		6°C, H ₂ S0 ₄		TKN (351.2),	NH ₃ (350.1), N	O ₂ /NO ₃ (353.2	2)	
1 - 250 mL HI			6°C			Alkalinity (232	0B)		
1 - 250 mL HI	•		6°C, ZnOAc/N	laOH	Sulfide (9034				
1 - 250 mL An			6°C		DOC (9060A))			: · · · · · · · · · · · · · · · · · · ·
WELL PURG	SING DATA				Wall	South (ft DTOC)		41.01	
Date		2	-2-2	_ {		Depth (ft BTOC) Water (ft BTOC)		41.01	
Time Started			1205			Column Length		25.87	
Time Complete	ed		1245		_	Volume (per ft)		0.62	· · · · · ·
PID Measurem						ater in Well (L)		0.04	
Background	<u> </u>		$\mathcal{N}\mathcal{D}$			olumes to Purge		NA	
Breathing Z	one) N	1		um to Purge (L)		20	
Well Head			Ni	S		Actual Purge (L)		20	
Purge Water	r		NT	<u> </u>	_				
FIELD MEAS	STIDEMENTS								
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate (L/min)
1210	2.5	6.67	13,01	0.814	0.21	17.9	24.6	15.14	500
1215	5.0	6,65	14.23	0.782	0.19	2,5	20.5	15.14	500
1220	7.5	6,65	14.26	0,809	0,22	-5.1	18,7	15,14	,501)
1225	10	6.64	14,44	0,795	0,22	-9.5	24.5	15-14	1500
1230	12.5	6,64	14 59	0,797	0,20	-12.8	18.4	15,14	500
1235	15	6.63	14.71	0.795	0,17	-15.4	18.0	15.14	500
1240	17.5	6.63	14.73	0,788	0.14	-14.2	17.7	15,14	500
1245	20	6,62	14.83	0,790	0,13	-21.0	17.4	15.14	1500
			.,,,,,		V11/			1-1-7-1	7
			Th						
			011				<u> </u>		
		~							
FIELD EQUI	PMENT AND		DN		a				
XX7-4XI D.:	t_	<u>Model</u>			Calibration				
Water Level Pr		Heron	500 vv/ flore the			nst Calibrated L Calibration Verif		111	
Water Quality	Wieler	Aqua TROLL	300 W/ HOW HIT	ough cen	Twice Daily C	andration vern	ication also Ca	inbrated weekly	<u></u>
GENERAL C	OMMENTS								
Ferrous Iron =	0.20 r	ng/L							
Multi-Paramete			8						
Field Parameter	rs Measured in	Flow-Through	Cell						
Pump Placemen	nt Depth = 3	6 ft	_						
Pump Rate =	, , , ,	1 /mi	'n			oric (7-year aver		gh / Q4 / Avg in	Bold)
Well Diameter					ORP	-12.0	164.0	104.1	71.0
Screen Interval	= 28-38				DO	0.06	1.40	0.23	0.47
					PH	6.21	6.50	6.45	6.35
					Cond.	0.488	0.858	0.820	0.707

GENERAL INFORMATION

SITE NAME		CH	IAAP		PROJECT NO)	605	65355	
SAMPLE NO.		G0	086-5		WELL NO)	G	0086	
DATE/TIME O	COLLECTED	3-2	-21/	1540	PERSONNEI	BE	JB		
SAMPLE MET			CTIVE SS MC		_ I EKSONNEI				
SAMPLE MEI	DIA.	Groundwater			_		-		
SAMPLE OA		YES	NO	SPLIT	SAMPLE NO) <u>.</u>	NON 1	VA	
SAMPLE QC I		YES	NO	DUPLICATI	SAMPLE NO	·	1	NA	
MS/MSD REQ	QUESTED	YES	NO	MS/MSI	SAMPLE NO		1 1	NA	
SAMPLE CO	NTAINERS, E	PRESERVATI	VES. ANALYS	SIS					
Sample Contain	-	ALLOWAY TALL	<u>Preservative</u>	J1 5	Analysis Requ	uested			
2 - 500 mL Am	nber		6°C		Explosives + 1	MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSI				
1 - 500 mL HD			6°C, H ₂ S0 ₄			NH ₃ (350.1), NO)	
1 - 250 mL HD			6°C			Alkalinity (2320	OB)		
1 - 250 mL HD			6°C, ZnOAc/N	NaOH	Sulfide (9034)				
1 - 250 mL Am			6°C		DOC (9060A))			
WELL PURG	ING DATA				Wall D	South (ft DTOC)		40.20	
Date		3_	2-21			Depth (ft BTOC)		40.30	
Time Started			Z - Z C			Vater (ft BTOC) Column Length		13:02	
Time Started Time Complete	ad		640		-	Volume (per ft)		0.62	
PID Measurem			790		_	ater in Well (L)		16,9	
Background		Λ	ソ门			olumes to Purge		NA	
Breathing Zo			(2/1)			um to Purge (L)		0	
Well Head) NO		_	Actual Purge (L)		28	
Purge Water			WIN		-			2 0	
FIELD MEAS Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox .) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1505	2.5	6.71	14.26	0,855	0,15	65.2	16.9	13.02	500
1510	5.0	6.75	14.56	0.849	12.09	66.6	5.6	13.62	1500
1515	7.5	6,81	14.58	0,849	12.06	67.2	9,1	13.02	500
1520	10	6-85	14.54	0.812	13.154	68.0	17,9	13.02	500
1525	12,5	6,84	14.60	0,831	0.03	68,2	2,16	13.02	500
1530	15	6,90	14.61	0.816	0.05	68.9	0,21	13.02	,500
15 35	17,5	6.91	14.58	0.821	0.06	69.5	0.09	13.02	,500
1540	20	6.92	14.54		0,06	Mg 70,7	0.(1	13.02	500
19 40			17.5-(01700	0,00	(3 10/ 1	\mathcal{O}_{i}	17.00	1900
			An						
			M	1					
Water Level Pro Water Quality M	obe	Model Heron	ON 500 w/ flow thr	ough cell		nst Calibrated La		librated Weekly	
CENEDAL	ON AN ATTINITY		· · · · · · · · · · · · · · · · · · ·		33=4		<u>.</u>		
GENERAL CO Ferrous Iron = 4		ng/L							
Multi-Paramete		63759	8						
Field Parameter									-· · · · · · · · · · · · · · · · · · ·
Pump Placemen		ft							
Pump Rate =	500 m	1/min			Histo	ric (7-year avera	ge low and his	th/Q4/Avg in	Bold)
Well Diameter	/ - // 1			E 2 1	ORP	12.2	193.8	193.8	105.1
Screen Interval					DO	0.05	1.14	0.05	0.48
			, <u> </u>		PH	6.43	7.03	6.91	6.78
					Cond	0.585	0.023	0.880	0.751

Cond.

0.585

0.923

0.880

0.751

SITE NAME		CH	IAAP	<u> </u>	PROJECT NO	•	605	565355	
SAMPLE NO.		G0	087-5		WELL NO		G	0087	
DATE/TIME (SAMPLE ME		3-2- PRO-A	21/1 ACTIVE SS MO	655 NSOON	_ PERSONNEL	RE	, J [3	
SAMPLE MEI	DIA:	Groundwater	•		_			_	
SAMPLE QA		YES	NO	SPLIT	Γ SAMPLE NO		VA		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO		1 NA		
MS/MSD REQ	QUESTED	YES	NO	MS/MSE	SAMPLE NO		VNA		
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALYS	SIS				- u	
Sample Contai	ner		Preservative		Analysis Requ	<u>iested</u>			
2 - 500 mL An			6°C			MNX (8330A)			
3 - 40 mL VO		-	6°C, HCl		Methane (RSI) ANO (252.0		
1 - 500 mL HD			6°C, H ₂ SO ₄			NH ₃ (350.1), NO Alkalinity (2320)	
1 - 250 mL HD			6°C, ZnOAc/N	IaOH	Sulfide (9034)		-		
1 - 250 mL Am			6°C		DOC (9060A)				_
WELL PURG	ING DATA								====================================
_		2 /	2-2	1		epth (ft BTOC)		37.56	
Date						Vater (ft BTOC)		13,37	
Time Started Time Complete	ad		615 655			Column Length Volume (per ft)		24.19	
PID Measurem			655			ater in Well (L)		14,99	
Background			111) .			olumes to Purge		NA	-
Breathing Zo			N	<u> </u>	_	um to Purge (L)		20	
Well Head			NN		-	Actual Purge (L)		20	
Purge Water	•		V NO)	_				
FIELD MEAS	TIDEMENTS								
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate (L/min)
1620	2,5	6.68	15.18	0.714	0.21	126.9	6.9	13.4	500
1625	5	6.76	15,49	0.712	0.14	109,5	5.4	13.4	.500
11.30	7.5	6.76	15.26	0.749	0.10	107.4	3.82	13.4	500
16 35	10	6.77	15,22	0.747	0,08	104.7	3,61	13.4	.500
1640	12.5	6,79	15,18	0.741	007	101.9	3,55	13.4	.500
16 45	15	6,81	15,15	0.729	0.06	99 5	3.41	13.4	500
16 50	17.5	6.82	15,04	0.728	0.05	98.1	3.3	13.4	.500
16 55	20	6.82	14,95	0.731	0.05	100.1	3,12	13.4	,500
			M						
			in						
FIELD EQUI	PMENT AND	CALIRDATIO)N						
FIELD EQUI	FIVILENT AND	Model).N		Calibration				
Water Level Pro	obe	Heron				nst Calibrated Le	ength		
Water Quality I	Meter	Aqua TROLL	500 w/ flow thre	ough cell		alibration Verifi		librated Weekly	
GENERAL CO	OMMENTS					**			
Ferrous Iron =		ng/L							
Multi-Paramete			98						
Field Parameter									
Pump Placemer									
Pump Rate =	500 n	1 7	1		<u>Histo</u>	ric (7-year avera	ge low and his	gh / Q4 / Avg in	Bold)
Well Diameter	= 2"	• •			ORP	14.3	164.9	115.9	95.7
Screen Interval	= 25-35				DO	0.08	0.87	0.09	0.41
					PH	6.44	7.03	6.79	6.72
					Cond.	0.551	0.851	0.710	0.692

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO		G00	091-5		_ WELL NO.		G	0091	
DATE/TIME	COLLECTED	3-2-	210	1525	PERSONNEL	(-	, (
SAMPLE ME			CTIVE SS MO		_ TENDOTTINEE	<u> </u>	0		
SAMPLE ME	DIA:	Groundwater			_				
SAMPLE QA		YES	NO	SPLI	Γ SAMPLE NO.		ΝΔ		
SAMPLE QC	DUPLICATE:	YES	NO		E SAMPLE NO.		V A		
MS/MSD REC	QUESTED	YES	NO	MS/MSI	SAMPLE NO.		V A		
SAMPLE CO	NTAINERS, P	RESERVATI	VES ANALVS	SIS		·			
Sample Contain		100000	<u>Preservative</u>		Analysis Requ	<u>ested</u>			
2 - 500 mL Ar			6°C		Explosives + N				
3 - 40 mL VO. 1 - 500 mL HI			6°C, HCl		Methane (RSK		O (NIO (252.0)		
1 - 300 mL HI			6°C, H ₂ SO ₄			NH_3 (350.1), NH_3 (232)		<u> </u>	
1 - 250 mL HI			6°C, ZnOAc/N	aOH	Sulfide (9034)				
1 - 250 mL An			6°C		DOC (9060A)				
WELL PURG	ING DATA	_							
Date		3.	-2-21			epth (ft BTOC) ater (ft BTOC)		31.85	
Time Started			1445			Column Length		18.05	
Time Complete	ed		1525			Volume (per ft)		0,62	L
PID Measurem			MA			ter in Well (L)		11,19	
Background Breathing Z		<u></u>	/V I)			lumes to Purge im to Purge (L)		NA.	
Well Head	one		ND		_	ctual Purge (L)		30	
Purge Water	:		ND		_			&_	
FIELD MEAS	TIDEMENTS								<u>,</u>
Time 1450 1455	Amount Purged (L)	рН 6,78	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L) 5.44 5.47	Redox (mV)	Turbidity (NTU) 31.94	Depth to Water (ft BTOC)	Purge Rate (L/min)
1506	7.5	6,81	13,32	1.163	5.49	168.5	12.54	13.80	
1505	10.0	6.84	13.53	1.173	5.53 5.52	169.0 170.4	30.76	13.80	
1515	150	6 89	3.65	1.169	5.55	170.2	1.83	13.80	
1520	17.5	6.42	13.68	1.172	5.51	170.0	2.22	13.80	
1525	20.0	6.43	13.83	1.170	5, 53	170.1	2.26	13.80	V
) 					
		•							
Water Level Prowater Quality	obe	<u>Model</u> Heron	N 500 w/ flow thro	nugh cell	Calibration Checked Again Twice Daily Ca			Charted Wealth	
	-	quu IROLL.	, co m now unc		I wice Daily Ca		vation also Cal	ioiaicu weekiy	
GENERAL C									
Ferrous Iron = Multi-Paramete		_{1g/L} 653 94	6						
Field Parameter									
Pump Placemen		ft							
Pump Rate =	0.5 L	Min						h / Q4 / Avg in E	
Well Diameter Screen Interval					ORP	27.4	196.8	196.8	121.3
scieen interval	= 2U-3U				DO PH	6.65	6.99 7.29	6.99	6.92
					Cond.	0.973	1.362	1.140	1.207

SITE NAME		СН	AAP		PROJECT NO.		6056	55355	
SAMPLE NO.	·	G0	092-5		_ WELL NO.		G0	092	
DATE/TIME (SAMPLE ME		3-2-21 PRO-A	CTIVE SS MO		_ PERSONNEL -	<u> </u>	<i>C</i>	<u></u>	
SAMPLE MEI	DIA:	Groundwater	•						
SAMPLE QA	SPLIT:	YES	NO	SPLIT	Γ SAMPLE NO.		NA		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO.		NA		
MS/MSD REQ	QUESTED	YES	NO	MS/MSE	SAMPLE NO.		NA		
SAMPLE CO	NTAINERS, P	RESERVATI	VES ANALYS	NIS 213					
Sample Contai		NESER (AII	Preservative	71 .5	Analysis Requ	ested			
2 - 500 mL An			6°C		Explosives + N				
3 - 40 mL VO			6°C, HCl	·	Methane (RSK				
1 - 500 mL HD			6°C, H ₂ SO ₄			NH ₃ (350.1), NO			
1 - 250 mL HE			6°C			Alkalinity (232	OB)		
1 - 250 mL HD 1 - 250 mL An		* ***	6°C, ZnOAc/N	laOH	Sulfide (9034) DOC (9060A)				
WELL PURG					DOC (3000/1)				
WZZZ I CIRC		-		•	Well De	epth (ft BTOC)		52.78	
Date			} - 			ater (ft BTOC)		13.95	
Time Started			1555			Column Length		38,83	
Time Complete			1635			Volume (per ft)		0.62 L	
PID Measurem			8/ N			ter in Well (L)		24,07	
Background Breathing Zo			/V D			lumes to Purge im to Purge (L)		- N A	
Well Head	one		- /V / /			ctual Purge (L)		20	
Purge Water	•		ΝĎ		-				
-					-				-
FIELD MEAS	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1600	2.5	7.11	13.53	1.325	0.13	7/1	41.59	13.95	0.5
1605	5.0	7,22	13,61	1,317	0.10	64.5	50,33	13,45	1
1610	7.5	7.24	13.41	1.312	0.08	59.3	8.89	13.46	
1615	10.6	7, 25	13.29	1.310	0.06	54.2	83.5	13, 96	
1620	12.5	7. 26	13.19	1.307	0.05	51.0	0.06	13.45	
1625	15.0	<u>7, à 6</u>	13.16	1.304	0.04	48.6	11, 11	13.96	
1630	17.5	7.27	13,20	1.300	0.04	46.0	0.05	13:96	
1635	20.0	1,28	12,04	1.297	0.04	43.8	0.06	13.96	
							0.10 70		
<u></u>			T /7						
			<u> </u>						
FIELD EQUII	PMENT AND	CALIBRATIO	N						
		<u>Model</u>			Calibration				
Water Level Pro		Heron			Checked Again				
Water Quality I	Meter	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily Ca	alibration Verifi	cation also Cal	ibrated Weekly	
GENERAL CO	OMMENTS								
Ferrous Iron =	0.10 n	ıg/L							
Multi-Paramete		65399							
Field Parameter			Cell						
Pump Placemen			<u> </u>		TT!	ia (7	on low or 4 by	L/04/A	Dold\
Pump Rate = Well Diameter:	0.5 L/ - 2"	MIN			ORP Histor	ic (7-year avera	ige low and hig	<u>h / Q4 / Avg in E</u> 56.4	83.3
Screen Interval					DO	0.11	0.74	0.11	0.37
		<u></u>			PH	7.06	7.54	7.36	7.26
					Cond	0.040	1 200	1.200	1 175

SITE NAME		CI	HAAP		_PROJECT NO)	6056	65355	
SAMPLE NO	·		017R-5		WELL NO			017R	
DATE/TIME	COLLECTED	3-3	-21/1	1115	DEDCOMME	r	AE,	TB	
SAMPLE ME			ACTIVE SS MO		_ PERSONNE	L	116-1	0 12	
			TCTTVE 55 MC	DINSOOIN	_				
SAMPLE ME		Groundwate		-			N	<u>a</u>	
SAMPLE QA		YES	NO		T SAMPLE NO				0 -
_	DUPLICATE		NO		E SAMPLE NO			021-5 <i>O</i>	800
MS/MSD RE	QUESTED	YES	NO	MS/MS	D SAMPLE NO)		/+	
SAMPLE CO	ONTAINERS,	PRESERVATI	IVES, ANALY	SIS		· · · · · · · · · · · · · · · · · · ·			
Sample Conta			Preservative		Analysis Req				
2 - 500 mL Ar			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RS				
- 500 mL HI			6°C, H ₂ SO ₄				O ₂ /NO ₃ (353.2)		
l - 250 mL HI			6°C			Alkalinity (232	ZUB)		
1 - 250 mL HI 1 - 250 mL Ar			6°C, ZnOAc/N	NaOH	Sulfide (9034	,			
	ING DATA		6°C		DOC (9060A)			
TELL PURC	JING DATA			,	Well D	epth (ft. BTOC)	32.42	
Date		3	-3-2	1		Vater (ft. BTOC)		11,95	
Time Started		Park 6		035		Column Length		20,47	
ime Complet	ed		1115		_	Volume (per ft		2,62	
ID Measuren	nents					ater in Well (L		2.69	
Background	1		ND			olumes to Purge		VA	_
Breathing Z	Cone		1 N	/		um to Purge (L)		. 0	
Well Head									
Well Head			ונת	Ń		Actual Purge (L)) 2	.0	
Purge Water	r		V NO		_ _	Actual Purge (L))2	.0	
Purge Water	SUREMENTS Amount	S pH		<u> </u>		Actual Purge (L) Redox			er Purge Ra
TELD MEASTIME Time Number O \$50	Amount Purged (L) 2.5	6,40 6,40	Temperature (Celsius) 12.43 12.61	Conductivity (mS/cm) 0.897	Dissolved Oxygen (mg/I	Redox (mV)	Turbidity (NTU)	Depth to Wat (ft BTOC) /(.95	(L/min)
Purge Water FIELD MEAS Time	SUREMENT: Amount Purged (L)	6,40 6,40 6,40	Temperature (Celsius) 12.43 12.61 12.60	Conductivity (mS/cm) 0.897 6.932 0.918	Dissolved Oxygen (mg/I	Redox (mV) 56.2 -13.5 -16.0	Turbidity (NTU) 0.08 0.07 0.17	Depth to Wat (ft BTOC) //.95 //.95	(L/min)
Purge Water Time August ONUS ONU	Amount Purged (L) 2 · 5 5 · 0 7 · 5	6,40 6,40 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0.897 6.932 0.918 0.893	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03	Redox (mV) 56.2 -13.5 -16.0 -11.5	Turbidity (NTU) 0.08 0.02 0.(2 2.8	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95	(L/min)
Purge Water TELD MEAS Time Number O \$50	Amount Purged (L) 2.5	6,40 6,40 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.60	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 6.02	Redox (mV) 56.2 -13.5 -16.0 -11.5	Turbidity (NTU) 0.08 0.07 0.17	Depth to Wat (ft BTOC) //.95 //.95	(L/min)
Purge Water FIELD MEAS Time Number 0 \$450 0 \$450 0 \$55	Amount Purged (L) 2.5 5.0 7.5 10 12.5	6,40 6,40 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,936	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03	Redox (mV) 56.2 -13.5 -16.0 -11.5	Turbidity (NTU) 0.08 0.02 0.(2 2.8	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95	(L/min) 4500 500 500 500
Purge Water TIELD MEAS Time Number 0845 0845 0845	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6,40 6,40 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Nu y and O \$45 O \$45 O \$55	Amount Purged (L) 2.5 5.0 7.5 10 12.5	6,40 6,40 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,936	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TIELD MEAS Time Number 0845 0845 0845	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6,40 6,40 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Number ORYS ORYS ORYS ORS IIOO	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6,40 6,40 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TIELD MEAS Time Number 0845 0845 0845	SUREMENTS Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5	6,40 6,40 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.80 (2.87	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Number 0.845 0.845 0.855 1100 1105 1115	SUREMENT: Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 12.5 20	6,40 6,40 6,39 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.09 13.13 13.05 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Number	SUREMENT: Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 12.5 20	6,40 6,40 6,39 6,39 6,39 6,39 6,38	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.09 13.13 13.05 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 6.02 0.01 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TIME 1	SUREMENT: Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,38	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.09 13.13 13.05 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I 0.11 0.06 0.04 0.03 0.02 0.01 0.01 0.01	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.9 0.8 2.4 2.2 146-782.3	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Purge Water Pur	SUREMENT: Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT ANI Tobe	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,38	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.07 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Purge Water Pur	SUREMENT: Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT ANI Tobe	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,38	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.09 13.13 13.05 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.9 0.8 2.4 2.2 146-782.3	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time August O \$45 O \$45 O \$55 I I O O I I I I I IELD EQUI Vater Level Provider Quality ENERAL C	Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 12.5 20 PMENT ANI Tobe Meter OMMENTS	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,38	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.07 13.31	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Purge Water Time Purge Water Purge	Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT ANI Tobe Meter OMMENTS 1,25	6,90 6,90 6,39 6,39 6,39 6,39 6,39 6,39 Heron Aqua TROLL	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Purge Water Time Purge Water Purge	Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 12.5 20 PMENT ANI Tobe Meter OMMENTS	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,39 Heron Aqua TROLL	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Purge Water P	Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT ANI Tobe Meter OMMENTS 1,25 er Probe Unit is rs Measured in	pH 6, 40 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Purge Water P	Amount Purged (L) 2.5 5.0 7.5 10 12.5 15 17.5 20 PMENT ANI Tobe Meter OMMENTS 1,25 er Probe Unit	pH 6, 40 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O.// O.OG O.OG O.OG O.OI O.OI O.OI O.OI O.OI	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95	(L/min) 1500 1500 1500 1500 1500 1500
Purge Water Time Purge Water Time Purge Water Purge	PMENT ANI OMMENTS 1, 2, 5 Probe Unit is seasured in the Depth = 2, 5, 00	pH 6, 40 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39 6, 39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O. // O. O6 D. O6 D. O7 O. O 1 O. O 1 O. O 2 Calibration Checked Agai Twice Daily O	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.07 0.(2 2.8 0.8 2.4 2.2 1.4 2.2 1.4 2.2	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95 il.95	(L/min) 1500 1500 1500 1500 1500
Purge Water TELD MEAS Time Pist And Pist A	PMENT ANI OMMENTS 1, 2, 5 Probe Unit is seasured in the Depth = 2, 5, 00	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O. // O. O6 D. O6 D. O7 O. O 1 O. O 1 O. O 2 Calibration Checked Agai Twice Daily O	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8	Turbidity (NTU) 0.08 0.02 0.(2 2.8 0.8 2.4 0.8 2.4 0.8 2.2 A46-82.3	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95 il.95	(L/min) 1500 1500 1500 1500 1500
Purge Water Time Purge Water Time Purge Water Purge	PMENT ANI Obe Meter OMMENTS 1, 2, 5 Probe Unit is seasured in the Depth = 2, 5, 00 2, 5, 00 12, 5 12, 5 12, 5 12, 5 12, 5 12, 5 13, 5 14, 5 14, 5 14, 5 15, 15 17, 5 18, 10	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O. // O. O6 D. O6 D. O7 O. O1 O. O1 O. O1 Calibration Checked Agai Twice Daily C	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8 nst Calibrated I Calibration Verification Verif	Turbidity (NTU) O.O8 O.O2 O.(2 2.8 O.8 2.4 S.2.2 A.4 A.5 Ength ication also Cali	Depth to Wat (ft BTOC) 1(.95 11.95 11.95 11.95 11.95 11.95 il.95	(L/min) .500 .500 .500 .500 .500 .500
Purge Water TIME Time Purge Water Purge	PMENT ANI Obe Meter OMMENTS 1, 2, 5 Probe Unit is seasured in the Depth = 2, 5, 00 2, 5, 00 12, 5 12, 5 12, 5 12, 5 12, 5 12, 5 13, 5 14, 5 14, 5 14, 5 14, 5 15, 15 17, 5 18, 10	6,40 6,40 6,39 6,39 6,39 6,39 6,39 6,39 6,39 6,39	Temperature (Celsius) 12.43 12.61 12.60 (2.87 (3.69 13.13 13.08 13.93 13.08	Conductivity (mS/cm) 0,897 6,932 0,918 0,893 0,932 0,906 0,896	Dissolved Oxygen (mg/I O. // O. O6 D. O6 D. O7 O. O7 O. O7 Calibration Checked Agai Twice Daily C	Redox (mV) 56.2 -13.5 -16.0 -11.5 -5.4 -1.2 43.1 6.8 nst Calibrated I Calibration Verification Verif	Turbidity (NTU) O.O8 O.O2 O.(2 2,8 O.8 2.4 S.2.2 A.4 A.5 Ength ication also Calif	Depth to Wat (ft BTOC) 11.95 11.95 11.95 11.95 11.95 11.95 ibrated Weekl	(L/min) 1500 1500 1500 1500 1500 1500 1500 15

GENERAL INFORMATION

SITE NAME		C	НААР		PROJECT NO)	605	565355	
SAMPLE NO)	PZ	2018-5		WELL NO).	P	Z018	
DATE/TIME	COLLECTED	3-3-2	1/9	55	PER SONNE	Po	= J	B	
SAMPLE ME			ACTIVE SS MO	`	_ PERSONNEL		- , 0		
SAMPLE ME	EDIA.	Groundwate	, yr						
SAMPLE QA		YES	NO	SPLI	Γ SAMPLE NO	. <i>N</i>	A		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATI	E SAMPLE NO		NA		
MS/MSD RE	QUESTED	YES	NO	MS/MSI	SAMPLE NO		NA		
SAMPLE CO	ONTAINERS, I	PRESERVAT	IVES, ANALY	SIS			-		
Sample Conta	<u>uiner</u>		<u>Preservative</u>		Analysis Requ	<u>iested</u>			
2 - 500 mL Aı			6°C			MNX (8330A)			
3 - 40 mL VO 1 - 500 mL HI			6°C, HCl	. <u>-</u>	Methane (RSI) NIO (252.0		
1 - 300 mL HI			6°C, H ₂ S0 ₄ 6°C			NH ₃ (350.1), NO Alkalinity (2320)	
1 - 250 mL HI			6°C, ZnOAc/I	NaOH	Sulfide (9034)				_
1 - 250 mL Ar			6°C	14011	DOC (9060A)				
WELL PURC	GING DATA								
		_	0 0:			epth (ft. BTOC)		31.90	
Date		3	-3-21			ater (ft. BTOC)		13,39	r
Time Started	. •		905			Column Length		18.51	
Time Complete PID Measuren			455			Volume (per ft) ater in Well (L)		0.62	
Background			ND			olumes to Purge		11.47 NA	
Breathing Z			NV	<u> </u>		um to Purge (L)		20	
Well Head	30110		NO			Actual Purge (L)		25	
Purge Water	er	·	NI		_				
	Crippil Filling								
Time	SUREMENTS		T	Cara de adicide	Discolard	n. 1.	T 1:11	D 4 . 177 .	D D
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	er Purge Rate (L/min)
	Turged (L)		(Ccisius)	(mo/em)	Oxygen (mg/L	, (111 v)	(1110)	(ILDTOC)	(1211111)
910	2.5	6.12	11.58	0.548	4.44	187.1	1.2	13.39	500
915	5.0	6,19	11,93	0,569	3.35	144.5	0,03	13.39	,500
920	7.5	6,22	12.12	0.640	1.95	39,2	0.05	13.39	.500
925	10	6.24	12.20	0.676	1.42	12.0	1,7	13,39	,500
930	12.5	6.25	12.34	0,693	1,05	3.3	19.8	13.35	.500
935	15	6,26	12,43	6.702	8,84		94153,4	813.39	500
940	17.5	6.27	12,49	0.720	0.64	-4.4	3,46	13.39	,500
945	20	6.28		5,719	0,50	-6.9	3,41	13,39	,500
950	22.5	6,28	12.58	0,722	0.42	-8.5	3.40	13.39	,500
955	25	6.28	12,60	0.713	0.36	-9.9	3.36	13.39	.500
			iAm						
			- M	7			· <u>-</u>	-	
EIELD EOLI	PMENT AND	CALIBRATIO	ON			!			
TIEED EQUI		Model	51 1		Calibration				
Water Level Pr						nst Calibrated Le	noth		
11 acor 10 YOL F1	robe	Heron			Checkeu Again	usi Cambraicu Le			
Water Quality			500 w/ flow thr	ough cell		alibration Verific		librated Weekly	,
Water Quality	Meter		500 w/ flow thi	ough cell				librated Weekly	<i>'</i>
Water Quality GENERAL C	Meter COMMENTS	Aqua TROLL	500 w/ flow thi	ough cell				librated Weekly	,
Water Quality GENERAL C Ferrous Iron =	Meter COMMENTS 2.62 r	Aqua TROLL		ough cell				librated Weekly	
GENERAL C Ferrous Iron = Multi-Paramete	Meter COMMENTS 2,62 r er Probe Unit #	Aqua TROLL ng/L 63759	E	ough cell				librated Weekly	
GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	Meter COMMENTS 2.62 rer Probe Unit # ers Measured in	Aqua TROLL ng/L 63.759 Flow-Through	E	ough cell				librated Weekly	,
GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Pump Placeme	Meter COMMENTS 2.62 r er Probe Unit # ers Measured in ent Depth = 2	ng/L ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL	E Cell	ough cell	Twice Daily C	alibration Verific	cation also Ca		
GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	COMMENTS 2.62 r er Probe Unit # ers Measured in ent Depth = 2	Aqua TROLL ng/L 63.759 Flow-Through	E Cell	ough cell	Twice Daily C		cation also Ca		Bold)
GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Pump Placeme Pump Rate =	COMMENTS 2.62 r ere Probe Unit # ers Measured in ent Depth = 2. 600 n = 2"	ng/L ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL	E Cell	ough cell	Twice Daily C	alibration Verific	cation also Ca	gh / Q4 / Avg ir	
Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Pump Placeme Pump Rate = Well Diameter	COMMENTS 2.62 r ere Probe Unit # ers Measured in ent Depth = 2. 600 n = 2"	ng/L ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL ### Aqua TROLL	E Cell	ough cell	Twice Daily C	alibration Verific ric (7-year avera 94.4	cation also Ca	gh / Q4 / Avg ir 136.6	Bold) 148.9

Cond.

0.520

0.822

0.550

0.636

GENERAL INFORMATION

	СНААР		PROJECT NO)	60:	565355	
SAMPLE NO.	PZ019-5		WELL NO).	P	Z019	
DATE/TIME COLLECTED SAMPLE METHOD	3-3-2() PRO-ACTIVE SS MO		_ _PERSONNEI	L AE	, J B		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE:	Groundwater YES NO YES NO	SPLI	- Γ SAMPLE NO E SAMPLE NO		s N4		
MS/MSD REQUESTED	YES NO	-4	SAMPLE NO		NA		
SAMPLE CONTAINERS, I	PRESERVATIVES, ANALYS Preservative	SIS	Analysis Req	nested			
2 - 500 mL Amber	6°C			MNX (8330A)			
3 - 40 mL VOA	6°C, HCl		Methane (RS)	K 175)			
1 - 500 mL HDPE	6°C, H ₂ S0 ₄			NH ₃ (350.1), NO		2)	
1 - 250 mL HDPE	6°C			Alkalinity (2320)B)		
1 - 250 mL HDPE	6°C, ZnOAc/N	VaOH	Sulfide (9034				
1 - 250 mL Amber	6°C		DOC (9060A)			
WELL PURGING DATA	3-3-21			epth (ft. BTOC)		32.23	
Date	2-5-21			Vater (ft. BTOC)		17.52	
Time Started	<u>+53'</u>			Column Length		14.71	
Time Completed	8 3 5		_	Volume (per ft)		2.62	
PID Measurements	α			ater in Well (L)		,12	
Background	ND			olumes to Purge		NA	
Breathing Zone	NO		_	um to Purge (L)		0	
Well Head	NO			Actual Purge (L)		20	
Purge Water	U NA		-				
FIELD MEASUREMENTS Time Amount	pH Temperature	Conductivity	D' 1 1				
Purged (L)	6.28 AB (Celsius)	(mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
	,6.2 AB	(mS/cm)	Oxygen (mg/L	L) (mV)	(NTU)	(ft BTOC)	(L/min)
800 2.5	6.18 11.82	(mS/cm)	0xygen (mg/L	(mV)	(NTU)	(ft BTOC)	(L/min)
800 2.5 805 5.0	6.18 11.82	(mS/cm) 0.627 0.633	9.07 8,85	(mV) (74,5 169,2	(NTU) 9.9 4.3	(ft BTOC)	(L/min)
800 2.5 805 5.0 810 7.5	6.18 11.82 620 11.99 6.22 12.35	(mS/cm) 0.627 0.633 0.643	9.07 8.85 8.42	(mV) 174.5 169.2 166.9	(NTU) 9.9 4.3 /0.4	(ft BTOC) 17.52 17.52 17.52	(L/min) .500 500
800 2.5 805 5.0 810 7.5 815 10	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47	(mS/cm) 0.627 0.633 0.643 0.647	9.07 8.85 8.42 7,92	(mV) 174.5 169.2 166.9 164.2	(NTU) 9.9 4.3 /0.6 19.1	(ft BTOC) 17.52 17.52 17.52	(L/min) 500 500 500 500 500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47	(mS/cm) 0.627 0.633 0.643 0.647 0.644	9.07 8.85 8.42	(mV) 174.5 169.2 166.9 164.2 163.1	(NTU) 9.9 4.3 10.6 19.1 15.0	(ft BTOC) 17.52 17.52 17.52 17.52	(L/min) 500 500 500 500 500
800 2.5 805 5.0 810 7.5 815 10 820 12.5 825 15	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47	(mS/cm) 0.627 0.633 0.643 0.647	9.07 8.85 8.42 7,92	(mV) 174.5 169.2 166.9 164.2 163.1 162.8	(NTU) 9.9 4.3 /0.6 19.1	(ft BTOC) 17.52 17.52 17.52	(L/min) 500 500 500 500 500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47	(mS/cm) 0.627 0.633 0.643 0.647 0.644	9,07 8,85 8,42 7,92 7,66	(mV) 174.5 169.2 166.9 164.2 163.1	(NTU) 9.9 4.3 10.6 19.1 15.0	(ft BTOC) 17.52 17.52 17.52 17.52	(L/min) 500 500 500 500 500
800 2.5 805 5.0 810 7.5 815 10 820 12.5 825 15	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.24 12.46 6.29 12.47	(mS/cm) 0.627 0.633 0.643 0.647 0.644 0.653	9,07 8,85 8,42 7,92 7,66	(mV) 174.5 169.2 166.9 164.2 163.1 162.8	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0	(ft BTOC) 17.52 17.52 17.52 17.52 17.52	(1/min) .500 .500 .500 .500 .500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.46 6.29 12.47 6.31 12.51 6.32 12.54	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662	0xygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.41	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.5	(NTU) 9.9 4.3 10.6 19.1 15-0 5.0 2-0	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
800 2.5 805 5.0 810 7.5 815 10 820 12.5 825 15 830 17.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.46 6.29 12.47	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662	0xygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.41	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.5	(NTU) 9.9 4.3 10.6 19.1 15-0 5.0 2-0	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.46 6.29 12.47 6.31 12.51 6.32 12.54	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662	0xygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.41	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.5	(NTU) 9.9 4.3 10.6 19.1 15-0 5.0 2-0	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(L/min) 500 500 500 500 500 500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662	0xygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.41	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.5	(NTU) 9.9 4.3 10.6 19.1 15-0 5.0 2-0	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(L/min) 500 500 500 500 500 500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5 \$35 20	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.46 6.29 12.47 6.31 12.51 6.32 12.54	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.41 7.35	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.5	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(L/min) 500 500 500 500 500 500
800 2.5 805 5.0 810 7.5 815 10 820 12.5 825 15 830 17.5 835 20	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai	(mV) 174.5 169.2 166.9 164.2 163.1 162.8 162.2	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5 \$35 20 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai	mv) 174.5 169.2 166.9 164.2 162.8 162.5 162.2	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) 500 500 500 500 500 500
\$00 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5 \$35 20 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 0,23	6.18 11.82 620 11.99 6.22 12.35 6.24 12.46 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai	mv) 174.5 169.2 166.9 164.2 162.8 162.5 162.2	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) 500 500 500 500 500 500
## SOO 2.5 ## SOS 5.0 ## SOS 12.5 ##	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai	mv) 174.5 169.2 166.9 164.2 162.8 162.5 162.2	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) 500 500 500 500 500 500
## SOO 2.5 ## SOO 12.5	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai	mv) 174.5 169.2 166.9 164.2 162.8 162.5 162.2	(NTU) 9.9 4.3 10.6 19.1 15.0 5.0 2.0 3.6	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) 500 500 500 500 500 500
## SOC	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai Twice Daily C	nst Calibrated Lealibration Verifi	(NTU) 9.9 4.3 /0.6 19.1 15.0 5.0 2-2 3.6 ength cation also Ca	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
## SOC	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr mg/L 637598 Flow-Through Cell 5 ft	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai Twice Daily C	nst Calibrated Lealibration Verifi	(NTU) 9.9 4.3 /0.6 19.1 15.0 5.0 2-2 3.6 ength cation also Ca	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
## SOC 2.5 \$05 5.0 \$10 7.5 \$15 10 \$20 12.5 \$25 15 \$30 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$25 17.5 \$35 20 \$35 17.5 \$35 20 \$35 17.5 \$35	6.18 11.82 620 11.99 6.22 12.35 6.24 12.46 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr mg/L i 3 7 5 9 8 Flow-Through Cell 5 ft	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai Twice Daily C	nst Calibrated Lealibration Verifi	(NTU) 9.9 4.3 /0.6 19.1 15.0 5.0 2-2 3.6 ength cation also Ca	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52	(1/min) .500 500 .500 .500 .500 .500
## SOC	6.18 11.82 620 11.99 6.22 12.35 6.24 12.47 6.29 12.47 6.31 12.51 6.32 12.54 CALIBRATION Model Heron Aqua TROLL 500 w/ flow thr mg/L 637598 Flow-Through Cell 5 ft	(mS/cm) 0.627 0.633 0.643 0.644 0.653 0.662 0.663	Oxygen (mg/I 9.07 8.85 8.42 7.92 7.66 7.54 7.35 Calibration Checked Agai Twice Daily C	mv) 174.5 169.2 166.9 164.2 162.8 162.5 162.2 Inst Calibrated Lecalibration Verification Verificatio	(NTU) 9.9 4.3 /0.6 19.1 15-0 5.0 2-2 3.6 ength cation also Ca	(ft BTOC) 17.52 17.52 17.52 17.52 17.52 17.52 17.52 19.62 alibrated Weekly	(1/min) .500 .500 .500 .500 .500 .500 .500

Cond.

0.377

0.616

0.570

0.524

	109 24 62
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QA SPLIT: YES NO DUPLICATE SAMPLE NO. MS/MSD REQUESTED SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS Sample Container 2 - 500 mL Amber 6°C Explosives + MNX (8330A) 3 - 40 mL VOA 6°C, HCI Methane (RSK 175) 1 - 250 mL HDPE 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Amber 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Amber 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Amber 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Mober 6°C Doc (9060A) WELL PURGING DATA Well Depth (ft. BTOC) Date 7 - 7 - 2 \ Depth to Water (ft. BTOC) Depth to Water (ft. BTOC) Depth to Water (ft. BTOC) Water Column Length (Later of Materian Well (L) Casing Volume (per ft) Volume of Water in Well (L) Casing Volumes to Purge Minimum to Purge (L) Actual Purge (L) PUD MEASUREMENTS Time Amount PH Temperature Conductivity Dissolved Redox Turbidity Depth to Dept	109 24 62
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: YES MS/MSD REQUESTED SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 6°C, HCl Methane (RSK 175) 1 - 250 mL HDPE 6°C, ZNOAc/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Amber 6°C SOA (9056A), Alkalinity (2320B) 1 - 250 mL Amber 6°C SOA (9056A) WELL PURGING DATA Well Depth (ft. BTOC) Depth to Water (ft. BTOC) Time Started 1 2 1 5 5 Well Casing Volume (per ft) Volume of Water in Well (L) Date Background Breathing Zone Well Head Purge Water FIELD MEASUREMENTS Time Amount PH Temperature Conductivity Dissolved Redox Turbidity Depth to	109 24 62
SAMPLE QA SPLIT: YES NO DUPLICATE: YES NO DUPLICATE SAMPLE NO. MS/MSD REQUESTED YES NO MS/MSD SAMPLE NO. MS/MSD SAMPLE N	109 24 62
SAMPLE QA SPLIT: YES NO DUPLICATE: YES NO MS/MSD REQUESTED YES NO MS/MSD SAMPLE NO. SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS Sample Container Preservative Explosives + MNX (8330A) 3 - 40 mL VOA 6°C, HCl Methane (RSK 175) 1 - 500 mL HDPE 6°C, H ₂ S0 ₄ TKN (351.2), NH ₃ (350.1), NO ₂ /NO ₃ (353.2) 1 - 250 mL HDPE 6°C, ZNOAC/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C DOC (9060A) WELL PURGING DATA Well Depth (ft. BTOC) Time Started 12 15 Water Column Length (L. Time Started 12 55 Water Column Length (L. Time Started 12 55 Water Column Length (L. Time Completed PID Measurements PID Measurements PID Measurements Pour Water in Well (L) Background Ni Depth (Read Note of the Well Casing Volume of Water in Well (L) Purge Water Manual Purge (L) 2 6 COLUMN PURGE (L) FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to De	109 24 62
No	109 24 62
SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS	109 24 62
Sample Container	109 24 62
Sample Container Preservative Analysis Requested 2 - 500 mL Amber 6°C Explosives + MNX (8330A) 3 - 40 mL VOA 6°C, HCl Methane (RSK 175) 1 - 500 mL HDPE 6°C, H ₂ SO ₄ TKN (351.2), NH ₃ (350.1), NO ₂ /NO ₃ (353.2) 1 - 250 mL HDPE 6°C SO ₄ (9056A), Alkalinity (2320B) 1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C DOC (9060A) WELL PURGING DATA Well Depth (ft. BTOC) 32.3 Date 3 - 3 - 2 \ 25 \ Depth to Water (ft. BTOC) 10/2 Time Started 1 2 \ 15 \ Depth to Water (Column Length 1/2 \ Depth (ft.) Time Completed 1 2 \ 5 \ Depth to Water in Well (L) 1/2 \ Depth (ft.) PID Measurements Volume of Water in Well (L) 1/2 \ Depth (ft.) Background N D Casing Volumes to Purge N/4- Breathing Zone N D Actual Purge (L) 2 \ Depth (D Well Head N D Actual Purge (L) 2 \ Depth (D Purge Water N D Temperature Conductivity <	109 24 62
3 - 40 mL VOA	109 24 62
1 - 500 mL HDPE 6°C, H₂SO₄ TKN (351.2), NH₃ (350.1), NO₂NO₃ (353.2) 1 - 250 mL HDPE 6°C SO₄ (9056A), Alkalinity (2320B) 1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C DOC (9060A) Well Depth (ft. BTOC) 32.3 Date 3 - 3 - 2 (Depth to Water (ft. BTOC) 16.7 Time Started 1 2 15 (Depth to Water (ft. BTOC) 16.7 Time Completed 1 2 15 (Depth to Water (ft. BTOC) 16.7 PID Measurements Well Casing Volume (per ft) 0 10 (Depth to Water in Well (L) 1 0 (Depth to Water in Well (L) Background N 1) Casing Volumes to Purge N A- Water (ft. BTOC) 1 0 (Depth to Water in Well (L) 2 0 (Depth to Water in W	109 24 62
1 - 250 mL HDPE 6°C SO ₄ (9056A), Alkalinity (2320B) 1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C DOC (9060A) WELL PURGING DATA Well Depth (ft. BTOC) 32.3 Depth to Water (ft. BTOC) 16.7 Water Column Length 16.7 Well Casing Volume (per ft) 16.7 PID Measurements Volume of Water in Well (L) 16.7 Background N 10 Casing Volumes to Purge N A Breathing Zone N N Minimum to Purge (L) 2.6 Well Head N N Actual Purge (L) 2.6 FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	109 24 62
1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) 1 - 250 mL Amber 6°C DOC (9060A) WELL PURGING DATA Well Depth (ft. BTOC) 32.3 Depth to Water (ft. BTOC) Llb. Time Started 12-15 Water Column Length (lb. Time Completed 12-55 Well Casing Volume (per ft) 0.0 PID Measurements Background N N N Casing Volumes to Purge NA- Breathing Zone Minimum to Purge (L) 2.0 Well Head Actual Purge (L) 2.0 FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	109 24 62
Time Started 12-15 Well Depth (ft. BTOC) Started PID MEASUREMENTS Time Amount PID MEASUREMENTS Time Amount PID MEASUREMENTS Time Amount PIC MEASUREMENTS Time Amount POC MEASUREMENTS POC MELL PURGING DATA PUrge (L) POC MELL PURGING DATA PURG (M. BTOC) POC MELL PURGING (M	109 24 62
WELL PURGING DATA Well Depth (ft. BTOC) Date 3 - 3 - 2 Depth to Water (ft. BTOC) Time Started 12 - 15 Water Column Length Time Completed 12 - 55 Well Casing Volume (per ft) PID Measurements Background Breathing Zone Well Head Purge Water Well Casing Volume to Purge NA- Minimum to Purge (L) Purge Water FIELD MEASUREMENTS Time Amount PH Temperature Conductivity Dissolved Redox Turbidity Depth to	109 24 62
Date 3 - 3 - 2 Depth to Water (ft. BTOC) Time Started 12 5 Water Column Length Language Language Language	109 24 62
Date 3-3-2 Depth to Water (ft. BTOC) 16/2 Time Started 12 5 Water Column Length (6.7) Time Completed 12 5 Well Casing Volume (per ft) 0.7 PID Measurements Volume of Water in Well (L) 10. Background N Casing Volumes to Purge N/4 Breathing Zone N/4 Minimum to Purge (L) 2 Well Head N/5 Actual Purge (L) 2 Purge Water N/6 FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	109 24 62
Time Started 12-15 Water Column Length (L., PID Measurements Volume of Water in Well (L.) Background VI) Casing Volume to Purge (L.) Breathing Zone Minimum to Purge (L.) Well Head Actual Purge (L.) FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	24
Time Completed 1255 Well Casing Volume (per ft) O	62
PID Measurements Background Breathing Zone Well Head Purge Water Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	1
Background Breathing Zone Well Head Purge Water FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
Breathing Zone Well Head Purge Water FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
Well Head Purge Water FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
Purge Water FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to	
1 1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	U
1220 2.5 6.70 13.62 0.938 3.52 142.5 3.7 16.0	09 500
1225 5.0 6.69 13,97 0,947 3,26 122,5 3,6 16,0	
1230 7.5 6.73 14.04 0.936 3.06 115.0 3.2 16,0	
1235 10 6.76 13.88 0,924 2.88 110.5 2.2 160	
1240 125 6.39 13.81 0.920 232 1038 28 110	
1245 15 6.83 14.15 0.923 2.70 105.4 2.1 16.0	
1250 17.5 6.85 14.22 0.926 2.68 104.4 2.1 160	
1255 20 6.87 14,22 0,916 2.65 104.1 2.9 16.0	
1-	7 7 7 7 7 7 7
Mu	
FIELD EQUIPMENT AND CALIBRATION	1,000
Model <u>Calibration</u>	
Water Level Probe Heron Checked Against Calibrated Length	
Water Quality Meter Aqua TROLL 500 w/ flow through cell Twice Daily Calibration Verification also Calibrated W	Jools Iv
	CCKIY
GENERAL COMMENTS	certi
Ferrous Iron = 0.65 mg/L	сскіу
Multi-Parameter Probe Unit # 6 3 75 98	сскіу
	секіу
Field Parameters Measured in Flow-Through Cell	ceriy
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 24 ft	
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 24 ft Pump Rate = 500 m l /min Historic (7-year average low and high / Q4 / A	Avg in Bold)
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 24 ft Pump Rate = 500 m l /m in Mistoric (7-year average low and high / Q4 / A Well Diameter = 2" ORP 21.7 166.3 114.	Avg in Bold) 1 102.3
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2 ft ft Pump Rate = 500 mt / min Historic (7-year average low and high / Q4 / A Well Diameter = 2" ORP 21.7 166.3 114. Screen Interval = 10-30 DO 1.73 7.07 4.06	Avg in Bold) 1 102.3 5 3.73
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 24 ft Pump Rate = 500 m l /m in Mistoric (7-year average low and high / Q4 / A Well Diameter = 2" ORP 21.7 166.3 114.	Avg in Bold) 1 102.3 6 3.73 6 6.72

Page 1 of Z

Project: CHAAP OU	1 RAO Per	formance 1	Monitoring	5		-		EW7	PM	21A
Project No: 60565355		him a				-	Date:		2721	
Develo. Method Peristaltic pu	mp and tui	oing				-	Samplers:	ME	, 50	<u> </u>
. te			<u>WE</u>	LL MEAS	SUREME:	<u>NTS</u>				
800 Fort	Well		meter (in): length (ft):							_
80-	Depth of		ng (ft bgs):							-
	Initia	l water lev	el (ft bgs):	13.5		30-13	51=1	6.49	X 0,16=	2.63
El-			ick-up (ft): ne (Liters):		3 4					-
1 1	uid Well ca		conditions:			70				-
				PLING M						-
<u>DISCHARGE</u>		T ···	I	ľ	1	1				
Time	0805	0810	815	820	825	830	835	840	845	850
Water level (ft. bgs)	13.55	13.55	13.55	13.55	13.55	13,55	13.55	13.55	13.55	13.55
Pump Placement Depth (ft bgs)	29	29	29	25	25	25	21	21	21	21
Discharge (Liters)	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25
WATER QUALITY DATA										
рН	6.18	6.16	6.17	6.18	6.20	6.22	6.24	6,25	6.26	6,29
Temperature (°C)	10.28	10.23	10.25	10.37	10.35	10.35	10.45	10.35	10,61	10,59
Conductivity (mS/cm)	,965	.157	,275	.257	.838	1.034	1.032	.911	.926	,925
Dissolved Oxygen (mg/L)	0,26	0.13	0.11	0.100	6.09	0.09	6.08	0.07	0.06	0.06
Redox (ORP) (mV)	-104.5	-129.8	-142,7	-150.3	-155.3	156.3	-159.5	-157.5	-156.4	-156.7
Turbidity (NTUs) initial/end	NAILY	169/460	460/39	239	73/449	447249	244	59/3	63/32	332
Color	clouds	clouds	Cloudy	Clarety	cloudy	cloudy	Cloudy	clouds	Cloudy	Cloudy
Odor	Non	Non	Now	Non	None	Non	Non	Nove	Non	won
Total discharge:	35	_					g volumes	removed:	13.3	3
Method of disposal of discharge	d water:	•				ling analys	is)	<u>-</u>		
Pt 2.67	• •			ALITY A	SSURAN	<u>CE</u>				
Water Level I Water Quality			Horiba Aqua TRC)I.I. 500 w	flow thro	ngh cell		Calibrated Calibrated		2-27-2
Comments:	14101013.	1501		SCA	TIOW UITO	ugii celi			•	<u> </u>
				·	0.44		7			
	(•	-			2.6	5 X 10	0 = 26	3	
		26.	3 + C3	19x2)	2 37,0	1				

Pry 2st2

Project: CHAAP OU	1 RAO Per	formance	Monitoring	5			Well No:	EW7	27-7 27-7	21A
Project No: 60565355 Develo. Method Peristaltic pu	ump and tul	oin a					Date:	-2- =	27-7	<u>_i</u>
Develo. Method refistance pu	mp and tue	onig	WE	LL MEAS	SUREM		Samplers:	<u> ne</u>	,00	
	Depth of Initia Top of	f well casing water lever Casing Stites in the Stites of t	meter (in): length (ft): ng (ft bgs): el (ft bgs): ick-up (ft): ne (Liters): conditions:	_GL	- pa	reje				· · · · · · ·
DISCHARGE		T		<u> </u>	<u> </u>		I		<u> </u>	
Time	855	900	905	910						
Water level (ft. bgs)	& 135F	13.55								
Pump Placement Depth (ft bgs)	25	25	25	25	!					
Discharge (Liters)	27.5	30	32.5	35						
WATER QUALITY DATA										
рН		6.31		6,34	1					
Temperature (°C)	10.65	10.62	16,91	10.77						
Conductivity (mS/cm)	.936	,920	.925	.936						
Dissolved Oxygen (mg/L)	6.06	B.06 -149.7	0.66	0.06						
Redox (ORP) (mV)										
Turbidity (NTUs) initial/end	6766	60/65	63/61	61/57				\angle		
Color	Cloudy	Cloudy	cloud	-Cloub						
Odor	Nove	None	Non	- Mari	-					
Total discharge: 35 Method of disposal of discharge	d water:					ending analys	ig volumes is)	removed:	13.5	3
Water Level I Water Quality Comments:			Horiba	OLL 500 w		nrough cell		Calibrated Calibrated	: 2 : 2	2-27-21

Project: CHAAP OU Project No: 60565355	1 RAO Per	rformance	Monitoring	<u></u>		-	Well No: Date:		7-PA	
Develo. Method Peristaltic pu	mp and tu	bing				-	Samplers:	ME	, 50	3
			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>				
	Well	l inside dia	meter (in):							_
	Denth o	Screen: f well casin	length (ft):							- -
<i>}</i> -	Initia	ıl water lev	el (ft bgs):	13.8	9	_				-
51m T		Casing Sting Sting Volum			~					-
1240	uid weii ca			2.5 Class						-
				PLING M		<u> MENT</u>				-
<u>DISCHARGE</u>	<u> </u>	T	ī	ı	i	i				
Time	1245	1250	1255	1300	1305	1310	1315	1320	1325	1330
Water level (ft. bgs)	13.9	13.9	13.9	13,9	13.9	13.9	13.9	13.9	13.9	13.9
Pump Placement Depth (ft bgs)	29	29	29	29	25	25	25	21	21	21
Discharge (Liters)	2.5	5	7.5	10	12.5	15	17.5	20	1_2.5	25
WATER QUALITY DATA										
pH	6,47	6.48	6.49	6.51	6.51	6.51	6.51	6.51	6,51	6.52
Temperature (°C)	11,71	11.75	11.65	11.50	11.34	11.21	11,19	11.00	11.01	10.85
Conductivity (mS/cm)	1.106	1.114	1, 114	1.115	1.096	1.091	1.685	1.078	1.066	1,644
Dissolved Oxygen (mg/L)	0:17	0.10	0.09	0.07	0.07	0.09	0.07	0,07	0.07	0.07
Redox (ORP) (mV)	-98,5	-108.6	-114,4	-118.0	-120.9	-122,4	-125.1	-125,9	-126.1	-127.4
Turbidity (NTUs) initial/end	NA 43	43/47	47/26	26	15/19	1920	20/3	13/4	14/2.	12.3
Color	clouds	clondy	Clery	cler	Clear	clear	Clear	Cler	Clerr	Clear
Odor	None	None	pone	None	None	None	None	Nove	None	None
Total discharge: 35 Method of disposal of discharged	d water:		IDW polly	tank at G	WTF (pend			removed:	12	.9
Ee-2,10			QU	ALITY A	SSURANC					
Water Level I			Horiba					Calibrated	:	2-27-21
Water Quality Comments:	Meters:			DLL 500 w				Calibrated	: 7	2-27/21
		ý) x ,/			5.8L					
3.7	7 7 2	-= 7 1 = 3	2 2 21.	a -						
	TOTAL	- 5	1.700	-						

										m
Project: CHAAP OUT Project No: 60565355	I RAO Per	formance l	Monitoring	<u>:</u>		_	Well No: Date:	EW 1-2	7-PA	124 A A
Develo. Method Peristaltic pu	mp and tul	oing				- -	Samplers:	A B	, 5	0
			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>			,	
	Well	inside dia	meter (in):	5	ce p	mege	<u>l</u>		·	
	Depth of	f well casin	length (ft): ng (ft bgs):		- }					
	Initia	l water lev	el (ft bgs):					-		
Fh	rop of iid well ca		ick-up (ft): ne (Liters):		- 10	·				
			conditions:							
			SAMI	LING M	EASUREN	MENT				
<u>DISCHARGE</u>	r		r			· · · ·				
Time	1335	1340	1345	1350						
Water level (ft. bgs)	13.9	13.9	13,9	13.9						
Pump Placement Depth (ft bgs)	21	25	25	25						·
Discharge (Liters)	27.5	30	32.5	35						
WATER QUALITY DATA										
pН	6.52	6.52	6.52	6.52		<u></u>				
Temperature (°C)	10.75	10.79	10.60	10.69						
Conductivity (mS/cm)	1,045	1.070	1.073	1.075						
Dissolved Oxygen (mg/L)	6.07	0,67	0.07	0.07						
Redox (ORP) (mV)	-127,7	9,97	- 1287							
Turbidity (NTUs) initial/end	12.2	13.1	9.9/3	6.3/8.0						
Color	clem	Clem	cler	clen						
Odor	Nove	None	None	None						
Total discharge: 35							ng volumes	removed:	12.	<u> </u>
Method of disposal of discharge	d water:		IDW polly				is)			
			<u>QU</u>	ALITY A	SSURANO	<u>CE</u>				2 2 2 .
Water Level I			Horiba	N. I. 500	/ £1			Calibrated:	_	2-2+-21
Water Quality Comments:	wieters:	•	Aqua TRC	LL 300 W	110w throi	ugn cell		Calibrated:	<u> 2</u>	<u>- L+. l(</u>

Posel of 2

Project: CHAAP OU	1 RAO Pei	formance	Monitoring	g			Well No:	PM	25 X	A
Project No: 60565355						- -	Date:	2-25	-21	
Develo. Method Peristaltic pu	mp and tu	bing				_	Samplers:	AJ	2.,	
STAT 850			WE	ELL MEAS	SUREME	<u>NTS</u>				
	Well		meter (in):					····		_
	Denth o		length (ft): ng (ft bgs):							-
			rel (ft bgs):		341					-
	Top of	Casing St	ick-up (ft):	1"						-
Fl	uid well ca	-	ne (Liters):		- H1 (:	10.1-0	7.34))	(16=	3,21	<u>_</u> _
		weather	conditions:		<u> </u>					-
DISCHARGE			SAM	PLING M	EASURE	<u>MENT</u>				
			<u> </u>		T_				1	T
Гime	900	905	910	915	920	925	930	935	940	945
Water level (ft. bgs)	9.38	9,38	9.38	9,34	9,38	9.39	9.38	9.38	9.38	9.38
Pump Placement Depth (ft bgs)	Botton 9	39	21	21	25	25	25	25	25	25
Discharge (Liters)	+05	7.5	10	12,5	15	17.5	20	22.5	25	27.5
WATER QUALITY DATA		n								
Н	6,24	6.32	6.33	6.32	6.31	631	6.31	6.31	6.31	6.31
Гетрегаture (°С)	4.71	10.47	10.9	10.96	10:96	11.01	11.07	10.96	11.06	11,40
Conductivity (mS/cm)	1,224	1.254	1.143	1,107	1,099	1.628	1.261.2	1.243	1,271	1,242
Dissolved Oxygen (mg/L)	0.29	0.08	0.05	0.05	.03	0.03	0.02	6.02	0.02	0.02
Redox (ORP) (mV)		-144,6	-158,7	-166.8	-166	-176.4	-179,3	ایا	-181.8	-185.2
Furbidity (NTUs) initial/end	507	5500	1370	5398	245	175	40/40	153	153/18	115/7
Color	cloudy	cloudy	Cloudy	cloudy	clon de	Cloudy	dond	douds-	cloudy	Cloud
Odor	None	None	None	None	Nove	None	Nove	None	Non	Non
Total discharge: 42,	5					Casir	ng volumes	removed:	12.8	?
Method of disposal of discharge	d water:		IDW polly	tank at G'	WTF (pend				7	
Fe-6,52			<u>OU</u>	ALITY A	SSURAN	CE				,
Water Level I	ndicator		Horiba			_		Calibrated		2-25-21
Water Quality Comments:			Aqua TRO	DLL 500 w	/ flow thro	ugh cell		Calibrated		2-25-21
	N	_			د. م					
(3	1,2/XLX	(10)	7 7,	58 =	= 39.	48 T				

Page 20f Z

Project: CHAAP OU Project No: 60565355	1 RAO Per	rformance	Monitoring	5		-	Well No: Date:	PM	2518,	<u>A</u>
Develo. Method Peristaltic pu	mp and tu	bing				_	Samplers:			
			WE	LL MEAS	SUREME	NTS				
	Wel	l inside dia Screen	meter (in): length (ft):			See	poze	/		-
	Initia	f well casing the state of the	el (ft bgs):		M	<u></u>				- -
FI		sing volun								- - -
<u>DISCHARGE</u>			SAMI	PLING M	EASURE	<u>MENT</u>				
Time	956	955	1000	1005	1010	1015				
Water level (ft. bgs)	9.38	9.38	7.38	9.38	9.38	9.38				
Pump Placement Depth (ft bgs)	25	25	25	25	25	25				
Discharge (Liters)	30	32.5	35	37.5	40	42.5	:			
WATER QUALITY DATA										
pH	6.31	6.31	6.31	6.31	6.31	6.32				
Temperature (°C)	11,20	11.26	11.17	11.15	11.15	11.12				
Conductivity (mS/cm)	6 434	.934	.716	1.268	1,216	1.243				
Dissolved Oxygen (mg/L)			0.01	0.01	0.01	0.01				
Redox (ORP) (mV)	-186.4	-196.0	-185.9	-185.6	-184.8	-184,5		-		
Turbidity (NTUs) initial/end	107	89.9	101.7	93,94	93,94	73.04				
Color	clouds	douds	Claudy	clouds	cloudy	cloudy				
Odor	Nov	None	Nove	Nove	Nac	None				1
Total discharge: 42.52 Method of disposal of discharge			IDW polls	tank at G	WTF (pend	Casir ling analys	ng volumes	removed:	12.8	
					SSURAN		 /			
Water Level I Water Quality Comments:			Horiba	-	/ flow thro			Calibrated Calibrated		2-25-21 2-25-21
	•									

Page lof Z

Project: CHAAP OU	l RAO Pei	formance	Monitoring	ŗ			Well No:	EW7-	PMZ	15 B
Project No: 60565355						- -	Date:	2-2	5-21	
Develo. Method Peristaltic pu	mp and tul	bing				- -	Samplers:	ME	JO	
stmt 1120			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>				
	Well		meter (in):		4					_
	Denth o		length (ft): ng (ft bgs):		<u> </u>					-
			el (ft bgs):							-
			ick-up (ft):					-		-
Fl	uid well ca		ne (Liters):		LA L	4: 42			· .	-
		weather o	conditions:		y	40				-
DISCHARGE		.	SAMI	PLING M	EASUREN	<u>MENT</u>				
Time	1130	1140	1150	1200	1210	1220	1230	1240	1250	1300
Water level (ft. bgs)	9.36	9.36	9.36	9.32	9.34	9.36	9.34	9.36	4.36	9.36
Pump Placement Depth (ft bgs)	39	39	31	31	35	35	35	35	35	35
Discharge (Liters)	5	10	15	20	25	30	35	40	45	50
WATER QUALITY DATA		···								
рН	6,43	6.42	6.41	6.41	6.4x3	6.43	6.42	6,42	6.41	6,42
Temperature (°C)	11.24	11.34	11.36	11.71	11.34	11.39	11.65	11.60	11.79	11.78
Conductivity (mS/cm)	0,146 14.07 pm	.143	,119	HA	,136	.133	.984	.157	1,055	,991
Dissolved Oxygen (mg/L)	0,49	0.42	x 0.44			0.52	0.56	0.53	0.52	0,57
Redox (ORP) (mV)					167.9	-108	-106.5	104.5	- 163.4	-102.4
Turbidity (NTUs) initial/end	47 23	59.23/71	61.71	59.7	191.6	61.72	63.72	5917	10:35.6	60.35
Color	cloudy									-3
Odor	None									2
Total discharge: 45 C						Casir	g volumes	removed:	13.20	, ,
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend				17,	
			OU	ALITY A	SSURAN	CE				
Water Level I Water Quality Comments:			Horiba Aqua TRC					Calibrated Calibrated		2-25-21 25-21
	•									
(40-9.36)	x .16 =	4.9 4	X10 :	- 49						
3,79 X2 /	K7_ ~	15.14	-	•						
3,47 1/	1	4.16	1							
TOTAL	- 0	7,10								

Project: CHAAP OU	1 RAO Per	formance	Monitoring	5			Well No: Date: Samplers:	EWF	2-PM	25 B
Project No: 60565355						_	Date:	7	25 -	21
Develo. Method Peristaltic pu	mp and tul	oing				_	Samplers:	ME	16	
			<u>WE</u>	LL MEA	SUREMI	ENTS				
	Well	inside dia	meter (in):	5	60	page	<i>[</i>			
		Screen	length (ft):			1 0				-
	Depth of	f well casii	ng (ft bgs):			<u> </u>				-
			el (ft bgs): ick-up (ft):			 				-
Fli			ne (Liters):			1		****		-
			conditions:						-	•
			SAMI	PLING M	EASURF	EMENT				•
<u>DISCHARGE</u>										
Time	1310	1320	1320							
Water level (ft. bgs)	9.36	9.36								
Pump Placement Depth (ft bgs)	35	35	35							
Discharge (Liters)	55	60	65							
WATER QUALITY DATA										
pH	6.42	6.42	6.42							`
Temperature (°C)	11.35	6.42	11.35							
Conductivity (mS/cm)			.746							
Dissolved Oxygen (mg/L)	0.57		0.64							
Redox (ORP) (mV)		-99.8								
Turbidity (NTUs) initial/end	60.3/4	86.4	46.31							
Color	Cloud		\rightarrow							
Odor	None		\rightarrow							
Total discharge:65						Casii	ng volumes	removed:		
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (per	nding analys		·		
			<u>ou</u>	ALITY A	SSURAN	<u>ICE</u>				
Water Level I	ndicator:		Horiba					Calibrated	:	
Water Quality	Meters:		Aqua TRC	DLL 500 w	/ flow thr	ough cell		Calibrated		
Comments:										

Posclot 2

Project: CHAAP OU	1 RAO Pei	formance	Monitoring	3		_	Well No:	EW.	7-PN	126A
Project No: 60565355						_	Date:	2-2	7-21	
Develo. Method Peristaltic pu	mp and tu	bing				-	Samplers:	BE	JE	
			<u>WE</u>	ELL MEAS		<u>NTS</u>				
	Well		meter (in):	/						_
1440 5+m+	Donth o		length (ft):							-
191			ng (ft bgs): /el (ft bgs):		. /					-
97 11			ick-up (ft):		•					-
Fl	uid well ca		ne (Liters):							
		Weather of	conditions:	Clou	dy 31	25	-			-
<u>DISCHARGE</u>			<u>SAMI</u>	PLING M	EASUREN	<u>MENT</u>				
Time	1445	1450	1455	1500	1505	1510	1515	1520	1525	1530
Water level (ft. bgs)	13.61	13.61	13.61	13.61	13.61	13.61	13.61	13.61	13.61	13.61
Pump Placement Depth (ft bgs)	29	29	29	29	25	25	25	21	21	21
Discharge (Liters)	2.5	5	7.5	10	12.5	15	17.5	20	22.5	25
WATER QUALITY DATA					-					
рН	6.59	6.56	6,57	6,54	6.55	655	6.55	6,55	6.54	6,54
Temperature (°C)	10.53	10.46	10,49	10.51	10.67	10.66	10,66	16,74	10.82	() , (
Conductivity (mS/cm)	,945	.938	,937	,932	.924	,929	.930	,924	.928	.924
Dissolved Oxygen (mg/L)	0.16	0.11	0.09	0.09	0.06	0.06		-	,04	0.04
Redox (ORP) (mV)	-58,7	-63.6		-74.9				-79.6		-78.9
Turbidity (NTUs) initial/end	NA	56/52	52 42.5	42.5	40.1	37.6	35.6	32.1	30.12.5	27.3
Color	Clery	Clem	Clear	Cler	Clear	CleAr	Clerr	LIEAV	Clear	CITAY
Odor	None	Nove	None	Nove	None	Nous	Nove	None	None	Nove
Fotal discharge: 35						Casin	g volumes	removed:	13.	3
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ing analys	is)			
Fe-5.92			<u>QU</u>	ALITY A	SSURANO	<u>CE</u>				
Water Level I	ndicator:		Horiba					Calibrated	: 4	2-27-2
Water Quality	Meters:		Aqua TRC	DLL 500 w/	flow thro	ıgh cell		Calibrated	-	- 27-2
Comments:	-									
((30-13, 3,79 X	61) X.	16) × 1	(0 = 2	6.2		·				
3,79×	2: 7	. 5-8								
Total	33.	78								

Prose 2 of 2 Well No: <u>FW7-PM26A</u>
Date: <u>2-27-21</u> Project: CHAAP OU1 RAO Performance Monitoring Project No: 60565355 Develo. Method Peristaltic pump and tubing Samplers: WELL MEASUREMENTS Well inside diameter (in): Sec page 1 Screen length (ft): Depth of well casing (ft bgs): Initial water level (ft bgs): Top of Casing Stick-up (ft): Fluid well casing volume (Liters): Weather conditions: **SAMPLING MEASUREMENT DISCHARGE** 1535 1540 1545 Time 13.61 13.62 Water level (ft. bgs) 13.61 25 25 Pump Placement Depth (ft bgs) 25 27.5 35 Discharge (Liters) 30 32,5 **WATER QUALITY DATA** 6.54 pН Temperature (°C) 10.81 Conductivity (mS/cm) Dissolved Oxygen (mg/L) Redox (ORP) (mV) Turbidity (NTUs) initial/end Color Odor None 35 13.3 Total discharge: Casing volumes removed: Method of disposal of discharged water: IDW polly tank at GWTF (pending analysis)

QUALITY ASSURANCE

Aqua TROLL 500 w/ flow through cell

Calibrated:

Calibrated:

Horiba

Water Level Indicator:

Water Quality Meters:

Comments:

Project: CHAAP OU	1 RAO Per	rformance	Monitoring	<u> </u>		_	Well No:	EWT	-PM	26XB
Project No: 60565355 Develo. Method Peristaltic pu	ımn and tu	hina				-	Date:	2-1 AE	26-2	· <u> </u>
Develo. Method 1 eristatile pu	imp and tu	onig	WE	TT MEA	SUREME	- Nite	Samplets.	me)		
			<u>vy e</u>	LL NICA. . //	SUKENIE	<u>N15</u>				
1300=	Wel	l inside dia		1						_
125	Depth o	Screen of well casin	length (ft): ng (ft bgs):							-
Stirry	Initia	al water lev	el (ft bgs):	13.61	!	(40-1	3.61)=	26.30	X 0.16	= 4.22
У., ы		f Casing Stinsing Stinsing Volum								-
**	ara well et		conditions:							-
			SAMI	PLING M	EASURE	MENT				-
<u>DISCHARGE</u>		i -	T	1	T	1	r			
Time	1310	1320	1330	1340	1350	1400	1410	1420	1430	1440
Water level (ft. bgs)	13.65	13.65	13.65	13.65	13.65	13.65	13.65	13.65	13.65	13.65
Pump Placement Depth (ft bgs)	39	39	39	34 m	35	35.	35 K	31	31	35
Discharge (Liters)	5	16	15	20	25	30	35	40	45	50
WATER QUALITY DATA										
pН	6.38	6.42	6,46	6.46	6.4c	6.46	6,46	6.46	6.47	6.47
Temperature (°C)	9.97	10.64	9,89	9,76	10.06	16.35	10,66	9,83	9.83	9,85
Conductivity (mS/cm)	1.023	,826	.919	,888	,837	.836	,936	803	803	:810
Dissolved Oxygen (mg/L)	6.07	0.01	0.01	0.01	0.01	0.01	0,01	0.01	0.05	0.05
Redox (ORP) (mV)	-79,2	-97.6	-106.7	-110.7	-114,5	-114.5	-112.4	-109.7	-107.3	-106.4
Turbidity (NTUs) initial/end	NA 151	15173	73/90	140	5.4	5.4	25/33	33/	3/36	36
Color	Cloudy				1	Clear				اد
Odor	Nane									
Total discharge: 60						Casir	ng volumes	removed:	14.2	_
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ling analys	is)			
Fe-7.32			<u>QU</u>	ALITY A	SSURAN	<u>CE</u>				
Water Level I Water Quality Comments:			Horiba Aqua TRC	DLL 500 w	/ flow thro	ugh cell		Calibrated Calibrated	•	2-26-4 2-26-21
(40	_13.61) X 0.1.	6) X 10	= 42.	2 + 15	.16=	57.30	io L		

Well No: EW7-PM26XBDate: 2-26-21Samplers: AF+JOProject: CHAAP OU1 RAO Performance Monitoring Project No: 60565355 Develo. Method Peristaltic pump and tubing WELL MEASUREMENTS Well inside diameter (in): Screen length (ft): Depth of well casing (ft bgs): Initial water level (ft bgs): Top of Casing Stick-up (ft): Fluid well casing volume (Liters): Weather conditions: **SAMPLING MEASUREMENT DISCHARGE** Time 1500 Water level (ft. bgs) 35 Pump Placement Depth (ft bgs) Discharge (Liters) 60 **WATER QUALITY DATA** pН 6,45 10,10 Temperature (°C) Conductivity (mS/cm) .808 Dissolved Oxygen (mg/L) 0.05 -104.6 -104.8 Redox (ORP) (mV) Turbidity (NTUs) initial/end Color CLEN Odor Now Total discharge: Casing volumes removed: Method of disposal of discharged water: IDW polly tank at GWTF (pending analysis) **QUALITY ASSURANCE** Water Level Indicator: Horiba Calibrated: Water Quality Meters: Aqua TROLL 500 w/ flow through cell Calibrated: Comments:

Develo. Method Peristaltic pr	ump and tu	bing		<u>-</u> .	<u> </u>	- -	Samplers:	ME	, JC	
			<u>WE</u>	LL MEAS	<u>SUREME</u>	<u>NTS</u>				
stort 950	Depth o Initia	I inside dia Screen I f well casin Il water lev Casing Sti	length (ft): ng (ft bgs): el (ft bgs):	10' 30' 11.5	s					- - -
F	luid well ca	sing volun		4.59						- -
		weamer			ン EASUREN					•
<u>DISCHARGE</u>			BAIVII	LING WI	EASORET					
lime	1000	1010	1020	1030	1040	1050	1100	1110	1120	1136
Water level (ft. bgs)	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6
Pump Placement Depth (ft bgs)	39	39	39	35	35	35	31	31	351	35
Discharge (Liters)	5	10	15	20	25	30	35	40	45	50
WATER QUALITY DATA										
Н	6.18	6,21	6.23	6,24	6.26	6.27	6.28	6.28	6.29	6,29
Comperature (°C)	11.32	11,28	11.38	11.24	11.30	11,39	11.34	11.38	11.40	11.43
Conductivity (mS/cm)	.733	1.046	1.166	1.012	1.035	1.034	1.024	1.041	1.055	1,977
Dissolved Oxygen (mg/L)	0.15	8.04	0.04	0.02	0.01	0.01	001	0.01	0.01	0.01
Redox (ORP) (mV)	-120	-126.1	-127,4	-130,3	-131,9	-132.6	-1329	-134.3	- 134.5	-135,6
urbidity (NTUs) initial/end	213	213	111	98/27	177	15741	141	40	90/51	51 m
Color	Claudy	Cloudy	cionly	Cloudy		cloudy	cloudy	cloudr	cloud	claudy
Odor	None	None	None	Novi	None	None	none	None	None	Non
otal discharge: 65	_						ng volumes	removed:	14.	3
lethod of disposal of discharge	ed water:	•			WTF (pend		is)			
Water Level Water Qualit Comments:		-	Horiba Aqua TRC	DLL 500 w	flow thro			Calibrated Calibrated		2-27 2-27-
Comments:	-	2941	H20	used						
	Cu) - 11,59 -8,4(6 = 4	54 X	10 =	45.4			

Pac 20f Z

Project: CHAAP OU	1 RAO Per	formance l	Monitoring	• •			Well No:	EWF	PM	278
Project No: 60565355	1, 1	•					Date:	7-2	7-2	ĺ
Develo. Method Peristaltic pu	mp and tut	oing				_	Samplers:	REI	56	
			<u>WE</u>	LL MEAS	SUREM	<u>ENTS</u>				
	Well	inside dia	meter (in):	90	e po	ge 1				
	Daniel -		length (ft):							- -
			ng (ft bgs): el (ft bgs):				 			-
			ick-up (ft):		-					-
Flo	uid well ca	sing volum	ne (Liters):							-
		Weather of	conditions:			·				-
DISCHARGE			SAMI	PLING M	EASURI	EMENT				
<u>DISCHARGE</u>			<u> </u>							
Time	1140	1150	1200							
Water level (ft. bgs)	11.6	11.6	11.6							
Pump Placement Depth (ft bgs)	35	35	35							
Discharge (Liters)	55	60	65						/	
WATER QUALITY DATA										7
pН	6,29	6.29	6.28	7						
Temperature (°C)	11.56	11.57	1557							
Conductivity (mS/cm)	.971	,975	,977							
Dissolved Oxygen (mg/L)	6.01	0.01	0.01							
Redox (ORP) (mV)	-135.6		-135.2							
Turbidity (NTUs) initial/end	63/55	5550	50/47							
Color			Cloudy	,						
Odor	Nove	pour	Clouby None							
Total discharge: 65 Method of disposal of discharge	d water		IDW polly	tank at GV	VTF (ne	Cas	ing volumes	removed:	14.3	
	a water.	•		ALITY A			313)			
Fe 6,54	11			ALII Y A	<u>SSUKAI</u>	<u>ice</u>		~		2-27-2
Water Level I Water Quality Comments:			Horiba Aqua TRO	LL 500 w/	flow thr	ough cell		Calibrated Calibrated	-	2-27-2
	-						-		<u></u>	

Pos=1 of Z

Project: CHAAP OU	1 RAO Pei	rformance	Monitoring	3	·	_		£47-		
Project No: 60565355		L:				_		2-2		/
Develo. Method Peristaltic pu	imp and tu	Ding				<u>.</u>	Samplers:	ME	, <i>To</i>	
			WE	ELL MEAS		<u>NTS</u>				
Stat 1410	Well	l inside dia			(······································				-
1100/1110	Denth o	f well casing	length (ft):							-
		ıl water lev			•					_
		Casing St		1 #						- -
Fl	uid well ca	sing volun Weather	ne (Liters): conditions:		<u>L</u> 30°					-
		w camer		PLING M		MICHIT				•
DISCHARGE			SAIVI	FLING WI	LASUKE	VIENI				
Time	1420	1425	1430	1435	1440	1445	1450	1455	1500	1505
Water level (ft. bgs)	9.41	9.41	9.41	9.41	9.41	9.41	9.41	9.41	9.41	9.41
Pump Placement Depth (ft bgs)	29	29	21	21	25	25	25	25	25	25
Discharge (Liters)	5	7.5	10	12.5	15	17.5	20	22.5	25	27.5
WATER QUALITY DATA										
рН	6.39	6.39	6.35	6.35	6.35	6.34	6.34	6.34	6.34	6.34
Temperature (°C)	11.56	11.51	11.57	11.60	11.59	11,49	(1.51	11.64	11,63	11,65
Conductivity (mS/cm)	,761	.136	109	, 187	.102	. 131	.106	.085	.068	,264
Dissolved Oxygen (mg/L)	1.67	1.72	1.78	1.71	1.76	1.74	1.75	1.74	1.77	1,77
Redox (ORP) (mV)	-131.9	-129.2		110.0	-103.3	-94.3	-96.6	-81,8	-78.8	.73.1
Furbidity (NTUs) initial/end	148/12	112/	75/58	58/46.	46/39	3945	45 35	95/2	47 12	32/36
Color	Cloudy						Clear			~
Odor	None									7
Total discharge:	4	2.5					ng volumes	removed:	12.	B
Method of disposal of discharge	d water:			tank at G			is)			
			<u>QU</u>	JALITY A	SSURAN	<u>CE</u>				
Water Level I Water Quality Comments:			Horiba Aqua TRO	OLL 500 w	flow thro	ugh cell		Calibrated Calibrated	: :	2-25-2
((30-	- 9,28	() x 0.	. 16) y	(10	= }3.	152				-
				9 x 2						

Page 2 of 2

Project: CHAAP OU	1 RAO Per	formance	Monitoring))		_	Well No:	EWF	-PM	28 A
Project No: 60565355	• • •						Date:	2-2	5-21	
Develo. Method Peristaltic pu	mp and tu	oing			····	-	Samplers:	ME	,50	
			WE	ELL MEA	SUREME	<u>NTS</u>				
	Well	inside dia	meter (in):	<u> </u>	- e 1	loge 1				_
		Screen f well casii	icngui (11).		- 1					-
	Initia	l water lev	el (ft bgs):							- -
Fil		Casing Sting Sting Volum								-
11.	uiu won oa		conditions:		1					-
			SAM	PLING M	EASURE	MENT				-
<u>DISCHARGE</u>			T	T		T			T	T 1
Time	1510	1515	1520	1525	1530	1535				
Water level (ft. bgs)	9,41	9,41	9.41	9.41	9.41	9,41				
Pump Placement Depth (ft bgs)	25	25	15	25	25	25				
Discharge (Liters)	30	32.5	35	37.5	40	42.5				
WATER QUALITY DATA										
pH	6.34	6.34	6.34	6.34	6.34	6.34				
Temperature (°C)	11.69	11.90	11.67	(1.63	11.62	11.59				
Conductivity (mS/cm)	.162	.130	1030	104	105	:106				
Dissolved Oxygen (mg/L)	1.77	1.80	1.85	1,79	1.78	1.78				
Redox (ORP) (mV)		-44.6		1	1	-58.1				
Furbidity (NTUs) initial/end	3630	3039	391	6/33	33/32	32/30			\times	
Color	Clear					→				
Odor	None	9				>				
	42.5						ng volumes	removed:	12,	9
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ding analys	is)			
Fe-5,0			<u>OU</u>	JALITY A	SSURAN	<u>CE</u>				
Water Level I Water Quality Comments:			Horiba Aqua TRO	OLL 500 w	flow thro	ugh cell		Calibrated Calibrated		<u>1-25-21</u> <u>-25-21</u>
Comments.	•			-					***	

Project: CHAAP OU	I RAO Per	formance	Monitoring			_	Well No:	EW7	-PM2	9A
Project No: 60565355 Develo. Method Peristaltic pu	mp and tul	nina				-	Date:		26-2	<u>/</u>
		omg		W. Y. D. 677 A. 6		·	Samplers:	72 E	,10	
1100 start	-		<u>WE</u>	LL MEAS		<u>NTS</u>				
1100	Well		meter (in):							
	ъ л		length (ft):							-
			ng (ft bgs): rel (ft bgs):							-
			ick-up (ft):							•
Flo	uid well ca	-	ne (Liters):							
		Weather of	conditions:	<u>Cleson</u>	300				-	
DISCHARGE			SAMI	PLING MI	EASUREN	<u>MENT</u>				
Time	1105	1110	1115	1120	1125	1130	1135	1140	1145	1150
Water level (ft. bgs)	9.54	9,54	9.54	9.54	9.54	9.54	9.54	9 54	9.54	4.54
Pump Placement Depth (ft bgs)	29	29	29	29	25	25	25	25	21	21
Discharge (Liters)	2,5	5.0	7,5	10	12.5	15	17.5	20	22.5	25
WATER QUALITY DATA				,						
pН	6.20	6.18	6.26	6.23	6,27	6.31	6.35	6.39	6,42	6.45
Temperature (°C)	11.01	10.69	10,79	10.72	10.67	10,87	10.71	10.81	10,79	16.95
Conductivity (mS/cm)	,676	.826	,757	,799	,786	,817	,813	,810	,818	,807
Dissolved Oxygen (mg/L)	0.05	0.03	6.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Redox (ORP) (mV)	-57.9	-62.0	-665		-75,1	_78.7	-82.5	- 85.4	-88.3	-90.4
Turbidity (NTUs) initial/end	NA 46	46/25	25/2	174	17/6	16/20	10/5	15/06	106/51	51
Color	clem								,,	\rightarrow
Odor	None	·								\rightarrow
Total discharge: 90 Method of disposal of discharge	42.5 d water:		IDW polly	tank at GV	WTF (nend		ng volumes	removed:	13	
Fe-6.12		•		ALITY A						
Water Level I	ndicator		Horiba			_		Calibrated		2-26-21
Water Level 1 Water Quality Comments:	Meters:			DLL 500 w	flow throu	ıgh cell		Calibrated	· :	2-26-21 2-26-21
1130.	- 9.54) x 0.1	6)x10	- 32 - 20	· 73					
9 2 9	i V n	,. _ a	581)	he					
7.7 Td	tol =	28	. 5 8 1 . 04 L	40 2 3	IL					

Poze 20+2

Project: CHAAP OU	1 RAO Per	formance	Monitoring			-	Well No:	EW7.	- PM 2	29 A
Project No: 60565355 Develo. Method Peristaltic pu	mn and tul	ning		· · · · · · · · · · · · · · · · · · ·			Date:		26-	71
Develo. We mod Tenstance pu	mp and tui	Jing	XX702	TT MELA	SELECTION AND A	·	Samplers.	<u> </u>	100	
			WE	LL MEA	SUREME	<u>NTS</u>				
	Well		meter (in):		e pr	ge 1				_
	Denth of		length (ft): ng (ft bgs):		'1					-
			el (ft bgs):						·	<u>.</u>
El			ick-up (ft):							- -
FI	uid well ca		ne (Liters): conditions:			<u></u>				-
				PLING M	EASUREN	MENT				•
DISCHARGE										
Time	1155	1200	1205	1210	1215	1220	1225			
Water level (ft. bgs)	9.54	9.54	9.54	9.54	9.54	9.54	4.54			
Pump Placement Depth (ft bgs)	2:1	21	25	. 25	25	25	25			
Discharge (Liters)	27.5	30	32.5	35	37.5	40	42.5			
WATER QUALITY DATA								-		
pН	6.47	6,48	6.49	6.51	6.50	6.51	6.52			
Temperature (°C)	10.85	10.78	10.80	10.63	10.76	10,60	10.61			
Conductivity (mS/cm)	,820	.867	.794	,810	,817	,820	.810			
Dissolved Oxygen (mg/L)	0.01	0.01	6.01	0.01	0.61	0.01	0.01			
Redox (ORP) (mV)	•				-96,2		-97.6	-		
Turbidity (NTUs) initial/end	14/3	11.3	10.6/2	10.7	10:27	67/9.1	9.11.3			
Color	Clear	-					→			
Odor nv	None						→			
Total discharge:	42.	5				Casin	g volumes	removed:	13	
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend			·		
			<u>QU</u>	ALITY A	SSURANO	<u>CE</u>				
Water Level I			Horiba			<u> </u>		Calibrated	_	4-26-21
Water Quality Comments:	Meters:		Aqua TRC	LL 500 w	flow throu	igh cell		Calibrated	: 2	-26-21
Comments:										

Page 1 of 2

Project: CHAAP OU	1 RAO Per	formance	Monitoring	<u> </u>		_	Well No:	EW7-	PM2	93
Project No: 60565355 Develo. Method Peristaltic pu	mp and tul	bing				•	Date: Samplers:	2- AF.	16-2	<u>(</u>
<u> </u>		8	WE	LL MEAS	SUREME	NTS	Junipioro.	- 	<u> </u>	
	Well	l inside dia	meter (in):	1"						
- AT		Screen	length (ft):	10'						• •
STATO			ng (ft bgs): rel (ft bgs):		<i>r</i>					-
	Top of uid well ca		ick-up (ft): ne (Liters):		1					-
* *	uiu won ou	-	conditions:		1 2	70				-
DISCHARGE			SAMI	PLING MI	EASURE	<u>MENT</u>				
Time	820	830	840	850	900	910	920	930	940	950
Water level (ft. bgs)	9,53	9.53	9.53	9.53	9.53	9,53	4,53	\$.53	39.53	9.53
Pump Placement Depth (ft bgs)	39	39	34h	3935 m	35	35	341	31-n	31	35
Discharge (Liters)	5	10	15	20	25	30	35	40	45	50
WATER QUALITY DATA										
рН	6.16	6.17	6.57	6.13	6.19	6.H	6.36	6.43	6.47	6,49
Temperature (°C)	10,16	9.88	10.26	10.56	16.85	10.76	11.14	10.84	10.87	10,72
Conductivity (mS/cm)	.762	,976	1.12	13	.921	1.097	.956	,934	.912	,850
Dissolved Oxygen (mg/L)	6,09	6.13	10.04	0.07	,05	0.04	0.02	0.02	0.02	.02
Redox (ORP) (mV)	-46.7		-56,6	-727	-88.7	-98.5	-105.6	411.9	-115.1	-117.5
Turbidity (NTUs) initial/end	NA 28,8	24.8	25 /34	34/64	6460	60/55	55/23	123/43	43/29	1297
Color	clum	Clordy								→
Odor	None									→
Total discharge: 65 Method of disposal of discharge	d water:		IDW polly	tank at GV	WTF (pend		ng volumes	removed:	13.2	6
Fe-2.73		•		ALITY A						
Water Level I Water Quality Comments:	Meters:		Horiba Aqua TRO H2O A	DLL 500 w	flow thro	ıgh cell		Calibrated Calibrated		<u> 2-26-2</u> 2-26-2
(40 - (4)				+ (2 g = 64	val ad	ded H)20XZ	= 15.	16	

Page 20+ 2

Project: CHAAP OU	l RAO Per	formance	Monitoring	g		_	Well No: Date: Samplers:	EW7	- PM	29 B
Project No: 60565355 Develo. Method Peristaltic pu	mp and tul	oing			· · · · · · · · · · · · · · · · · · ·	-	Samplers:	AF	- 26 -	· /
<u> </u>		<u>8</u>	<u>W</u> 1	ELL MEA	SUREME	- NTS	Sumpiero.) 00	
Flu	Depth of Initia	f well casing I water leven Casing Straing straing wolung	ng (ft bgs) rel (ft bgs) ick-up (ft) ne (Liters) conditions	:	/\ 		1			- - - -
DISCHARGE		· · · · · · · · · · · · · · · · · · ·						·		
Time	1000	1010	1020							
Water level (ft. bgs)	9.53	9.53	9.53							
Pump Placement Depth (ft bgs)	35	35	35							
Discharge (Liters)	55	60	65				1	-		
WATER QUALITY DATA										
pH	6.49	6.49	6.49							
Temperature (°C)	10.64	10.67	16.73							
Conductivity (mS/cm)	,930	.939	,945							
Dissolved Oxygen (mg/L)	0.02	0.02	6.62							
Redox (ORP) (mV)	-119.8	-119.5	-118,7							
Turbidity (NTUs) initial/end	47 90	90/86	8647				X			
Color	Cloudy		->			į.			/	
Odor	Clear	*	1	!	_					
Total discharge: 65 Method of disposal of discharge Water Level I		•		y tank at G J ALITY A		ling analys	ng volumes	removed:		2-26-21
Water Quality Comments:	Meters:		Aqua TRO	OLL 500 w	flow thro	ugh cell		Calibrated		2-26-21

SITE NAME	СНАА	P OU1 RAO_F	erformance M	onitoring	PROJECT NO	O	605	565355	
SAMPLE NO	EW7-		4-5-		WELL NO	EW7	-PM	ZIA	
DATE/TIME (- 2 <i>i] d</i> taltic Pump and		_ PERSONNE	L AE,	50		
			•						
SAMPLE ME		Groundwate: YES		ent r	T CAMPI E M	11	Λ		
SAMPLE QA	DUPLICATE:	YES	NO		T SAMPLE NO E SAMPLE NO		<i>σ</i>		_
MS/MSD REC		YES	NO		D SAMPLE NO				
MIS/MISD REC	SOFPLED	11.5	<u> </u>	MISHMISI	J SAMIFLE IN	J			
	•	PRESERVATI	VES, ANALYS	SIS			•		
Sample Contain			Preservative		Analysis Rec				
2 - 500 mL Ar 3 - 40 mL VO			6°C, HCl			MNX (8330A)			
1 - 500 mL HI			6°C, HCl	-	Methane (RS	, NH ₃ (350.1), NO)_/NO_ (353.2		
1 - 250 mL HI			6°C			, Alkalinity (2320		.)	
1 - 250 mL HI			6°C, ZnOAc/N	IaOH	Sulfide (9034				
1 - 250 mL An	nber		6℃		DOC (9060A				
WELL PURC	SING DATA								
			7 71			ell Depth (ft bgs)			
Date			7-21			to Water (ft bgs)			
Time Started			10		-	r Column Length			
Time Complete PID Measurem			25			g Volume (per ft) Vater in Well (L)			
Background			10			olumes to Purge			
Breathing Z					_	num to Purge (L)			
Well Head					_	Actual Purge (L)		7.5L	
Purge Water	r		0		_	•		1	
THE DAME A	OF THE TOTAL ATTEMPTORY							:	
FIELD MEAS	Amount	pН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Wate	r Purge Rate
Time	Purged (L)	pii	(Celsius)	(mS/cm)	Oxygen (mg/		(NTU)	(ft BTOC)	(L/min)
915	2.5	6.34	10.77	.920	0.05	-146.4	57	13.55	1500
920	5.6	6.35	13.75	420	0.05	-146.9	55	13455	. 11
925	7.5	6.35	10.80	1925	0.05	-146.6	54	13155	# 1
						ļ			
									1
					W				
					Pass				
					MAL				
					MA				
					MAL				
FIELD EQUI	PMENT AND	CALIBRATIO	DN		MAL				
FIELD EQUI	PMENT AND	CALIBRATIO Model	ON .		Calibration				
Water Level Pr	obe	Model Heron			Calibration Checked Aga	inst Calibrated La	-		
	obe	Model Heron	DN 500 w/ flow thr	ough cell	Calibration Checked Aga	inst Calibrated Lo	-	librated Weekly	
Water Level Pr Water Quality	obe Meter	Model Heron		ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality	obe Meter OMMENTS	Model Heron Aqua TROLL		ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality	obe Meter OMMENTS 2.67	Model Heron Aqua TROLL	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality D GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete	OMMENTS 2.6.7 rer Probe Unit # rs Measured in	Model Heron Aqua TROLL ng/L 63759 Flow-Through	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality GENERAL Conference Ferrous Iron = Multi-Parameter Field Parameter Sample Depth	OMMENTS 2.67 r er Probe Unit # rs Measured in (ft bgs) = 2	Model Heron Aqua TROLL ng/L 6 3 7 5 9 Flow-Through 5	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality Description of the Control of the Con	OMMENTS 2.67 In er Probe Unit # rs Measured in (ft bgs) = 2 500 16 ()	Model Heron Aqua TROLL ng/L 6 3 7 5 9 Flow-Through 5	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality I GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth (Pump Rate = Temp Well Dia	OMMENTS 2.67 In the proper of the property of	Model Heron Aqua TROLL mg/L 63759 Flow-Through 5	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	
Water Level Pr Water Quality Description of the Control of the Con	OMMENTS 2.67 In the proper of the property of	Model Heron Aqua TROLL mg/L 63759 Flow-Through 5	500 w/ flow thre	ough cell	Calibration Checked Aga		-	librated Weekly	

SITE NAME	СНАА	P OU1 RAO_I	Performance M	onitoring	PROJECT NO		605	65355	
SAMPLE NO	F 14)7	-PM241	A-5-3	25	- WELL NO	EW7-	. PM 2	.U A	
			-21/1						
SAMPLE ME			staltic Pump and		_ PERSONNEI		50		
				tuonig	_				
SAMPLE ME SAMPLE OA		Groundwate YES	r NO	ÇDI I	Γ SAMPLE NO	1.	P		
•	DUPLICATE:	YES	NO		E SAMPLE NO		<u>,, </u>		
MS/MSD REG	QUESTED	YES	(NO)	MS/MSI	SAMPLE NO			- "	
SAMPLE CO	ONTAINERS, I	PRESERVATI	IVES, ANALY	SIS					=
Sample Conta			<u>Preservative</u>		Analysis Requ				
2 - 500 mL Ar 3 - 40 mL VO			6°C, HCl		Explosives + I	MNX (8330A)			
1 - 500 mL HI			6°C, H ₂ S0 ₄		,	NH ₃ (350.1), NO) ₂ /NO ₂ (353.2)	
1 - 250 mL HI			6°C			Alkalinity (2320		,	
1 - 250 mL HI	DPE		6°C, ZnOAc/N	NaOH	Sulfide (9034)				
1 - 250 mL Ar			6°C		DOC (9060A)				
WELL PURC	GING DATA								
		_	2- 24		We	ll Depth (ft bgs)	30		
Date		ユー	27 - 21			o Water (ft bgs)			
Time Started		13	50		Water	Column Length	16.11		
Time Complet	ted		105		Well Casing	Volume (per ft)	2.58		
PID Measuren	<u>nents</u>		. >	-	Volume of Wa	ater in Well (L)	2.58		
Background	d		VD QV		_ Casing Vo	olumes to Purge	NA	-	
Breathing Z	Zone		1		_ Minim	um to Purge (L)	NA	-	
Well Head			.		_	Actual Purge (L)	7.5		
Purge Water	r	——————————————————————————————————————	<u> </u>		_				
Time	Amount								
	Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate (L/min)
1355	Purged (L)	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV)	(NTU) 8.4	(ft BTOC)	(L/min)
1400	Purged (L) 2,5 MR 5	6.52	(Celsius)	(mS/cm) 1.075 1.073	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
	Purged (L)	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV)	(NTU) 8.4	(ft BTOC)	(L/min)
1400	Purged (L) 2,5 MR 5	6.52	(Celsius)	(mS/cm) 1.075 1.073	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius)	(mS/cm) 1.075 1.073	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius)	(mS/cm) 1.075 1.073	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 MR 5	6.52	(Celsius) 10:69 10:71 10:71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
1400	Purged (L) 2,5 48,5 7,5	6.52	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 1.071	0.07	(mV) -[29,2 -[29,4	(NTU) 8.4 9.1	(ft BTOC)	(L/min) 500 500
J400 J405	Purged (L) 2,5 1,5 7,5 PMENT AND	6.52 6.52 6.52 6.52	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 1.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07	(mV) -[29, 2 -[29, 4 -(29, 6	(NTU) 8.4 9.1 9.1	(ft BTOC)	(L/min) 500 500
FIELD EQUI	Purged (L) 2,5 2,5 7,5 PMENT AND	CALIBRATIO Model Heron	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
J400 J405	Purged (L) 2,5 2,5 7,5 PMENT AND	CALIBRATIO Model Heron	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29, 6	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI	Purged (L) 2,5 4,5 7,5 PMENT AND robe Meter	CALIBRATIO Model Heron	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr	Purged (L) 2,5 2,5 7,5 PMENT AND robe Meter COMMENTS	CALIBRATIO Model Heron	(Celsius) 10.69 10.71 10.71	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron =	Purged (L) 2,5 2,5 7.5 PMENT AND robe Meter COMMENTS 2.10	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 10, 69 10, 71 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramet	Purged (L) 2,5 2,5 7.5 PMENT AND robe Meter COMMENTS 2.10 rer Probe Unit #	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2,5 2,5 7.5 PMENT AND robe Meter COMMENTS 2.10	CALIBRATIO Model Heron Aqua TROLL 6 3 7 5 9 Flow-Through	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2,5 43,5 7,5 PMENT AND robe Meter COMMENTS 2,10 er Probe Unit # ers Measured in (ft bgs) = 2,5	CALIBRATION Model Heron Aqua TROLL 6 3759 Flow-Through	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth	Purged (L) 2,5 4,5 7,5 PMENT AND robe Meter COMMENTS 2,10 rer Probe Unit # ers Measured in (ft bgs) = 2,5 5,00 mm	CALIBRATION Model Heron Aqua TROLL 6 3759 Flow-Through	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	Purged (L) 2,5 4,5 7,5 PMENT AND robe Meter COMMENTS 2,10 rer Probe Unit # ers Measured in (ft bgs) = 2,5 5,00 mm	CALIBRATION Model Heron Aqua TROLL 6 3 7 5 9 Flow-Through	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	Purged (L) 2,5 15,5 7,5 PMENT AND robe Meter COMMENTS 2,10 er Probe Unit # ers Measured in (ft bgs) = 2,5 5,00 mameter = /#	CALIBRATION Model Heron Aqua TROLL 6 3 7 5 9 Flow-Through	(Celsius) 10, 69 10, 71 10, 71 10, 71 500 w/ flow thr	(mS/cm) 1.075 1.073 (.071	Oxygen (mg/L O. 07 O. 07 O. 07 O. 07 O. 07 Calibration Checked Again	(mV) -[29, 2 -[29, 4 -(29.6)	(NTU) 8.4 9.1 9.1	(ft BTOC) 13.9 13.9	(L/min) 500 500 500 500

SITE NAME	СНААІ	OU1 RAO_P	erformance M	onitoring	PROJECT NO).	6056	65355	
SAMPLE NO	. EW7-	PM 25,	A-5-2	.5	_ WELL NO	EW7	-PMI	25A	
DATE/TIME SAMPLE MI	COLLECTED ETHOD		1 101 altic Pump and		_ PERSONNE	L AB	RH		
SAMPLE MI SAMPLE QA SAMPLE QO MS/MSD RE	A SPLIT: C DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICAT	T SAMPLE NO E SAMPLE NO D SAMPLE NO).	/A		
SAMPLE C	ONTAINERS, F	RESERVATI	VES, ANALYS	SIS		7		• • • •	
Sample Cont			<u>Preservative</u>		Analysis Req				
2 - 500 mL A			6°C			MNX (8330A)			
3 - 40 mL VC 1 - 500 mL H			6°C, HCl 6°C, H ₂ S0 ₄		Methane (RS	K 175) NH ₃ (350.1), No	O-/NO- (353.2)		
1 - 250 mL H		- •	6°C			Alkalinity (232			
1 - 250 mL H			6°C, ZnOAc/N	NaOH	Sulfide (9034		,		
1 - 250 mL A	mber		6°C		DOC (9060A				-
WELL PUR	GING DATA				<u> </u>				
Date Time Started Time Comple PID Measure Backgroun Breathing	ments d Zone	2- 0= 9 10 NO	15	000	Depth Water Well Casing Volume of W Casing V Minim	ell Depth (ft bgs) to Water (ft bgs) Column Length Volume (per ft) Yater in Well (L) Olumes to Purge tum to Purge (L) Actual Purge (L)	9.34 20.76 12.32 C 3.32 L +0 39.68	NA:	
Purge Wate	er	<i>V</i>			_		BK	·	
FIELD MEA	ASUREMENTS Amount	pН	Temperature	Conductivity (mS/cm)		Redox (ORP)	•	Depth to Wate	er Purge Rate
	Purged (L) W 70		(Celsius)	(mo/em)	Oxygen (mg/I	L) (mV)	(NTU)	(ft BTOC)	(L/min)
1005	**	- 6.31	(Celsius)	1268	Oxygen (mg/I	-185.6		(ft BTOC)	
1010	**	- 6.31 6.31	(Celsius)	1268		-185.6	93.94		(L/min)
	2.5 2 5 575		(Celsius)	1268	0.01	-185.6	93.94	9.38	-500 myan in
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010	N 70 2.5% 5973 ₩₩5.0	6.31	11.15	1268	0.01	-185.6	93.94	9.38	.500 mljan i n
1010 1015 1015 1000 1005 1010 M	### ### ### ### ### ### ### ### #### ####	6.32	11.15 11.15 11.12	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-185.6	G3.94 73.04 73.04	9.38	500 m/m in
1010 1015 1000 1005 1000 PW FIELD EQU Water Level F	IPMENT AND	CALIBRATIO Model Heron	11.15 11.15 11.12	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
1010 1015 1000 1005 1010 Pur FIELD EQU Water Level F Water Quality	IPMENT AND Probe Meter COMMENTS	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
I 0 10 10 15 10 10 10 15 10 10 Water Level F Water Quality GENERAL OF	IPMENT AND Probe / Meter COMMENTS 6.52	CALIBRATIO Model Heron	11.15 11.15 11.12	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
I D I D D D D D D D D D D D D D D D D D	IPMENT AND Probe Meter COMMENTS 6.52 n ter Probe Unit #	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12 NN 500 w/ flow thr	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
IOIO IOIS IOIO IOIS IOIO Water Level F Water Quality GENERAL G Ferrous Iron = Multi-Parame Field Paramet	IPMENT AND Probe Meter COMMENTS 6.52 n ter Probe Unit # ers Measured in	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12 NN 500 w/ flow thr	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
Water Level F Water Quality GENERAL G Ferrous Iron = Multi-Paramet Field Paramet Sample Depth	IPMENT AND Probe Meter COMMENTS G.52 n ter Probe Unit # ers Measured in (ft bgs) = 2,6	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12 NN 500 w/ flow thr	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
Water Level F Water Quality GENERAL G Ferrous Iron = Multi-Paramet Field Paramet Sample Depth	IPMENT AND Probe Meter COMMENTS G.52 n ter Probe Unit # ers Measured in (ft bgs) = 2 f 500 m 1 / n	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12 NN 500 w/ flow thr	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in
FIELD EQU Water Level F Water Quality GENERAL OF Ferrous Iron = Multi-Paramet Field Paramet Sample Depth Pump Rate = Temp Well Di	IPMENT AND Probe Meter COMMENTS G.52 n ter Probe Unit # ers Measured in (ft bgs) = 2 f 500 m 1 / n	CALIBRATIO Model Heron Aqua TROLL	11.15 11.15 11.12 NN 500 w/ flow thr	1268	O.O.I. O.O.I. O.O.I. O.O.I. Calibration Checked Again	-184.6 -184.8 -184.5	G3.94 73.04 73.04	9.38	500 m/m in

SITE NAME	СНААІ	P OU1 RAO_P	erformance M	onitoring	PROJECT NO	O	605	65355	
SAMPLE NO	D. EW7-	PM25	3-5-	35	WELL NO	EW7.	-PM	258	
DATE/TIME SAMPLE M	COLLECTED ETHOD	2-25 Perist	- 2 (/ altic Pump and	1330 tubing	_ PERSONNE 		5 = 7	<u>—</u> — 50	BE TO
SAMPLE M SAMPLE QA SAMPLE QO MS/MSD RE	A SPLIT: C DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATI	T SAMPLE NO E SAMPLE NO D SAMPLE NO	D			
Sample Cont		PRESERVATI	Preservative	SIS	Analysis Rec	uested			
2 - 500 mL A 3 - 40 mL VC 1 - 500 mL F	DA .		6°C, HCl 6°C, H ₂ S0 ₄		Methane (RS	MNX (8330A) SK 175) , NH ₃ (350.1), Ne	O ₂ /NO ₂ (353.2)	
1 - 250 mL H	IDPE IDPE		6°C, ZnOAc/N	VaOH	SO ₄ (9056A) Sulfide (9034	, Alkalinity (232 4)			
1 - 250 mL A	GING DATA	=	6°C		DOC (9060A	x)			
Date Time Started Time Comple PID Measure Backgroun Breathing Well Head Purge Wate	<u>ments</u> d Zone	2-3 #12 133 NO	0	305	Depth Water Well Casing Volume of W Casing V	ell Depth (ft bgs) to Water (ft bgs) r Column Length g Volume (per ft) Vater in Well (L) Volumes to Purge num to Purge (L) Actual Purge (L)	9.3 30. 0.16 4.9	Ĺ	
FIELD MEA	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/l	Redox (ORP) L) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	er Purge Rate (L/min)
1310	50 = 5-2.5 50 to 25.0	6.42	11.35	733 752 746	0.57	-100.8	86.4	9.36	500 allain
1370		6.42	11.35	, 716	0.01	-99.8	46,3	9.36	
				m					
FIELD EQU	IPMENT AND		N		. <u> </u>	<u> </u>	····		
Water Level F Water Quality	robe	Model Heron Aqua TROLL 5	00 w/ flow thr	ough cell		inst Calibrated L Calibration Verifi		librated Weekly	<i>y</i>
		ng/L 	Cell						
Sample Depth Pump Rate =	(ft bgs) = 35 500 ml								
Temp Well Di Screen Interva		-401							

WATER SAMPLE COLLECTION FIELD SHEET **GENERAL INFORMATION** CHAAP OU1 RAO_Performance Monitoring PROJECT NO. SITE NAME WELL NO. EW7-PM26A SAMPLE NO. EW7 - PM 26A-5-25 PERSONNEL RE, J6 2-17-21 DATE/TIME COLLECTED SAMPLE METHOD Peristaltic Pump and tubing SAMPLE MEDIA: Groundwater SAMPLE QA SPLIT: YES NO SPLIT SAMPLE NO. SAMPLE QC DUPLICATE: YES NO DUPLICATE SAMPLE NO. MS/MSD REQUESTED YES NO MS/MSD SAMPLE NO. SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS Sample Container **Preservative** Analysis Requested 2 - 500 mL Amber Explosives + MNX (8330A) 3 - 40 mL VOA 6°C, HCl Methane (RSK 175) TKN (351.2), NH₃ (350.1), NO₂/NO₃ (353.2) 1 - 500 mL HDPE 6°C, H₂SO₄ 1 - 250 mL HDPE 6°C SO₄ (9056A), Alkalinity (2320B) 1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) DOC (9060A) 1 - 250 mL Amber WELL PURGING DATA Well Depth (ft bgs) 2-27-21 Date Depth to Water (ft bgs) Time Started Water Column Length Well Casing Volume (per ft) Time Completed Volume of Water in Well (L) 2-6 Z. PID Measurements Background Casing Volumes to Purge Breathing Zone Minimum to Purge (L) Well Head Actual Purge (L) Purge Water FIELD MEASUREMENTS Time Amount pΗ Temperature Conductivity Dissolved Redox (ORP) **Turbidity** Depth to Water Purge Rate Purged (L) (Celsius) (mS/cm) Oxygen (mg/L) (ft BTOC) (mV) (NTU) (L/min) 15505 6.55 2.5 0.03 -75.6 26.3 10.66 13,61 ,500 1600 5.0 10.66 0.03 25.9 928 13.61 10.55 .500 925 1605 7.5 10.67 0.03 26.5 13.61 900 FIELD EQUIPMENT AND CALIBRATION Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Twice Daily Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 5.92 mg/L Multi-Parameter Probe Unit # 637598 Field Parameters Measured in Flow-Through Cell Sample Depth (ft bgs) = 2-5Pump Rate = 500 ml/win Temp Well Diameter = / "

Screen Interval (ft bgs) = 20 - 30

SITE NAME	CHAAI	OU1 RAO_I	Performance M	onitoring	PROJECT NO	O	605	65355	
			6B-5-		WELL NO	EW7	-PM	268	3
DATE/TIME (SAMPLE ME			-2/ 15 staltic Pump and		_PERSONNE	// 5	,50	5	
MS/MSD REC	SPLIT: DUPLICATE: QUESTED	Groundwate YES YES YES	NO NO NO	DUPLICATI MS/MSI	T SAMPLE NO E SAMPLE NO D SAMPLE NO	D	-		
		PRESERVATI	IVES, ANALYS	SIS		_	•		
Sample Contain 2 - 500 mL Ar			Preservative 6°C		Analysis Rec				
3 - 40 mL VO			6°C, HCl		Methane (RS	MNX (8330A)			
1 - 500 mL HI			6°C, H ₂ S0 ₄			, NH ₃ (350.1), NO) ₂ /NO ₂ (353.2)	`	
1 - 250 mL HI			6°C			, Alkalinity (2320		, 	
1 - 250 mL HI			6°C, ZnOAc/N	IaOH	Sulfide (903				
1 - 250 mL Ar	····		6°C		DOC (9060A				
WELL PURG	GING DATA				,				-122
Date Time Started Time Complete PID Measurem Background Breathing Z Well Head Purge Water	ed n <u>ents</u> I one	2-2 150 1515 N	-1-21 0 5 0		Depth Wate Well Casing Volume of V Casing V	ell Depth (ft bgs) to Water (ft bgs) r Column Length g Volume (per ft) Vater in Well (L) Volumes to Purge num to Purge (L) Actual Purge (L)	40 13.61 26.39 0,16 4.22 NA NA 7.5		
FIELD MEAS	STIDEMENTES								
Time	Amount		_						
11110	Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/	Redox (ORP) L) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate (L/min)
		-	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV)	(NTU)	(ft BTOC)	(L/min)
1505	Purged (L)	6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV)	(NTU)	(ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505	Purged (L)	6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV)	(NTU)	(ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510	Purged (L) 2-5 5.0	6.46 6.46	(Celsius)	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510 1515	Purged (L) 2-5 5.0	6.46 6.46 6.46	(Celsius) [0.02 D. 0 0 0 0 0 0 0 0 0 0	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510 1515	Purged (L) 2.5 5.6 7.5	6.46 6.46 6.46	(Celsius) [0.02 D. 0 0 0 0 0 0 0 0 0 0	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4 ((ft BTOC)	(L/min)
1505 1510 1515	Purged (L) 2.5 5.6 7.5	6.46 6.46 6.46	(Celsius) [0.02 D. 0 0 0 0 0 0 0 0 0 0	(mS/cm)	Oxygen (mg/	L) (mV) +9-104.9 -104.7	(NTU) 38 4(35	(ft BTOC)	(L/min)
1505 1510 1515	Purged (L) 2-5 5.6 7.5 PMENT AND	L.46 6.46 6.46 CALIBRATIO Model Heron	(Celsius) [0.02 D. 0 0 0 0 0 0 0 0 0 0	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) +9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
ISOS ISIO ISIO ISIO ISIO ISIO ISIO ISIO	Purged (L) 2-5 5.6 7.5 PMENT AND robe Meter	L.46 6.46 6.46 CALIBRATIO Model Heron	(Celsius) (D. DL D. D (D. D (D. D)	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality	Purged (L) 2-5 5.6 7.5 PMENT AND TOBE Meter OMMENTS	CALIBRATIO Model Heron	(Celsius) (D. DL D. D (D. D (D. D)	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron =	Purged (L) 2-5 5.6 7.5 PMENT AND obe Meter OMMENTS 7,32 n	CALIBRATIO Model Heron Aqua TROLL	(Celsius) (O. O.L. (D. J. O. ((mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete	Purged (L) 2-5 5.6 7.5 PMENT AND robe Meter OMMENTS 7,32 ner Probe Unit #	CALIBRATION Model Heron Aqua TROLL	(Celsius) (D. D. L. (D. J. D.	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2-5 5.6 7.5 PMENT AND TODE Meter OMMENTS 7,32 re Probe Unit # rs Measured in	CALIBRATION Model Heron Aqua TROLL 63 755 Flow-Through	(Celsius) (D. D. L. (D. J. D.	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL Corerrous Iron = Multi-Paramete Field Paramete Sample Depth	Purged (L) 2-5 5.6 7.5 PMENT AND Tobe Meter OMMENTS 7,32 n er Probe Unit # rs Measured in (ft bgs) = 35	CALIBRATION Model Heron Aqua TROLL 63 755 Flow-Through	(Celsius) (D. D. L. (D. J. D.	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL Corerous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	Purged (L) 2-5 5.0 7.5 PMENT AND Tobe Meter OMMENTS 7,32 Per Probe Unit # rs Measured in (ft bgs) = 35 500 m/	CALIBRATION Model Heron Aqua TROLL 63 755 Flow-Through	(Celsius) (D. D. L. (D. J. D.	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)
FIELD EQUI Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	Purged (L) 2-5 5.0 7.5 PMENT AND Tobe Meter OMMENTS 7,32 Per Probe Unit # rs Measured in (ft bgs) = 35 500 m/	CALIBRATION CALIBRATION Model Heron Aqua TROLL 63 755 Flow-Through	(Celsius) (D. D. L. (D. J. D.	(mS/cm) .8/5 .8/7 .820	Oxygen (mg/	L) (mV) #9-104.9 -104.7 -104.6	(NTU) 38 4(35	(ft BTOC)	(L/min)

SITE NAME	СНАА	P OU1 RAO_F	Performance M	onitoring	PROJECT NO	D	60	565355	
SAMPLE NO.	EW:	-PMI	278-5	5-35	WELL NO	EW7 L A.E,	- PA	1273	
		2-27-		1215	DED GOLD IN	BE	TO		_
SAMPLE ME			taltic Pump and	tubing	_ PERSONNE	L 07.1	00		
0.43 (D) E 3 (E	D. ()	0 1			_	-			
SAMPLE ME		Groundwate	/ \	ant 1			1		
SAMPLE QA		YES	NO		Γ SAMPLE NO) ⁻		
SAMPLE QC			\ NO \		E SAMPLE NO	- \ \ -			
MS/MSD REC	QUESTED	YES	1 NO	MS/MSI	SAMPLE NO)			
SAMPLE CO	NTAINERS.	PRESERVATI	IVES, ANALYS	SIS					
Sample Contai			Preservative		Analysis Reg	uested			
2 - 500 mL An	nber		6°C			MNX (8330A)			
3 - 40 mL VO	A		6°C, HCl		Methane (RS				
1 - 500 mL HI	OPE		6°C, H ₂ SO ₄			, NH ₃ (350.1), NC	02/NO3 (353.	2)	
1 - 250 mL HI	OPE		6°C			, Alkalinity (2320			
1 - 250 mL HI	OPE		6°C, ZnOAc/N	laOH	Sulfide (9034				
1 - 250 mL An	nber		6°C		DOC (9060A	<u>′ </u>			
WELL PURG	ING DATA				<u> </u>				
					We	ell Depth (ft bgs)	40		
Date		2-2	7-21			to Water (ft bgs)	11.59		
Time Started		120	00			Column Length	28.4		
Time Complete	ed	121	5		-	Volume (per ft)	0.16		
PID Measurem	nents				_	ater in Well (L)	4.54		
Background	<u> </u>	A	r1>			olumes to Purge	NA	-	.,,,
Breathing Z	one		1		_	num to Purge (L)	NA	_	
Well Head					_	Actual Purge (L)	7.5		
Purge Water	r				_				
FIELD MEAS	SUREMENTS	1							
Time	Amount	pН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Water	Purge Rate
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/I		Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
Time		рН	•	•			•	(ft BTOC)	•
Time		pH	•	•			(NTU)	(ft BTOC)	(L/min)
	Purged (L)	-	(Celsius)	(mS/cm)	Oxygen (mg/I	L) (mV)	(NTU) ((ft BTOC)	•
1205	Purged (L)	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I	L) (mV)	(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) ((ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1205	Purged (L) 2.5 5.0	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1206	Purged (L) 2.5 5.0 7.5	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1206	Purged (L) 2.5 5.0 7.5	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1206	Purged (L) 2.5 5.0 7.5	6.29	(Celsius)	(mS/cm)	Oxygen (mg/I		(NTU) 45 47	(ft BTOC)	(L/min)
1206	Purged (L) 2.5 5.0 7.5	6.29 6.29 6.29	(Celsius)	(mS/cm)	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
205 210 215	Purged (L) 2.5 5.0 7.5 PMENT AND	L.29 L.29 L.29 CALIBRATIO Model Heron	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter	L.29 L.29 L.29 CALIBRATIO Model Heron	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS	L.29 L.29 L.29 CALIBRATIO Model Heron	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Co	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54	CALIBRATIO Model Heron Aqua TROLL	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Corrous Iron = Multi-Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit #	CALIBRATIO Model Heron Aqua TROLL	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Corrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit # rs Measured in	CALIBRATIO Model Heron Aqua TROLL	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth of	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit # rs Measured in (ft bgs) = *3*	CALIBRATION Model Heron Aqua TROLL Mg/L 63759 Flow-Through	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth of	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit # rs Measured in (ft bgs) = *3*	CALIBRATION Model Heron Aqua TROLL Mg/L 63759 Flow-Through	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Corrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit # rs Measured in (ft bgs) = 3 500 m. 1	CALIBRATION Model Heron Aqua TROLL Mg/L 63759 Flow-Through	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)
FIELD EQUIL Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth (Pump Rate =	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 6.54 er Probe Unit # rs Measured in (ft bgs) = 3 500 m L umeter = 1	CALIBRATION Model Heron Aqua TROLL Mg/L C 3 75 9 Flow-Through	(Celsius)	(mS/cm) , 978 , 975 , 974	Oxygen (mg/l	-1385,9 -135,7 -(35,3	(NTU) 45 47 47 47	(ft BTOC) m 119.6 119.6 119.6	(L/min)

SITE NAME	СНААІ	P OU1 RAO_P	erformance M	onitoring	PROJECT NO	•	605	65355	
SAMPLE NO	EW7-	-PM28	A-5-	25	_ WELL NO	EW7	-PM	L8 A	
DATE/TIME SAMPLE ME	COLLECTED ETHOD		21/153 taltic Pump and		_ PERSONNEL -	AE,	JO		
SAMPLE ME		Groundwater	/			NA	 		
SAMPLE QA		YES	NO		Γ SAMPLE NO.	·			
	DUPLICATE:	YES	NO		E SAMPLE NO.				
MS/MSD RE	QUESTED	YES	\ NO	MS/MSL	SAMPLE NO.				
SAMPLE CO	ONTAINERS, F	RESERVATI	VES, ANALYS	SIS					
Sample Conta	iner		Preservative		Analysis Requ	<u>iested</u>			
2 - 500 mL A	mber		6°C		Explosives + I	MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSI				
1 - 500 mL H			6°C, H ₂ S0 ₄			NH ₃ (350.1), NO)	
1 - 250 mL H			6°C			Alkalinity (2320	(B)		
1 - 250 mL H			6°C, ZnOAc/N	NaOH	Sulfide (9034)				
1 - 250 mL A			6°C		DOC (9060A)			=	Tellar a
Date Time Started Time Complet PID Measurer Background Breathing 2 Well Head Purge Wate	ted n <u>ents</u> d Zone	2-2 +44 153 N	5-21 15-15 15	90 β6	Depth to Water Well Casing Volume of Wa Casing Vo	ol Depth (ft bgs) o Water (ft bgs) Column Length Volume (per ft) ater in Well (L) blumes to Purge um to Purge (L) actual Purge (L)	9.16 40.6 40.69	g to 10	
EIELD MEA	OLIDERAENIEO				****				
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1525	1 47 Ca.	134	11.63	.104	1.75	-59.0	33	9.41	E00-11 5
1530	## 50	1 34	11.62	1105	1.78	- 58.0	32	9.41	500 ad fair
1535	#2575	1 34	11 09	.106	1.78	-58.1	30	9.41)/
13.77	742210	600	11.31	* 100	1,73	2701	<u> </u>	1.71	
					-	1			
						1			
	-			1/1	2		-		
					W.				
		_							
FIELD EQUI	PMENT AND	CALIBRATIO	N						
		<u>Model</u>			Calibration				
Water Level P	robe	Heron			Checked Again	nst Calibrated Le	ngth		
Water Quality	Meter	Aqua TROLL :	500 w/ flow thr	ough cell	Twice Daily C	alibration Verific	cation also Ca	librated Weekly	
GENERAL C	OMMODE NEEDS								
Ferrous Iron =	er Probe Unit #	ng/L							
	ers Measured in	Flow-Through	^ell						
	(ft bgs) = 2.6								
Pump Rate =		<i>!</i>							
Temp Well Dia		,							
	l (ft bgs) = 26								
								-	

SITE NAMECHA	AP OU1 RAO_I	Performance I	Monitoring	PROJECT NO		605	65355	
SAMPLE NO. EW7	- Pm 29	94-5.	-25	 WELL NO	EWT	- PM 2	9A	
DATE/TIME COLLECTED	8 110	4/12		— DED CONNET	AF	- PM 2		
SAMPLE METHOD		staltic Pump an		_ FERSONNEI		100		
SAMPLE MEDIA:	Groundwate	r		_				
SAMPLE QA SPLIT:	YES	NO	SPLI	T SAMPLE NO	N.	1		
SAMPLE QC DUPLICATE		NO		E SAMPLE NO		·		· · · · · · · · · · · · · · · · · · ·
MS/MSD REQUESTED	YES	(NØ		SAMPLE NO				
SAMPLE CONTAINERS,	PRESERVATI	VES, ANALY	rsis					
Sample Container		<u>Preservative</u>		Analysis Requ	<u>iested</u>			
2 - 500 mL Amber		6°C		Explosives + l	MNX (8330A)			
3 - 40 mL VOA		6°C, HCl		Methane (RSI		·		
1 - 500 mL HDPE		6°C, H ₂ S0 ₄				NO ₂ /NO ₃ (353.2)	
1 - 250 mL HDPE		6°C			Alkalinity (23)	20B)		
1 - 250 mL HDPE		6°C, ZnOAc/	NaOH	Sulfide (9034)				
1 - 250 mL Amber		6℃		DOC (9060A)				
WELL PURGING DATA						30'		
Date	9-1	1-10-71			ll Depth (ft bgs o Water (ft bgs			
Time Started	h. H	26-21 86 1225			o water (it ogs Column Lengti			
Time Completed	THE THE	1240	'	_	Volume (per ft		<u></u>	
PID Measurements		1210			ter in Well (L	·		
Background	7#	FAM ND			olumes to Purg			
Breathing Zone		<u> </u>		-	ım to Purge (L		+ 1001	140 N 2 A 11
Well Head				_	ctual Purge (L		*	Tito to the 10
Purge Water	-			- *	otaar rango (12	/ 7,	<u> </u>	
				-				
FIELD MEASUREMENTS	<u> </u>							
Time Amount	_TT	Tommorotum						
	pН	Temperature	 Conductivity 	Dissolved	Redox (ORP)	Turbidity	Depth to Water	Purge Rate
Purged (L)	рn	(Celsius)	(mS/cm)	Dissolved Oxygen (mg/L)) Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
Purged (L)	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(L/min)
Purged (L)	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius)	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5	6.52	(Celsius) 10.61 10.65 10.67	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0	6.52	(Celsius) 10.61 10.65 10.67	(mS/cm)	Oxygen (mg/L) 0.01 0.01	(mV) -97.6 -97.2	(NTU)	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5	6.5 Z 6.5 3 6.5 Z	(Celsius) 10.61 10.65 10.67	(mS/cm)	0.01 0.01 0.01	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND	6.5 2 6.5 3 6.5 2 CALIBRATIO Model	(Celsius) 10.61 10.65 10.67	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O I O. O I O. O I Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	CALIBRATIC Model Heron	(Celsius) 10.61 10.65 10.67	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O I O. O I O. O I Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS	CALIBRATIC Model Heron	(Celsius) 10.61 10.67 10.67	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12	CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12 Multi-Parameter Probe Unit #	CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 10.61 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12 Multi-Parameter Probe Unit # Field Parameters Measured in	CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 10.61 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12 Multi-Parameter Probe Unit # Field Parameters Measured in Sample Depth (ft bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL:	(Celsius) 10.61 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12 Multi-Parameter Probe Unit # Field Parameters Measured in Sample Depth (ft bgs) = 2.5 Pump Rate = 500 m (1)	CALIBRATIO Model Heron Aqua TROLL: MG 3 7 5 9 Flow-Through 6	(Celsius) 10.61 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)
Purged (L) 1230 2.5 1235 5.0 1240 7.5 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 6.12 Multi-Parameter Probe Unit # Field Parameters Measured in Sample Depth (ft bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL: ### State of the control of th	(Celsius) 10.61 10.65 10.67 10.67 DN 500 w/ flow th	(mS/cm) , 810 , 813 , 817	Oxygen (mg/L) O. O (O. O (Calibration Checked Again	(mV) -97.6 -97.2 -97.7	(NTU) 11.5 11.7 9.3	(ft BTOC) 9.54 9.54 9.54	(Umin)

SITE NAME	CHAAl	OU1 RAO_I	Performance M	lonitoring	_PROJECT NO)	6056	65355		
SAMPLE NO	EW7	- PM 2	93-5-	35	WELL NO	EW7	- PM 2	9B		
DATE/TIME SAMPLE ME	COLLECTED THOD	2-24 Peris	staltic Pump and	035 I tubing	_ PERSONNEI	A.E	, 50			
MS/MSD RE	SPLIT: DUPLICATE: QUESTED	Groundwate YES YES YES	NO NO	DUPLICAT MS/MS	T SAMPLE NO E SAMPLE NO D SAMPLE NO	. N	f 7 7m 29B	- 5 - 35	- M5/M5	
	ONTAINERS, F	PRESERVAT	IVES, ANALY	SIS					-	
Sample Conta			Preservative		Analysis Requ					
2 - 500 mL Ai 3 - 40 mL VO			6°C			MNX (8330A)				
1 - 500 mL H			6°C, HCl 6°C, H ₂ SO ₄		Methane (RS)	NH ₃ (350.1), NO)./NO. (353.2)			
1 - 250 mL H			6°C	•		Alkalinity (2320				
1 - 250 mL H	DPE		6°C, ZnOAc/	NaOH	Sulfide (9034				_	
1 - 250 mL Aı	mber		6°C		DOC (9060A)				
Date Time Started Time Complet PID Measuren Background	ted nents	2-2 0610 1035	_	10	Well Depth (ft bgs) Depth to Water (ft bgs) Water Column Length Well Casing Volume (per ft) Volume of Water in Well (L) Casing Volumes to Purge					
Breathing Z		77.				um to Purge (L)	10 49 L	Me -NA	<u> </u>	
Well Head					_	Actual Purge (L)	7.5			
Purge Wate	r	V	,		_					
FIELD MEA	SUREMENTS Amount	pН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Wate	er Purge Rate	
	Purged (L)		(Celsius)	(mS/cm)				-		
			, ,	, ,	Oxygen (mg/L	· , ,	(NTU)	(ft BTOC)	(L/min)	
1025	2.5	6.49	10.67	,947	0.02	-119.4	84	9.53	2500	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
			10.67	,947	0.02	-119.4	84	9.53	2500	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1030	5.0	6.49	10.67	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1035	7.5	6.49	10.67 13.68 10.66	1947	0.02	-119.4 -119.6	84 87	9.53	11	
1035	5.0 7.5	6.49	10.67 13.68 10.66	1947	0.02 0.02 0.62	-119.4 -119.6 -119.7	84 87 96	9.53	11	
JO30 J035	7.5 PMENT AND	CALIBRATIO Model Heron	10.67 13.68 10.66	,947 ,950 ,953	O.02 O.02 O.62 i	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron =	PMENT AND robe Meter OMMENTS 2.73 n	CALIBRATIO Model Heron Aqua TROLL	10-67 18.68 18.66 18.66	,947 ,950 ,953	O.02 O.02 O.62 i	-119.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramet	PMENT AND robe Meter OMMENTS	CALIBRATIO Model Heron Aqua TROLL	10.67 10.68 10.66 10.66	,947 ,950 ,953	O.02 O.02 O.62 i	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramet	PMENT AND robe Meter OMMENTS 2.73 n er Probe Unit # ers Measured in	CALIBRATIO Model Heron Aqua TROLL 63756 Flow-Through	10.67 10.68 10.66 10.66	,947 ,950 ,953	O.02 O.02 O.62 D.62	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	PMENT AND robe Meter OMMENTS 2.73 n er Probe Unit # ros Measured in (ft bgs) = 3 500 m1/	CALIBRATIO Model Heron Aqua TROLL 63756 Flow-Through	10.67 10.68 10.66 10.66	,947 ,950 ,953	O.02 O.02 O.62 D.62	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	PMENT AND robe Meter OMMENTS 2.73 n er Probe Unit # rrs Measured in (ft bgs) = 3 500 m1/ ameter = 1	CALIBRATION CALIBRATION Model Heron Aqua TROLL 6375 Flow-Through 5 m.i. n	10.67 10.68 10.66 10.66	,947 ,950 ,953	O.02 O.02 O.62 D.62	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	PMENT AND robe Meter OMMENTS 2.73 n er Probe Unit # rrs Measured in (ft bgs) = 3 500 m1/ ameter = 1	CALIBRATIO Model Heron Aqua TROLL 63756 Flow-Through	10.67 10.68 10.66 10.66	,947 ,950 ,953	O.02 O.02 O.62 D.62	-3(9.4 -119.6 -119.7	84 87 96	9.53 9.53 9.53	500 11 11	

GENERAL INFORMATION

GENERAL I	NFORMATIO	N.							
SITE NAME		CH	IAAP		_PROJECT NO	D	605	565355	
SAMPLE NO	•	G0	022-5		_ WELL NO)	G	0022	
DATE/TIME (3-2 PRO-A	-21/ /	105 ONSOON	_ PERSONNE	L <u>A E</u>	JB		
SAMPLE ME	DIA:	Groundwater	r		_				
SAMPLE QA	SPLIT:	YES	NO	SPLI	T SAMPLE NO). /	レル		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICAT	E SAMPLE NO).	1 NA		
MS/MSD REG	QUESTED	YES	NO	MS/MSI	O SAMPLE NO)	6 NA		
	NTAINERS, I	PRESERVATI		SIS	4 1 ' D				
Sample Conta 2 - 500 mL Ar			Preservative 6°C		Analysis Req	MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RS				
1 - 500 mL HI			6°C, H ₂ S0 ₄			, NH ₃ (350.1), N	O ₂ /NO ₂ (353.2	,	
1 - 250 mL HI		·	6°C			, Alkalinity (232			<u>-</u>
1 - 250 mL HI			6°C, ZnOAc/	NaOH	Sulfide (9034		.02)		
1 - 250 mL Ar			6°C	14011	DOC (9060A				
WELL PURC					200 (7000A				·
Data		2 -	-2-2	_1		Depth (ft BTOC)		34.98 12.77	
Date Time Started			000			Water (ft BTOC)			
	ad		100			Column Length		22,2	1
Time Complet PID Measuren			0)		_	y Volume (per ft) Vater in Well (L)		2.47	
Background			111)			olumes to Purge		4,85 NA	
Breathing Z			1 ND			num to Purge (L)			
Well Head	one		L N.D		_	Actual Purge (L)		2.5	
Purge Water	•		1 100		- '	Actual Fulge (L)	'	219	
- Targe Water	•								
FIELD MEAS	SUREMENTS								
Time	Amount	pН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Wate	Purge Rate
•	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/I	(mV)	(NTU)	(ft BTOC)	(L/min)
1005	2.5	6,93	8.91	0.850	4.06	-176.4	1.9	12.55	.500
1010	5.0	6,91	8.93	0.852	4.00	-180,3	0.01	12.55	500
1015	7.5	6.90	8,98	0.851	3.43	-177.9	0.08	12,55	,500
1020	10	10,90	9,11	0.850	3,94	-173,8	0.07	12.55	500
1025	12-5	6,89	9,22	0,852	3.75	-168.1	0.05	12.55	500
1030	15	6.89	9.32	0.852		-160.7	0.06	12.55	500
1035	17.5	6,89	9,62	0.852	3,651	-152.6	0,06	12.55	500
11240	20	6.89	9.80	0.853	3.6154		0.06	12.55	500
1045	22.5	6.89	9,99	0.845	3.49	-133,7	0.05	12.55	500
1050	25.0	6,88		0.847	3.44	-124.5	0.04	12.55	500
1055	27.5	7	16,25	0.850	•				
1100	30	6.87	10.29		3,41	- 114,4	0.04	12-55	,500
1105	32.5	0,87	10.37	0.850	3,37	-104.7	0.04	12.55	1500
	PMENT AND			V: 070	3.32	- 94,9	0.04	12.55	1500
FIELD EQUI	PMENI AND)IN		Calibration				
Water Level Dr	.a.b.a	Model Harrar			Calibration	C-111 1 I			
Water Level Pr		Heron Aqua TROLL	500 m/ flore the			inst Calibrated L		1:1	
Water Quality	Meter	Aqua TROLL	300 W/ Llow III	rough cen	I wice Daily C	Calibration Verif	ication also Ca	indrated weekly	
GENERAL C					···		***		
Ferrous Iron =		ng/L							
Multi-Paramete	er Probe Unit #	6375	18						
Field Paramete		Flow-Through							
Pump Placeme	nt Depth = 3	O ft							
Pump Rate =		1 / min			<u>Histor</u>	ric (7-year avera	ge low and hig	h / 2020 / Avg ii	ı Bold)
Well Diameter	= 4"				ORP	64.0	157.3	64.0	107.3
Screen Interval	= 18-33				DO	0.40	2.07	2.07	1.00
					PH	6.39	7.25	7.25	6.77

Cond.

0.635

0.862

0.862

0.731

SITE NAME		СНААР			PROJECT NO. 60565355				
SAMPLE NO	•	G0	094-5		_ WELL NO),	G	0094	
DATE/TIME	COLLECTED	3-1-	21/11	145	DED CONNE	DE	TB		
SAMPLE ME			CTIVE SS MO		_ PERSONNE	L AE,	UU	·	
					_			1.11	
SAMPLE ME		Groundwater		T CDY I	T (1_		
SAMPLE QA	DUPLICATE:	YES YES	NO NO		T SAMPLE NO E SAMPLE NO		<u> </u>		
MS/MSD REC		YES	NO		E SAMPLE NO D SAMPLE NO	·	· · ·		
	2000100	11.5	110	1/15/1/15/	D SAIVII LE NO	·			
	NTAINERS, F	PRESERVATI		SIS					
Sample Contai			Preservative		Analysis Req				
2 - 500 mL Ar 3 - 40 mL VO			6°C	.		MNX (8330A)			
1 - 500 mL HI		6°C, HCl 6°C, H ₂ S0 ₄			Methane (RS	NH ₃ (350.1), NO)./NO. (353.2)		
1 - 250 mL HI			6°C			Alkalinity (2320			
1 - 250 mL HI			6°C, ZnOAc/N	NaOH	Sulfide (9034		-,		
1 - 250 mL An			6°C		DOC (9060A				
WELL PURG	GING DATA								
-		_	, , ,			Depth (ft BTOC)		27.50	
Date			1-21			Water (ft BTOC)		4.93	
Time Started	a d		05			Column Length	Ţ,	2.57	
Time Complete PID Measurem		\mathcal{U}	7 45			Volume (per ft) ater in Well (L)	,6		
Background			νD			olumes to Purge	7 ,	NA	
Breathing Z					_	um to Purge (L)	20		
Well Head			1		_	Actual Purge (L)	20		
Purge Water	r		√		_			·	
	SUREMENTS								
Time	Amount Purged (L)	pH	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Openth to Water (ft BTOC)	(L/min)
1015	5.0	6.38		943	0.08	44.9	74,5	14.64	1500
1020	7.5	6.31.	11.66	,918	0.07	\$29.9	84.05	14.64	500
1025	10	1 32	12,33	1911	0.05	15.9	41.9	14.64	500
1030	12.5	6.32	12:31	,904	0.04	4,2	47.5	14.64	500
1035	15	6.32	12.57	4888	0.03	-4.5	47.5	14.64	,500
1040	17.5	6.311	12,82	.893	0.03	-9,1	16.8	14.64	.500
1045	20	6.30	12,93	,887	0,03	-12.1	18.0	14.64	500
10 13		- 70	<u>, , , , , , , , , , , , , , , , , , , </u>		0,5		70.0	1110	1,00
			M						
							*		
EIELD EOIT	PMENT AND	CALIRRATIO	N	<u> </u>	 				
Water Level Pr		Model Heron			Calibration	not Colibrated La	adh		
Water Level Pr Water Quality		Aqua TROLL:	500 w/ flow thro	ough cell		nst Calibrated Le Calibration Verifi		ibrated Weekly	,
	·								
GENERAL C		/T							
Ferrous Iron =	r Probe Unit #	1g/L 63759	· e						
	rs Measured in								
	nt Depth = 27								
Pump Rate =	50U	<u>, , ,</u>			Histor	ic (7-year averag	e low and high	/ 2020 / Avo i	n Bold)
Well Diameter	= 2"				ORP	-53.6	27.7	-28.0	-21.8
Screen Interval					DO	0.16	0.64	0.64	0.48
					PH	5.92	6.29	6.04	6.04
					Cond.	0.359	0.791	0.791	0.601
					Cond.	0.359	0.791	0.791	0.601

SITE NAME		СНААР			_PROJECT NO	o	60565355					
SAMPLE NO		G0	096-5		WELL NO	D	G	0096				
DATE/TIME	COLLECTED	3-1-2	1/910		PERSONNE	ı	3 RF					
SAMPLE ME			ACTIVE SS MO			<u></u>) "		<u>.</u>			
SAMPLE ME	DIA.	Groundwater	•									
SAMPLE QA		YES	NO	SPLI	T SAMPLE NO). /) B-					
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATI	E SAMPLE NO	D	GO	1296-5 Tim	- 915			
MS/MSD REG	QUESTED	YES	NO	MS/MSI	O SAMPLE NO). <u>/</u>	14					
SAMPLE CO	ONTAINERS, I	PRESERVATI	VES. ANALYS	212								
Sample Conta		THEOLIGIA VILLE	<u>Preservative</u>		Analysis Rec	<u>uested</u>						
2 - 500 mL Ar	mber		6°C		Explosives + MNX (8330A)							
3 - 40 mL VO			6°C, HCl		Methane (RS							
1 - 500 mL HI 1 - 250 mL HI			6°C, H ₂ S0 ₄			, NH ₃ (350.1), NO		.)				
	mL HDPE 6°C, ZnOAc/NaOH				Sulfide (9036A)	, Alkalinity (232)	JB)	· · · · · · · · · · · · · · · · · · ·				
1 - 250 mL Ar		=	6°C	14011	DOC (9060A							
WELL PURC	SING DATA				<u> </u>			<u> </u>				
_		_	, 7 i			Depth (ft BTOC)		27.93				
Date			1-21			Water (ft BTOC)		6.96N7	8			
Time Started Time Complet	ad.	41	30			r Column Length g Volume (per ft)		97				
PID Measurem		7/	0	· · · · · · · · · · · · · · · · · · ·		Vater in Well (L)		= 10.971	(,62			
Background		N	D			olumes to Purge		10 2				
Breathing Z	one	1			_	num to Purge (L)	<u>-</u>					
Well Head						Actual Purge (L)	20	<u></u>				
Purge Water	r	<i>\V</i>	, 		_							
FIELD MEAS	SUREMENTS											
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/l	Redox L) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	r Purge Rate (L/min)			
835	2.5	6.16	10.09	1,230	0.11	-109.5	20,9	16,79	500			
840	5"	6.17	10,01	1.199	0.09	-104.9	14	16.79	.500			
845	7.5	6.17	10,13	1.181	0.07	-104.8	9.6	16.79	500			
850	10	6.17	10.27	1.170	6,06	-103.6	6.9	16,79	.500			
855	100 12.5	6.16	10,55	1.161	0.05	-103.0	5.7	16.79	500			
900	15-	6,17	10.51	1.154	0.04	-102,2	4,7	16.79	.500			
MHR 910	20.0	6.19	10.69	1.138	0.03	-102.0	4,2	16.79	,500			
10-110	20.0		10.6	1.170	0,07		7,6-	16,7	,500			
			11									
			7									
EXEX D EOIT	DA (TANEL A AID)	CALIDDATIC) NI									
FIELD EQUI	PMENT AND	Model Model)N		Calibration							
Water Level Pr	obe	Heron				inst Calibrated L	ength					
Water Quality	Meter		500 w/ flow thr	ough cell		Calibration Verifi		librated Weekly	,			
GENERAL C	OR AR ATTINITIO											
Ferrous Iron =		ng/L										
Multi-Paramete		6375	-9¢									
Field Paramete								-1.1				
Pump Placemen		3 ft							<u> </u>			
Pump Rate =						ric (7-year averag			n Bold)			
Well Diameter					ORP	-57.3	133.1	65.0	17.8			
Screen Interval	= 15-25				DO	0.32	0.61	0.61	0.50			
-					Cond.	6.40 0.483	7.04 1.040	6.72 1.040	0.697			
					Cond.	COT-103	1.040	1.040	V.U7/			

SITE NAME		CE	[AAP		PROJECT NO. 60565355					
SAMPLE NO		G0	102-5		WELL NO).	G	0102		
DATE/TRAE	COLLECTED	3-2	-21/	705		L BE	, J.	B		
SAMPLE ME			CTIVE SS MO	NSOON	_ PERSONNE	L_ 176)	<i>V</i>		
	- '				_					
SAMPLE ME SAMPLE OA		Groundwater YES	NO	CDI IT	SAMPLE NO	. 4/	'A			
_	DUPLICATE:	YES	NO		E SAMPLE NO		/ / ///			
MS/MSD REG		YES	NO		SAMPLE NO		1 2/			
				-						
Sample Conta	NTAINERS, I	'RESERVATI	VES, ANALY	SIS	Analysis Req	uested				
2 - 500 mL Ar			6°C			MNX (8330A)				
3 - 40 mL VO	A		6°C, HCl		Methane (RS					
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), N	- • •	.)		
1 - 250 mL HI			6°C			Alkalinity (232	0B)			
1 - 250 mL HI 1 - 250 mL Ar			6°C, ZnOAc/I	NaOH	Sulfide (9034 DOC (9060A					
WELL PURG	:		0.0		DOC (9000A	. <u>. </u>				
I UIC	LIG DAIA			,	Well I	Depth (ft BTOC)		28.19		
Date			-2-2	-1	Depth to V	Water (ft BTOC)		13.3		
Time Started		8	25			Column Length		14.89		
Time Complet		<u> </u>	94			Volume (per ft)		0.62		
PID Measurem			445			ater in Well (L)		7.23		
Background Breathing Z			ND and			olumes to Purge num to Purge (L)		<u>v</u> 4		
Well Head	one		/ ND		-	Actual Purge (L)		2 <u>0</u>		
Purge Water	r		NO		-	11000011 0180 (2)		: O		
					-					
Time	SUREMENTS Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	er Purge Rate (L/min)	
830	0 -	110	8.56	2.226	10102	102 0	00 11	12.2	T 0.0	
835	5.0	6,62	8.80	2,232		-182.8	39.4	13.3	500	
840	7.5	6.69	8.90	2,23(0.03	-244.5	18.4	13.3	500	
845	10	6.65	9.17	2.238	0.00	-260.4	33.6	13.3	500	
850	12.5	6,66	4 14	2.257	0.05	-266.2	24.3	13.3	1500	
855	15	6,67	9,29	2,260		-270.9	20,3	13.3	.500	
900	17.5	6.68	9.30	2,257	0.03	-275.3	20,5	13.3	.500	
905	20_	6.68	9.62	2,271	0.03	- 279.2	20.1	13.3	500	
								ļ	:	
			10			-				
		,	11/1/1							
			11/			4			-	
FIELD EQUI	PMENT AND	CALIBRATIO)N							
		<u>Model</u>			Calibration					
Water Level Pr		Heron				nst Calibrated L				
Water Quality	Meter	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily C	Calibration Verifi	cation also Ca	librated Weekly	У	
GENERAL C	OMMENTS				***					
Ferrous Iron =	2.2 n	$_{ m ng/L}$ $\mathcal{O}_{ m c}$	luted							
	er Probe Unit#	6375								
	rs Measured in		Cell							
	nt Depth = 2				TT*	· . /7 ···		1 (0000 ()	· D 11	
Pump Rate = Well Diameter	<u>500 ml</u>	min	 -		ORP Histor	ric (7-year averas -195.8				
Screen Interval	· · · · · · · · · · · · · · · · · · ·				DO	0.39	10.9	-60.0 0.43	-47.3 0.62	
Solocii intoi vat	- 15-25				PH	6.81	7.04	7.00	6.92	
					Cond.	1.717	2.740	2.740	2.318	

SITE NAME		CI	IAAP		_PROJECT NO)	60:	565355	
SAMPLE NO)	G0	111-5		WELL NO)	G	0111	
DATE/TIME	COLLECTED	2-28.	-21 @	1055	PERSONNE	L	BE . ?	To	
SAMPLE ME			ACTIVE SS MO		_				
SAMPLE ME	DIA:	Groundwate	r	_					
SAMPLE QA		YES	NO	4	T SAMPLE NO		NA_		
MS/MSD REG	DUPLICATE:	YES YES	NO NO	4	E SAMPLE NO D SAMPLE NO		NA		
		-			D SAMITEE NO	··	_ <i>N /</i> }	~	
SAMPLE CO Sample Conta	ONTAINERS, P	PRESERVATI	VES, ANALYS Preservative	SIS	Analysis Req	nested			
2 - 500 mL Aı			6°C		-	MNX (8330A)			
3 - 40 mL VO			6℃, HCl		Methane (RS	K 175)			
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), N		2)	
1 - 250 mL HI 1 - 250 mL HI			6°C, ZnOAc/N	Janu L	SO ₄ (9056A). Sulfide (9034	, Alkalinity (232	(OB)		
1 - 250 mL Ar			6°C	vaOn	DOC (9060A				
WELL PURC	GING DATA				· · · · · · · · · · · · · · · · · · ·				2/
Dete		7-	10-11			Depth (ft BTOC)		27.54	
Date Time Started		<u> </u>	18-21			Water (ft BTOC) Column Length		17,26	
Time Complet	ted	<u> </u>	55			Volume (per ft)		0.62	
PID Measuren					_	ater in Well (L)		5.13	
Background			<u> </u>			olumes to Purge		NA	
Breathing Z Well Head	one		N D		_	num to Purge (L)		<u> </u>	
Purge Water	r		<u> </u>		- '	Actual Purge (L)		20	
					_				
	SUREMENTS	77	T	O I i . i	D: 1 1	ъ.	m 1:1:		
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/I	Redox	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
			(5515145)	(1110/ 4111)	onjeon (mg/	2) (111.1)	(1110)	(It Broc)	(1211111)
1020	2.5	6.69	10.88	1.758	0.36	-204.0	4.18	19.26	0,5
1022	5.0	6.70	11,31	1.726	0.35	-204.8	4.21	19,26	Ì
1030	7.5	6.71	11.52	1.792	0.33	-204.7	0.72	19,26	
1035	10.0	6.70	11,64	1.782	0,29	-204.	0.42	19.26	-
1040	12.5	6.70	11.67	1.774	0,27	-909.8	0.28	19,26	
1045	13.0	6.69	11.68	1,769	0.24	-201.7	0.29	14,26	
1050	1/12	6,69	11,77	1.765	0.33	-900.1	0,19	14.26	
1055	20.0	6.69	11.78	1.762	0.93	-198.4	0.17	19.26	
			7()						
		OLI TREE LEGIC	, ,						
FIELD EQUI	PMENT AND	CALIBRATIO <u>Model</u>	DN		Calibration				
Water Level Pr		Heron				nst Calibrated L	ength		
Water Quality	Meter	Aqua TROLL	500 w/ flow thr	ough cell				librated Weekly	
GENERAL C	OMMENTS								
Ferrous Iron =	2,24 m	ng/L							
Multi-Paramete	er Probe Unit#	6375							
	rs Measured in l		Cell						
Pump Placeme		5 ft			*** :	d - 77		1 (0000 / : :	D 10
Pump Rate = Well Diameter	<u>(),5 </u>	min						h / 2020 / Avg in	
Screen Interval	***		<u> </u>		DO DO	-77.6 0.15	2.85	0.86	-42.2 0.92
					PH	6.22	7.06	7.06	6.52
					Cond.	1.012	1.620	1.620	1.285

SITE NAME		СН	IAAP		_PROJECT NO),	605	65355	
SAMPLE NO	·	G0:	121-5		_ WELL NO)	G	0121	
DATE/TIME	COLLECTED	2-28.	-21 @	1220	PERSONNEI		BE JO		
SAMPLE ME		PRO-A	CTIVE SS MC		_ _		J0		
SAMPLE ME	DIA:	Groundwater		_			3/1		
SAMPLE QA		YES	NO		T SAMPLE NO		NA		
MS/MSD REG	DUPLICATE: OUESTED	YES YES	NO NO	1	E SAMPLE NO D SAMPLE NO	·	NA NA		
12000) D/ II/II				
Sample Conta	ONTAINERS, I iner	PRESERVATI	VES, ANALYS Preservative	SIS	Analysis Requ	iested			
2 - 500 mL Ar			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSI		0.010 (0.50.0)		
1 - 500 mL HI 1 - 250 mL HI			6°C, H ₂ S0 ₄ 6°C			NH ₃ (350.1), N Alkalinity (232)	
1 - 250 mL HI			6°C, ZnOAc/N	JaOH	Sulfide (9034),		UB)		
1 - 250 mL Ar			6°C	-	DOC (9060A)				
WELL PURC	GING DATA								
Date		n _	28-21			Depth (ft BTOC)		32.35	1000
Date Time Started		<u> </u>	40 Q1			Vater (ft BTOC) Column Length		17.13	15,62
Time Complet	ed		230	-		Volume (per ft)		0.64	<u> </u>
PID Measurem			wa U		_	ater in Well (L)		10.63	
Background			ND			olumes to Purge		NA	
Breathing Z	lone		N D			um to Purge (L)		20 L	
Well Head		• • • • • • • • • • • • • • • • • • • •	N.Q.		_ A	Actual Purge (L)		20 L	
Purge Water	r		_ N N		_				
FIELD MEAS	SUREMENTS								
Time	Amount	pН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Water	Purge Rate
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L) (mV)	(NTU)	(ft BTOC)	(L/min)
1145	2.5	4.00	10,17	4 022	0.08	-877	46227	(5/)	0, 5
1150	5.0	4.88	10.91	4.073	0.05	-979	323.63	15,62	- 5
1155	7.5	4.88	11.08	4.045	0.05	-105.0	32553	15.62	
1200	10.0	4.90	11.34	3,962	0.04	-110.2	267.33	15: 62	
1205	12.5	4,42	11,43	3.873	0.04	-114.7	238.21	15.62	
1210	15.0	4.47	11,55	3,672	0.04	-119.5	207.23	15.62	
1215	17,5	4.98	11.60	3,580	0.04	~132.3	241.31	15,62	
1220	30. U	5.02	11,55	3.539	0.04	-127.4	185,82	15.62	
					-				
			10						
	D) (1)	A1 * ***							
FIELD EQUI	PMENT AND		N		Calibertie				
Water Level Pr	rohe	Model Heron			Calibration Checked Again	nst Calibrated L	enoth		
Water Quality		Aqua TROLL :	500 w/ flow thre	ough cell				ibrated Weekly	
GENERAL Co		n~/ĭ			1 6 / 1	ha	1100	cap II.	L ./
		ng/L 637598	7		Light	wown c	0101	smells.	bay.
Field Paramete				Hig	A tunh	idit r		•	
Pump Placemen		7 ft		1119	·· · · · · · · · · · · · · · · · · · ·	14.1.1	••		
Pump Rate =	0.5 4	ΔίΛ			Histor	ic (7-year avera	ge low and high	1 / 2020 / Avg in	Bold)
Well Diameter	= 2"				ORP	-97.8	-52.9	-80.0	-73.4
Screen Interval	= 20'-30'				DO	0.50	1.24	0.50	0.78
					PH	6.35	6.86	6.86	6.55
					Cond.	1.446	1.836	1.770	1.643

WATER SAMPLE COLLECTION FIELD SHEET

GENERAL INFORMATION

SITE NAME		СН	IAAP		PROJECT NO		605	65355	
SAMPLE NO	•	G0122-5		_ WELL NO	. <u> </u>	· · · · · · · · · · · · · · · · · · ·			
DATE/TIME (SAMPLE ME			CTIVE SS MC	0920 NOOON	_ PERSONNEL		B. 1	* BE	
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REC	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	SAMPLE NO SAMPLE NO SAMPLE NO	•	NA NA NA		
	NTAINERS, I	PRESERVATI		SIS					
Sample Contain 2 - 500 mL An			Preservative 6°C		Analysis Requ				
3 - 40 mL VO		-	6°C, HCl		Methane (RSI	MNX (8330A)			
1 - 500 mL HI			6°C, H ₂ S0 ₄	<u> </u>		NH ₃ (350.1), NO	O ₂ /NO ₃ (353.2))	
1 - 250 mL HI			6°C		SO ₄ (9056A),	Alkalinity (2320	OB)		
1 - 250 mL HI			6°C, ZnOAc/N	laOH	Sulfide (9034)				
1 - 250 mL An			6°C		DOC (9060A)				
WELL PURG	SING DATA				Wall D	epth (ft BTOC)		32.85	
Date		λ -,	18-21			Vater (ft BTOC)		17.30	
Time Started		C	840			Column Length		5,57	
Time Complete	ed		1920		-	Volume (per ft)		0,63	L
PID Measurem			I/n			ater in Well (L)		9.65	
Background			N V			olumes to Purge		NA	
Breathing Z Well Head	one		N D		-	um to Purge (L) Actual Purge (L)		30-	
Purge Water	•		אלא		-	ctual I dige (E)		<u>dars</u>	
			V 1/2						
FIELD MEAS									
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0840 0845 0850 0855 0900 0915 0915	3.5 5.0 7.5 10.0 13.5 15.0 17.5 30.0 22.5	6,45	9,24 8,77 9,10 9,30 9,08 9,08 9,09 9,09 9,09	2,209 2,254 2,285 2,252 2,273 2,244 2,327 2,323 2,339	0.89 0.36 0.40 0.32 0.28 0.22 0.03 0.09	-32,8 -133,7 -161,1 -182,1 -199,7 -212,4 -242,2 -256,8 -266,4	94, 13 78, 49 69, 47 248, 39 468, 38 60, 91 38, 27 37, 81 35, 32	17,28 17,28 17,28 17,28 17,28 17,28 17,28	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
				70					
Water Level Pro	FIELD EQUIPMENT AND CALIBRATION Model Water Level Probe Heron Checked Against Calibrated Length								
Water Quality I	wieter	Aqua TROLL:	500 w/ flow thro	ough cell	Iwice Daily C	alibration Verifi	cation also Cal	librated Weekly	
GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen	a.64 n er Probe Unit # rs Measured in								
Pump Rate = (min						<u>1 / 2020 / Avg in</u>	
Well Diameter					ORP	-61.0	-61.0	-61.0	-61.0
Screen Interval	= 20'-30'				DO	0.30	0.30	0.30	0.30
					PH Cond.	7.01 2.340	7.01 2.340	7.01 2.340	7.01 2.340
					Cona.	2.540	2.340	2.340	4.340

WATER SAMPLE COLLECTION FIELD SHEET

GENERAL INFORMATION

SITE NAME		СН	AAP		PROJECT NO)	605	665355	
SAMPLE NO		G0:	123-5		_ WELL NO),	G	0123	
DATE/TIME	COLLECTED	2-28.	-21	350	– PERSONNEI	i.	BE		
SAMPLE ME			CTIVE SS MC	NSOON			ŤÓ		
SAMPLE ME	DIA:	Groundwater	•					100	
SAMPLE QA		YES	NO	SPLI	Γ SAMPLE NO	١.	NÀ		
-	DUPLICATE:	YES	NO	#	E SAMPLE NO		NA		
MS/MSD REG	QUESTED	YES	NO	MS/MSI	SAMPLE NO	·	NA		
	ONTAINERS, F	RESERVATI	VES, ANALY	SIS					
Sample Conta			<u>Preservative</u>		Analysis Requ	•			
2 - 500 mL Ar 3 - 40 mL VO		<u></u>	6°C 6°C, HCl		Methane (RS)	MNX (8330A)			
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), N	O ₂ /NO ₃ (353.2)	
1 - 250 mL HI	DPE		6°C			Alkalinity (232	0B)		
1 - 250 mL HI			6°C, ZnOAc/N	NaOH	Sulfide (9034				
1 - 250 mL Ar			6°C		DOC (9060A)			
WELL TORK	ING DAIA	_	201 34		Well [Depth (ft BTOC)	,	31.98	
Date		٦-	<u> 28 - 21</u>			Vater (ft BTOC)		15.59	
Time Started			310		_	Column Length		16, 39'	,
Time Complet PID Measuren			403		_	Volume (per ft) ater in Well (L)		<u>,0,63</u>	
Background			ND			olumes to Purge		NA	
Breathing Z			ND		_	um to Purge (L)		90 F	
Well Head			ND			Actual Purge (L)		30 F	
Purge Water	r		ND		_				
FIELD MEAS	SUREMENTS				-				977
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1315	2,5	6.01	10.61	1.896	0.75	- 87.8	37.71	15.59	0.5
330	5.0	6.00	11.11	1,917	0.41	-98.2	32.89	15.59	
1335	7.5	6.00	11.26	1.960	0.26	-105,8	25.37	15,59	
1335	12.5	6.00	11.55	1.918	0.10	-116.7	23.13	15,59	
1340	15.0	6.00	11.63	1.958	0.05	-82.1	23.80	15.59	
1345	17.5	5.99	11,65	1.725	0.01	-119.6	31.81	15.59	
1350	20,0	6.00	11,97	1.673	0.03	-1569	18.89	15.59	V
		J0							
		•			ļ				$\overline{}$
FIELD EQUI	PMENT AND		N		G 111 .1				
Water Level Pr	ohe	Model Heron			Checked Agai	nst Calibrated L	anath		
Water Quality	-	Aqua TROLL :	500 w/ flow thr	ough cell				librated Weekly	
					<u> </u>				
GENERAL C Ferrous Iron =		ng/L						;	
	er Probe Unit #		Я						
	rs Measured in								
Pump Placeme		6 ft					-		
Pump Rate =	0,5 L	Min						h / 2020 / Avg in	
Well Diameter Screen Interval					ORP DO	45.0 0.31	45.0 0.31	45.0 0.31	45.0 0.31
Solden Mitor van			****		PH	6.85	6.85	6.85	6.85
					Cond.	1.860	1.860	1.860	1.860

Date 02/22/21 W Day S S M T F X 0945 - 1630 On Site Hours Travel Time 2.5 Office Time 1 Bright Sun Weather Clear Overcast Rain Snow Temp To 32 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High X 1 Humidity Dry Moderate Humid

X

COE Project Manager

Project

Project No.

Contract No.

Jeff Gill
CHAAP OU1 Rebound Study/
PMs-Q#5
60565355
W9128F-18-D-0020

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Began OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Off-post Direct Push Sampled

NW050R-DP05-20

NW050R-DP05-35

NW050R-DP05-60

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Completed staking of sample locations using hand-held GPS with predetermined coordinates. Utility locates and notifying property owners of field activities were completed week of 2/15/21.

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) and water level indicators (#'s 1324-T, 1323-T).

Health and Safety and Activities:

Had the initial H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 02/23/21

Day S S M T W T F

X

On Site Hours Travel Time Office Time

0700 - 1700 0.5

COE Project Manager Jeff Gill

Project CHAAP OU1 Rebound Study/

PMs-Q#5

Project No. 60565355

Contract No. W9128F-18-D-0020

Weather	Bright Sun		Clear	Overcast	Rain	Snow
	2	X	X			
Temp	То 32		32-50	50-70	70-85	85 up
_				X		
Wind	Still	Mod	lerate	High	Rep	ort No.
	X			_		
Humidity	Dry Mod		erate	Humid		2
•		,	X			

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Off-post Direct Push Sampled

OS003-DP05-25 OS001-DP05-25 OS003-DP05-35 OS001-DP05-35 OS003-DP05-45 OS001-DP05-45

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) and water level indicators (#'s 1324-T, 1323-T).

-Duplicate OS501-DP05-25 (parent:OS001-DP05-25). OS003-DP05-45 MS/MSD

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

02/24/21 Date S S Т W Т F Day M X On Site Hours 0700 - 1700 Travel Time 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X X Temp To 32 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High X

Moderate

X

Humid

3

COE Project Manager	Jeff Gill
Project	CHAAP OU1 Rebound Study/
	PMs-Q#5
Project No.	60565355
Contract No.	W9128F-18-D-0020

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well Installed (temporary)

EW7-PM25- A & B

EW7-PM29- A & B

EW7-PM26- A & B

EW7-PM27- B

- -OUI sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.
- -Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #s 110-014926, 110-014888) and water level indicators (#s 1324-T, 1323-T).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

02/25/21 Date Day S S Μ Т W T F On Site Hours 0700 - 1700 Travel Time 0.5 Office Time

COE Project Manager

Project

Jeff Gill CHAAP OU1 Rebound Study/ PMs-Q#5

Project No.

60565355 W9128F-18-D-0020 Contract No.

Weather	Bright Sun		Clear	Overcast	Rain	Snow
				X		
Temp	To 32		32-50	50-70	70-85	85 up
			X			
Wind	Still	Mod	erate	High	Repo	ort No.
		X				
Humidity	Dry Mod		erate	Humid		4
		7	Χ			

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well Installed (temporary) Performance Monitoring Well sampled

EW7-PM21-A EW7-PM25A-5-25 EW7-PM24-A EW7-PM25B-5-35 EW7-PM28-A EW7-PM28A-5-25

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs. -Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 02/26/21 Day S S Μ Т W Т F X On Site Hours 0700 - 1700 Travel Time 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X To 32 32-50 50-70 70-85

X

High

Humid

Moderate

X

Moderate

X

85 up

Report No.

5

COE Project Manager Jeff Gill **Project**

CHAAP OU1 Rebound Study/ PMs-Q#5 60565355 W9128F-18-D-0020

Project No. Contract No.

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Temp

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well sampled

EW7-PM26B-5-35

EW7-PM29A-5-25

EW7-PM29B-5-35

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598). -EW7-PM29B-5-35 MS/MSD

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 02/27/21 S W Day S M Τ T F On Site Hours 0700 - 1700Travel Time 0.5

COE Project Manager

Project

Jeff Gill

Project No.

Contract No.

CHAAP OU1 Rebound Study/
PMs-Q#5
60565355
W9128F-18-D-0020

- IIII-						
Weather	Bright Sun		Clear	Overcast	Rain	Snow
				X		
Temp	To 32		32-50	50-70	70-85	85 up
			X			
Wind	Still	Mod	lerate	High	Rep	ort No.
	2		X			
Humidity	Dry	Mod	lerate	Humid	6	

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Office Time

Visitors on Site:

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well sampled

EW7-PM21A-5-25

EW7-PM27B-5-35

EW7-PM24A-5-25

EW7-PM26A-5-25

- -OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.
- -Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Completed Daily Tailgate Meeting Sheet
- -Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

- -Organized paperwork and equipment, scanned SCFSs.
- -Completed DQCR.

By Ryan Herold

Date 02/28/21 W Day S S M T T F X On Site Hours 0700 - 1700Travel Time 0.5 Office Time

COE Project Manager

Project

Jeff Gill
CHAAP OU1 Rebound Study/

Project No. 60565355

Contract No.

PMs-Q#5 60565355 W9128F-18-D-0020

Weather	Bright Sun		Bright Sun		Bright Sun		Clear	Overcast	Rain	Snow
				X						
Temp	To 32		To 32		32-50	50-70	70-85	85 up		
			X							
Wind	Still	Mod	erate	High	Rep	ort No.				
		2								
Humidity	Dry	Moderate		Humid	7					

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, monsoon submersible pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well sampled

G0123-5

Monitoring Well sampled

G0080-5

G0111-5 G0121-5 G0122-5

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

03/01/21 Date Day S S Μ Т W Т F X On Site Hours 0700 - 1730 Travel Time 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X 32-50 Temp To 32 50-70 70-85 85 up X Wind Report No. Still Moderate High

X

Moderate

X

Humid

8

COE Project Manager	Jeff Gill
Project	CHAAP OU1 Rebound Study/
	PMs-Q#5
Project No.	60565355
Contract No.	W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, monsoon submersible pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Brice - Gary Carson, Jacob Bougere

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

 Performance Monitoring Well sampled
 Monitoring Well sampled

 G0094-5
 G0070-5
 G0079-5
 NW060-5

 G0096-5
 G0075-5
 NW070-5
 NW061-5

 G0076-5
 NW071-5
 NW062-5

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs. -Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598). -Duplicate G0296-5 (parent G0096-5). G0070-5 MS/MSD.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

03/02/21 Date Day S S Μ T W Т F On Site Hours 0700 - 1800 Travel Time 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High X

Moderate

X

Humid

9

COE Project Manager	Jeff Gill
Project	CHAAP OU1 Rebound Study/
	PMs-Q#5
Project No.	60565355

Project No. 60565355
Contract No. W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, monsoon submersible pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Brice - Gary Carson, Jacob Bougere

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Performance Monitoring Well sampled	Monitoring Well sampled				
G0022-5	G0081-5 G0087-5	CA210-5	CA213-5		
G0102-5	G0082-5 G0091-5	CA211-5			
	G0086-5 G0092-5	CA212-5			

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs. -Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

03/03/21 Date Day S S Μ Т W Т F X On Site Hours 0700 - 1800 Travel Time 0.5 Office Time

COE Project Manager

Project

Jeff Gill CHAAP OU1 Rebound Study/

Project No. $\frac{PMs-Q\#5}{60565355}$

Contract No. W9128F-18-D-0020

Office Time			1					
Weather	Brigh	ıt Sun	Clear	Overcast	Rain	Snow		
			X					
Temp	To 32		32-50	50-70	70-85	85 up		
				X				
Wind	Still	Mod	erate	High	Report No.			
		2	X					
Humidity	Dry	Mod	erate	Humid	10			
		٠,	· -					

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, hand-held GPS unit, monsoon submersible pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Brice - Gary Carson, Jacob Bougere

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

Monitoring Well sampled

NW020-5 G0024-5 PZ017R-5 -Abandoned 10 temporary PM wells

NW021-5 G0077-5 PZ018-5

NW022-5 G0078-5 PZ019-5 PZ020-5

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calib. check of PIDs (#'s 110-014926, 110-014888), WL meters (#'s 1324-T, 1323-T), TROLLs (#'s 653996 and 637598). -Duplicate PZ021-5 (parent PZ017R-5).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

Completed DQCR.

By Ryan Herold

Date 03/04/21

Day S S M T W T F

On Site Hours 0800 - 1000

Travel Time
Office Time

 On Site Hours
 0800 - 1000

 Travel Time
 3

 Office Time
 2

Jeff Gill
CHAAP OU1 Rebound Study/
PMs-Q#5
60565355
W9128F-18-D-0020

Weather	Brigh	t Sun	Clear	Overcast	Rain	Snow
	8	C				
			X			
Temp	To	32	32-50	50-70	70-85	85 up
•				X		
Wind	Still	Mod	erate	High	Rep	ort No.
		2	X			
Humidity	Dry			Humid	·	11
		2	X			

Subcontractors on Site:

None.

Project

Project No.

Contract No.

Equipment on Site:

COE Project Manager

Support trucks, hand-held GPS unit, monsoon submersible pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Jonathan Ortiz, Bob Exceen

Brice - Gary Carson, Jacob Bougere

Field Work Performed (including sampling):

-Continued OU1 Rebound Study/performance monitoring Q#5 groundwater sampling event (DP screen point sampling, install/sample/abandon performance monitoring wells, and MW sampling).

-Collected IDW-water characterization sample: WATER-WC-Q5-MAR21

-Completed site restoration, equipment storage, and demobilization.

-OU1 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1000-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-None.

Health and Safety and Activities:

Had the initial H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, cold stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Completed Daily Tailgate Meeting Sheet

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

WEEKLY REPORT

COE Project ManagerBrian FettinReport No.1ProjectCHAAP - OU1 Rebound Study /Date2/22/21 to 2/26/21

Performance Monitoring - Ouarter #5 Brice/AECOM On-site Hours 139

Performance Monitoring - Quarter #5 Brice/AECOM On-site Hours

60565355
Subcontractor Hours

 Project No.
 60565355
 Subcontractor Hours
 32

 Contract No.
 Brice W9128F-18-D-0020
 32

Delivery Order No. F0041

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Jonathan Ortiz (AECOM)

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Visitors on Site:

None.

Summary of Work Performed:

-Contacted private land owners and informed them of the upcoming OU1 Rebound Study/performance monitoring (PM) field activities. Completed utility locates prior to subsurface activities (week of 2/15/21).

-Mobilized to site, conducted initial health and safety meeting, prepped field equipment, and staked all direct push (DP) locations using hand-held GPS including: 3 off-site (screen point) locations - OS001, OS003, and NW050R (adjacent to MW cluster NW050); and 10 temporary PM wells for 2020 subsurface injections.

-Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

BEGAN QUARTER #5 (Q5) OU1 REBOUND STUDY AND INJECTION PM SAMPLING ACTIVITIES:

-Collected 9 DP groundwater samples (screen point) at depths 25 feet, 35 feet, and 45 feet bgs (at locations OS001, OS003) and 20 feet, 35 feet, and 60 feet bgs (at location NW050R) for explosives + MNX (Method 8330A) analysis only (OS001-DP05-25, OS001-DP05-35, OS001-DP05-45, OS003-DP05-25, OS003-DP05-35, OS003-DP05-45, NW050R-DP05-20, NW050R-DP05-35, NW050R-DP05-60).

-Onsite, <u>installed 10 temporary PM wells</u> (1" PVC via DP techniques) at 7 locations for 2020 subsurface injection PM. Each location included either a shallow well (A) (10-foot screen, 20 to 30 feet bgs) or a shallow intermediate well (B) (10-foot screen, 30-40 feet bgs), or both dependent upon location accordingly: EW7-PM21A, EW7-PM24A, EW7-PM25A/B, EW7-PM26A/B, EW7-PM27B, EW7-PM28A, and EW7-PM29A/B.

-Collected 6 of the 10 groundwater samples at temporary PM wells (EW7-PM25A, PM25B, PM26B, PM28A, PM29A, PM29B). Each PM temp well was developed prior to sample collection and sampled using low-flow groundwater sampling techniques. Each PM well sample will be analyzed for explosives+MNX (Method 8330A) and water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.

-IDW water (purge and decon) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of Q5 field activities, the IDW water will be sampled for site waste characterization analysis (Explosives+MNX [Method 8330A]) prior to disposal or discharge to ground surface.

-All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-QAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2018 and 2019 Annual Groundwater Monitoring Reports and Final OU1 Rebound Study Letter Report - Quarter 3 Event.

Percentage of Work Completed:

Mobilization, 9 of 9 planned off-site DP (screen point) groundwater samples were collected, 10 of 10 temporary PM wells were installed, 6 of 10 temporary PM wells were developed and sampled, 0 of 10 PM wells (permanent) were sampled, and 0 of 30 OU1 Rebound Study wells were sampled. <u>Approximately 36%</u> of the Q5 OU1 Rebound Study/injection PM sampling field work is now complete.

WEEKLY REPORT

COE Project Manager Brian Fettin Report No. 1

Project CHAAP - OU1 Rebound Study / Date 2/22/21 to 2/26/21

Performance Monitoring - Quarter #5 Brice/AECOM On-site Hours 139

 Project No.
 60565355
 Subcontractor Hours
 32

 Contract No.
 Brice W9128F-18-D-0020
 32

Delivery Order No. F0041

Schedule for Next Week:

Calibration of water quality equipment, complete Q5 PM well sampling (4 temp. wells and 10 permanent wells remain), abandon all temporary PM wells, complete Q5 OU1 Rebound Study groundwater purge and sample collection activities at 30 monitoring wells, and collect IDW water sample.

Health and Safety and Activities:

-Had the initial and daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, direct push equipment hazards and safety, cold stress, slip-trip-falls, traffic hazards, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.

-Completed equipment and vehicle safety checks.

-Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

Due to off-site landowner not renewing access agreement, 6 OU1 Rebound Study monitoring wells (NW050, NW051, NW052, NW080, NW081R, and NW082R) will not be accessed/sampled during Q5 and future events, and will be abandoned at a future date. However, during the Q5 and future events, three direct push groundwater samples (screen point) will be collected at one location (adjacent to NW050 cluster in ROW) at comparable interval depths. Groundwater samples will be analyzed for explosives only.

Problems Encountered/Corrective Action Taken:

None.

Recommendations:

None.

Communication Notice This Week:

None.

Key Personnel Changes:

Jason Auernheimer (PES) off site 2/25/21.

Purging off-site DP location NW050R (facing north)

Installation of temporary PM wells: EW7-PM26A (shallow) and PM26B (shallow intermediate)

Title: Field Manager

WEEKLY REPORT

Delivery Order No.

F0041

COE Project Manager Brian Fettin Report No.

2/22/21 to 2/26/21 CHAAP - OU1 Rebound Study / **Project** Date

> Performance Monitoring - Quarter #5 Brice/AECOM On-site Hours 139

60565355 Project No. **Subcontractor Hours**

32 Brice W9128F-18-D-0020 Contract No.

By: Ryan Herold

WEEKLY REPORT

COE Project Manager Brian Fettin Report No.

2/27/21 to 3/4/21 **Project** CHAAP - OU1 Rebound Study / **Date**

> Performance Monitoring - Quarter #5 Brice/AECOM On-site Hours 273

Project No. 60565355 **Subcontractor Hours**

0 Brice W9128F-18-D-0020 Contract No.

F0041 **Delivery Order No.**

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Jonathan Ortiz (AECOM), Gary Carson, Jacob Bougere (Brice)

Subcontractors on Site:

None.

Visitors on Site:

None.

Summary of Work Performed:

CONTINUED QUARTER #5 (Q5) OU1 REBOUND STUDY AND INJECTION PERFORMANCE MONITORING (PM) SAMPLING ACTIVITIES:

- -Collected 4 of the 10 groundwater samples at temporary PM wells (EW7-PM21A, PM24A, PM26A, PM27B). Each temp. PM well was developed prior to sample collection and sampled using low-flow groundwater sampling techniques. Each temp. PM well sample will be analyzed for explosives+MNX (Method 8330A) and water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.
- -Abandoned all 10 temp. PM wells.
- -Collected 10 of the 10 groundwater samples at permanent PM wells (G0022, PZ017R, PZ018, G0094, G0096, G0102, G0111, G0121, G0122, G0123). Each PM monitoring well was purged and sampled using low-flow groundwater sampling techniques and will be analyzed for explosives+MNX and water quality parameters (above).
- -Collected groundwater samples from 30 of the 30 OU1 Rebound Study off-post and on-post wells/piezometers (CA210, CA211, CA212, CA213, NW020, NW021, NW022, NW060, NW061, NW062, NW070, NW071, G0024, G0070, G0075, G0076, G0077, G0078, G0079, G0080, G0081, G0082, G0086, G0087, G0091, G0092, PZ017R, PZ018, PZ019, PZ020). Each well was purged and sampled using low-flow groundwater sampling techniques and will be analyzed for explosives+MNX (Method 8330A) and water quality parameters (above).
- -IDW water (purge and decon) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of Q5 field activities, the IDW water was sampled for site waste characterization analysis (Explosives+MNX [Method 8330A]) prior to disposal or discharge to ground surface.
- -All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-OAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2018 and 2019 Annual Groundwater Monitoring Reports and Final OU1 Rebound Study Letter Report - Quarter 3 Event.
- -Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

Percentage of Work Completed:

Mobilization, 9 of 9 planned off-site DP (screen point) groundwater samples were collected, 10 of 10 temporary PM wells were installed, developed, sampled, and abandoned; 10 of 10 PM wells (permanent) were sampled, 30 of 30 OU1 Rebound Study wells were sampled, collected IDW water waste characterization sample, completed site restoration activities, and demobilized from site. 100% of the Q5 OU1 Rebound Study/injection PM sampling field work is now complete.

Schedule for Next Week:

None.

WEEKLY REPORT

COE Project Manager Brian Fettin Report No. 2

Project CHAAP - OU1 Rebound Study / Date 2/27/21 to 3/4/21

Performance Monitoring - Quarter #5 Brice/AECOM On-site Hours 273

 Project No.
 60565355
 Subcontractor Hours
 0

 Contract No.
 Brice W9128F-18-D-0020
 0

 Contract No.
 Brice W9128F-18-D-0020

 Delivery Order No.
 F0041

Health and Safety and Activities:

-Had the daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, cold stress, slip-trip-falls, traffic hazards, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.

- -Completed equipment and vehicle safety checks.
- -Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

Due to off-site landowner not renewing access agreement, 6 OU1 Rebound Study monitoring wells (NW050, NW051, NW052, NW080, NW081R, and NW082R) will not be accessed/sampled during Q5 and future events, and will be abandoned at a future date. However, during the Q5 and future events, three direct push groundwater samples (screen point) will be collected at one location (adjacent to NW050 cluster in ROW) at comparable interval depths. Groundwater samples will be analyzed for explosives only.

Problems Encountered/Corrective Action Taken:

None.

Recommendations:

None.

Communication Notice This Week:

None.

Key Personnel Changes:

All AECOM and Brice personnel demobilized from site on 3/4/21.

Development of PM temp. wells EW7-PM29A/B (facing north)

Purge and sample collection at on-post monitoring well G0091 (facing south)

By: Ryan Herold Title: Field Manager

Appendix C Photographic Log

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 5 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 1

Description:

OU1 Rebound Study Q5 **Sampling**

To establish off-post extent of explosives greater than HALs in groundwater, direct push locations were collected at offsite locations OS001 and OS003 (1000 feet further east). Groundwater samples were collected (via Direct Push technology) at screen point depths 25 feet, 35 feet, and 45 feet bgs and analyzed for explosives + MNX only.

Date: 02/23/2021 Direction: south Photographer: RH Location: OS001

Photograph No. 2

Description:

OU1 Rebound Study Q5 Sampling

To supplement for six OU1 Rebound Study wells no longer being accessible (clusters NW050 and NW080), an additional direct push location (NW050R) was collected in ditch adjacent to NW050 well cluster and sampled at equivalent depths. Location NW050R was sampled at depths 20 feet, 35 feet, and 60 feet bgs and analyzed for explosives + MNX only.

Date: 2/22/2021 Direction: north Photographer: RH Location: NW050R

Field Activities: OU1 Rebound Study and **Performance Monitoring – Quarter 5 Event** Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 3

Description:

OU1 Rebound Study Q5 Sampling

Monitoring wells were purged, and groundwater samples were collected using low-flow techniques with submersible pumps. All purging and sample collection were completed in accordance with UFP-QAPP.

Date: 3/2/2021 Direction: south Photographer: JO Location: G0091

Photograph No. 4

Description:

OU1 Rebound Study Q5 Sampling

Groundwater samples were collected in laboratoryprovided containers and analyzed for explosives + MNX and laboratory MNA parameters by Eurofins -TestAmerica laboratory.

Date: 3/3/2021 Direction: -Photographer: RH Location: G0077

Field Activities: OU1 Rebound Study and **Performance Monitoring – Quarter 5 Event** Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 5

Description:

OU1 Rebound Study Q5 Sampling

The pump and water level meter were decontaminated after every well.

Date: 2/28/2021 Direction: -Photographer: JO Location: G0121

Photograph No. 6

Description:

OU1 Q5 Performance Monitoring

For Q5 subsurface injection performance monitoring (1st event following the 2020 injection event), ten 1" PVC temporary wells were installed (via Direct Push technology). at seven locations between EW6 and EW7. The seven locations included wells either shallow (30-foot deep) wells, shallow-intermediate (40-foot deep) wells, or both.

Date: 2/24/2021 Direction: east Photographer: RH Location: EW7-PM25

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 5 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 7

Description:

OU1 Q5 Performance **Monitoring**

All temporary performance monitoring wells were developed, purged, and sampled for explosives + MNX and laboratory water quality parameters analysis.

Date: 2/26/2021 Direction: east Photographer: RH Location: EW7-PM29

Photograph No. 8

Description:

OU1 Q5 Performance Monitoring

Additionally, for Q5 subsurface injection performance, ten permanent monitoring wells were used at LL1, LL2, the Decant Station, and between EW6 and EW7. Purging and sample collection for explosives + MNX and laboratory water quality parameters analysis were completed in accordance with UFP-QAPP.

Date: 3/3/2021 Direction: south Photographer: RH Location: PZ017R

Field Activities: OU1 Rebound Study and **Performance Monitoring – Quarter 5 Event** Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 9

Description:

OU1 Q5 Rebound Study and **Performance Monitoring**

All decontamination, development, and purge IDW water from sampling activities were collected in field poly tanks, transferred to an IDW tank at GWTF, and sampled at conclusion of event for explosives +MNX only analysis.

Date: 3/3/2021 Direction: east Photographer: RH Location: GWTF

Photograph No. 10

Description:

OU1 Q5 Performance Monitoring

Each temporary well PVC stickup was retracted, and the well was abandoned within 10 days of installation using timerelease bentonite pellets and hydrated granular bentonite.

Date: 3/3/2021 Direction: -Photographer: RH Location: EW7-PM29

Appendix D Analytical Data and Validation

Appendix E OU1 Statistical Trend Data Sheets

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q5 User Name: Dean Converse

Location: Grand Island State: Nebraska

Time Period: 10/22/2019 to 3/3/2021 Consolidation Period: No Time Consolidation

Consolidation Type: Median Duplicate Consolidation: Average

ND Values: 1/2 Detection Limit

J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann- Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4,6-TRINITROTO	LUENE							
G0024	Т	5	3	0.85	5	82.1%	No	NT
G0077	T	5	5	0.10	8	95.8%	No	I
G0078	T	5	0	0.69	-8	95.8%	Yes	ND
G0091	T	5	0	0.67	-8	95.8%	Yes	ND
G0092	T	5	0	0.67	-9	97.5%	Yes	ND
NW020	T	5	4	0.50	8	95.8%	No	1
NW021	T	5	0	0.65	-9	97.5%	Yes	ND
NW022	T	5	0	0.68	-8	95.8%	Yes	ND
PZ017R	S	5	5	0.22	-5	82.1%	No	S
PZ018	T	5	4	0.79	-2	59.2%	No	S
PZ019	T	5	0	0.68	-5	82.1%	Yes	ND
PZ020	T	5	5	0.20	2	59.2%	No	NT
HEXAHYDRO-1,3,5	-TRINITRO	-1,3,5-TRIA	ZIN					
G0024	Т	5	1	1.54	-5	82.1%	No	NT
G0077	T	5	5	0.57	0	40.8%	No	S
G0078	T	5	0	0.60	-9	97.5%	Yes	ND
G0091	T	5	5	0.40	-8	95.8%	No	D
G0092	T	5	0	0.70	-10	99.2%	Yes	ND
NW020	T	5	5	0.63	6	88.3%	No	NT
NW021	T	5	0	0.59	-9	97.5%	Yes	ND
NW022	T	5	0	0.59	-9	97.5%	Yes	ND
PZ017R	S	5	5	0.32	9	97.5%	No	1
PZ018	T	5	2	1.23	-4	75.8%	No	NT
PZ019	T	5	0	0.62	-5	82.1%	Yes	ND
PZ020	T	5	5	0.16	2	59.2%	No	NT

MAROS Version 3.0

Tuesday, April 20, 2021 Page 1 of 2

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q5

User Name: Dean Converse

Location: Grand Island State: Nebraska

HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZIN

Number Number Mann- All Source/ of of Coefficient Kendall Confidence Samples (

Source/ of of Coefficient Kendall Confidence Samples Concentration Well Tail Samples Detects of Variation Statistic in Trend "ND"? Trend

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 3.0 Release 352, September 2012

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q5 User Name: Dean Converse

Location: Grand Island State: Nebraska

Time Period: 10/21/2019 to 3/3/2021 Consolidation Period: No Time Consolidation

Consolidation Type: Median Duplicate Consolidation: Average

ND Values: 1/2 Detection Limit J Flag Values: Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann- Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4,6-TRINITROTO	LUENE							
G0070	T	5	0	0.66	-8	95.8%	Yes	ND
G0075	T	5	0	0.66	-4	75.8%	Yes	ND
G0076	T	5	0	0.66	-6	88.3%	Yes	ND
G0079	T	5	0	0.66	-6	88.3%	Yes	ND
G0080	T	5	0	0.68	-7	92.1%	Yes	ND
G0081	S	5	1	1.29	-7	92.1%	No	PD
G0082	T	5	0	0.65	-6	88.3%	Yes	ND
G0086	T	5	4	0.61	-2	59.2%	No	S
G0087	T	5	0	0.64	-6	88.3%	Yes	ND
HEXAHYDRO-1,3,5	-TRINITRO	-1,3,5-TRIA	ZIN					
G0070	T	5	0	0.59	-8	95.8%	Yes	ND
G0075	T	5	0	0.59	-4	75.8%	Yes	ND
G0076	T	5	1	0.88	-2	59.2%	No	S
G0079	T	5	0	0.60	-6	88.3%	Yes	ND
G0080	T	5	0	0.61	-6	88.3%	Yes	ND
G0081	S	5	0	0.64	-5	82.1%	Yes	ND
G0082	T	5	4	0.51	0	40.8%	No	S
G0086	T	5	3	0.94	6	88.3%	No	NT
G0087	T	5	3	0.37	8	95.8%	No	1

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 3.0 Release 352, September 2012 Tuesday, April 20, 2021 Page 1 of 1

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	3/3/2021	0.48	ug/L	0.042	
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	10/4/2020	0.2	ug/L	0.086	
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	6/15/2020	0.63	ug/L	0.048	TR
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.160	ND
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.160	ND
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.048	ND
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020		ug/L	0.053	ND
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.59	ug/L	0.055	
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.150	ND
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.150	ND
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	3/3/2021	3.6	ug/L	0.042	
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	10/4/2020	3.4	ug/L	0.046	
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	6/15/2020	3.3	ug/L	0.047	
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	3/4/2020	2.7	ug/L	0.160	
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	10/23/2019	3.2	ug/L	0.160	
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	0.82	ug/L	0.048	
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.34	ug/L	0.052	
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.46	ug/L	0.054	
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.19	ug/L	0.160	TR
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.91	ug/L	0.150	
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.042	ND
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	10/4/2020		ug/L	0.044	ND
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.047	ND
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.160	ND
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.150	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.048	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020		ug/L	0.050	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.054	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.150	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.150	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.045	ND

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.048	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.150	ND
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.27	ug/L	0.049	TR
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020	0.46	ug/L	0.052	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	0.59	ug/L	0.055	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020	0.83	ug/L	0.160	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019	0.81	ug/L	0.150	
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.042	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.043	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.047	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.150	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.150	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.048	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020		ug/L	0.054	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.150	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.200	ND
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	3/3/2021	0.8	ug/L	0.042	
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	10/3/2020	0.62	ug/L	0.045	TR
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	6/15/2020	0.59	ug/L	0.046	
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	3/4/2020	0.6	ug/L	0.160	
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	1.2	ug/L	0.048	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020	2.3	ug/L	0.052	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	1.5	ug/L	0.053	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.94	ug/L	0.150	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019	0.2	ug/L	0.150	TR
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.043	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.044	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.050	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.150	ND
		,				_		

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.150	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.049	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.050	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.058	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.150	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.150	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.042	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.046	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.047	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.160	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.150	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.049	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.052	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.054	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.150	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.150	ND
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	3/3/2021	10	ug/L	0.048	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	10/4/2020	15	ug/L	0.043	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	6/16/2020	11	ug/L	0.048	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	3/4/2020	17	ug/L	0.150	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	10/23/2019	15	ug/L	0.160	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	2.2	ug/L	0.055	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	1.8	ug/L	0.049	TR
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	1.4	ug/L	0.055	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	1.4	ug/L	0.150	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.87	ug/L	0.160	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	3/3/2021	6	ug/L	0.047	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	10/3/2020	17	ug/L	0.043	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.049	ND
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	3/4/2020	19	ug/L	0.160	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	10/23/2019	8	ug/L	0.160	TR
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.053	ND

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	1	ug/L	0.056	
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.160	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.88	ug/L	0.160	TR
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.048	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.043	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.047	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.055	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020		ug/L	0.054	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	3/3/2021	3.9	ug/L	0.048	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	10/4/2020	3.5	ug/L	0.045	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	6/15/2020	2.2	ug/L	0.047	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	3/4/2020	3.2	ug/L	0.150	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	10/23/2019	3.7	ug/L	0.150	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	0.57	ug/L	0.054	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.67	ug/L	0.051	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.58	ug/L	0.054	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.62	ug/L	0.150	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.42	ug/L	0.150	

TABLE E.2 UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS

	MAKOS DATA INI U15										
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags			
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.046	ND			
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND			
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.050	ND			
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.150	ND			
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND			
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.053	ND			
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.050	ND			
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020		ug/L	0.057	ND			
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.150	ND			
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND			
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.049	ND			
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND			
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.048	ND			
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.160	ND			
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.150	ND			
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.056	ND			
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.051	ND			
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020		ug/L	0.054	ND			
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.160	ND			
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.150	ND			
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.047	ND			
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.043	ND			
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.049	ND			
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.160	ND			
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.150	ND			
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.054	ND			
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.049	ND			
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020	0.2	ug/L	0.056	TR			
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.160	ND			
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.150	ND			
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.047	ND			
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND			
						_					

TABLE E.2 UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.048	ND
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.160	ND
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.150	ND
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.054	ND
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.050	ND
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020		ug/L	0.055	ND
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.160	ND
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.150	ND
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	2/28/2021		ug/L	0.044	ND
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	6/11/2020		ug/L	0.047	ND
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.150	ND
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	2/28/2021		ug/L	0.051	ND
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.050	ND
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/11/2020		ug/L	0.054	ND
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.150	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.047	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.047	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.180	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	10/21/2019	0.29	ug/L	0.160	TR
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.054	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.044	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020		ug/L	0.054	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.170	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.150	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.047	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.043	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.052	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND

TABLE E.2 UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS

				THE STATE OF THE S					
	WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
-	G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.150	ND
	G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.53	ug/L	0.054	
	G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020	0.41	ug/L	0.050	
	G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020	0.68	ug/L	0.059	TR
	G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND
	G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019	0.63	ug/L	0.150	TR
	G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	3/2/2021	4.9	ug/L	0.047	TR
	G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	10/4/2020		ug/L	0.045	ND
	G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	6/16/2020	3.6	ug/L	0.047	
	G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	3/3/2020	5.9	ug/L	0.160	TR
	G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	10/23/2019	3.8	ug/L	0.160	
	G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.59	ug/L	0.054	TR
	G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.17	ug/L	0.052	TR
	G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	0.21	ug/L	0.054	TR
	G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND
	G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.160	ND
	G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.048	ND
	G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.044	ND
	G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.048	ND
	G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.150	ND
	G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.150	ND
	G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.17	ug/L	0.055	TR
	G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020	0.15	ug/L	0.051	TR
	G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.15	ug/L	0.055	TR
	G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND
	G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.150	ND

TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

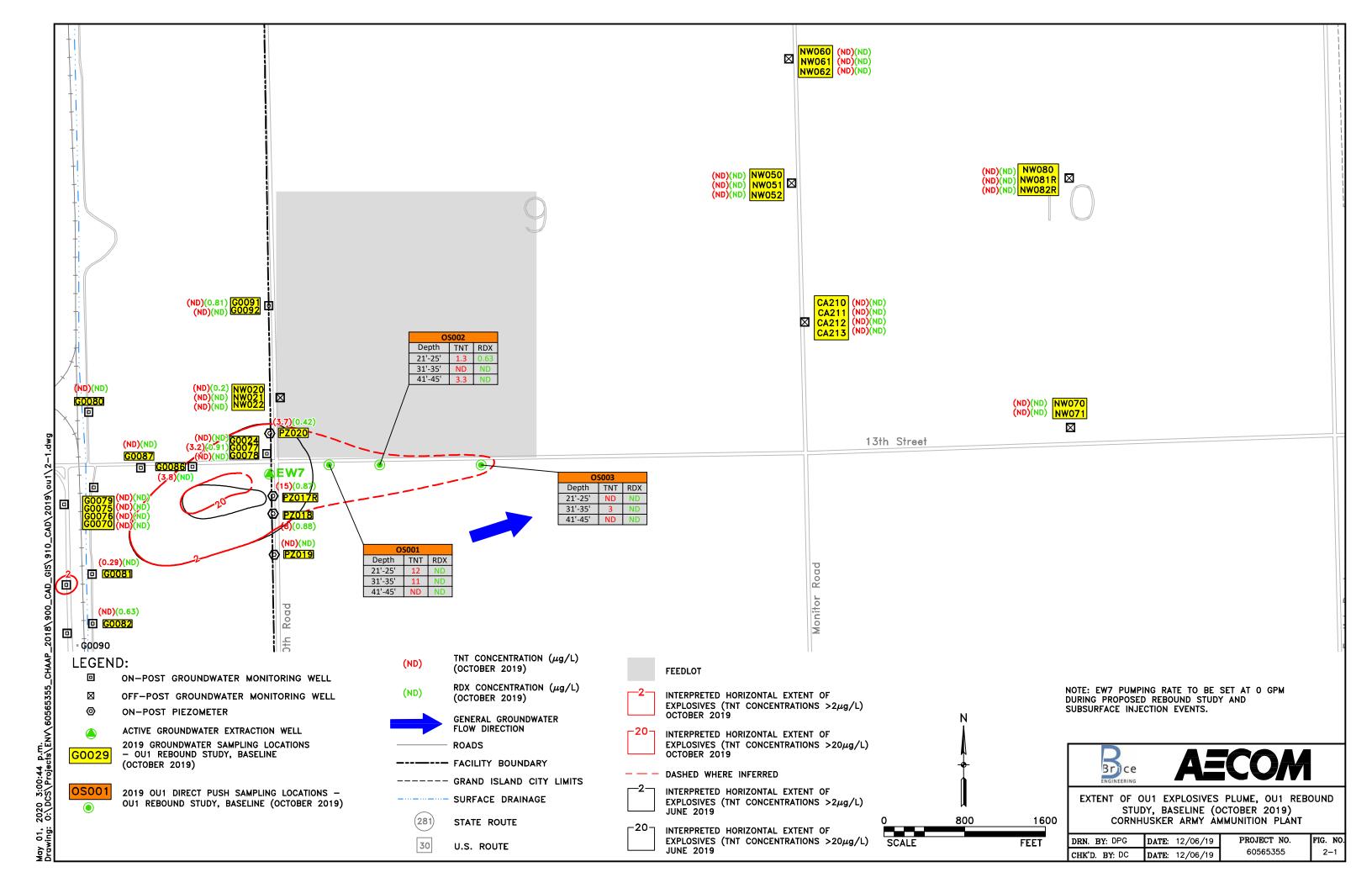
	MAROS DATA IN U19										
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags			
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND			
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.043	ND			
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND			
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.150	ND			
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND			
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND			
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.049	ND			
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND			
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND			
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND			
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND			
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.045	ND			
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND			
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND			
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND			
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND			
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.051	ND			
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND			
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.160	ND			
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND			
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.042	ND			
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.044	ND			
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.049	ND			
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND			
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND			
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND			
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.050	ND			
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.056	ND			
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND			
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND			
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND			
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.045	ND			

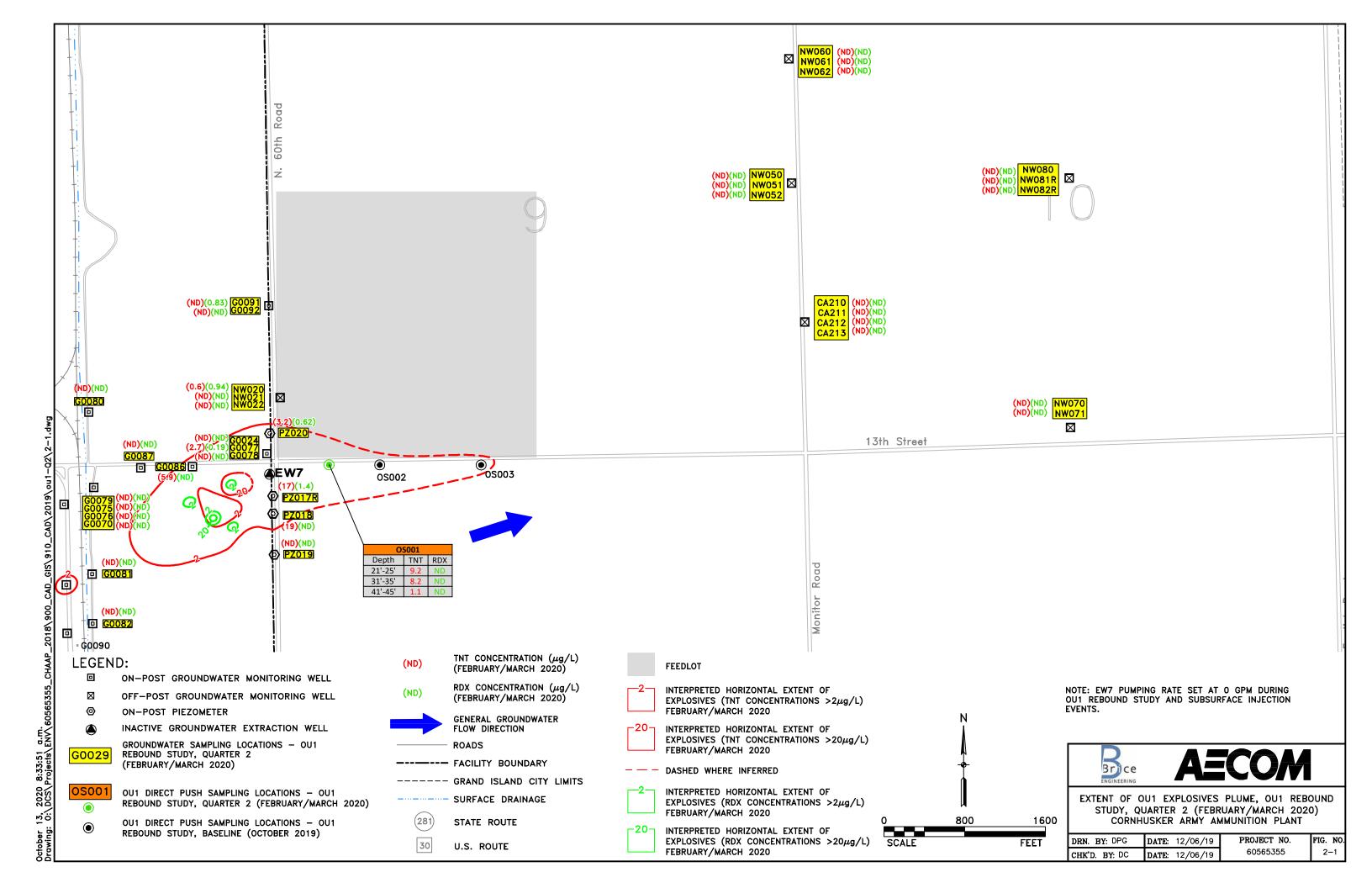
TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

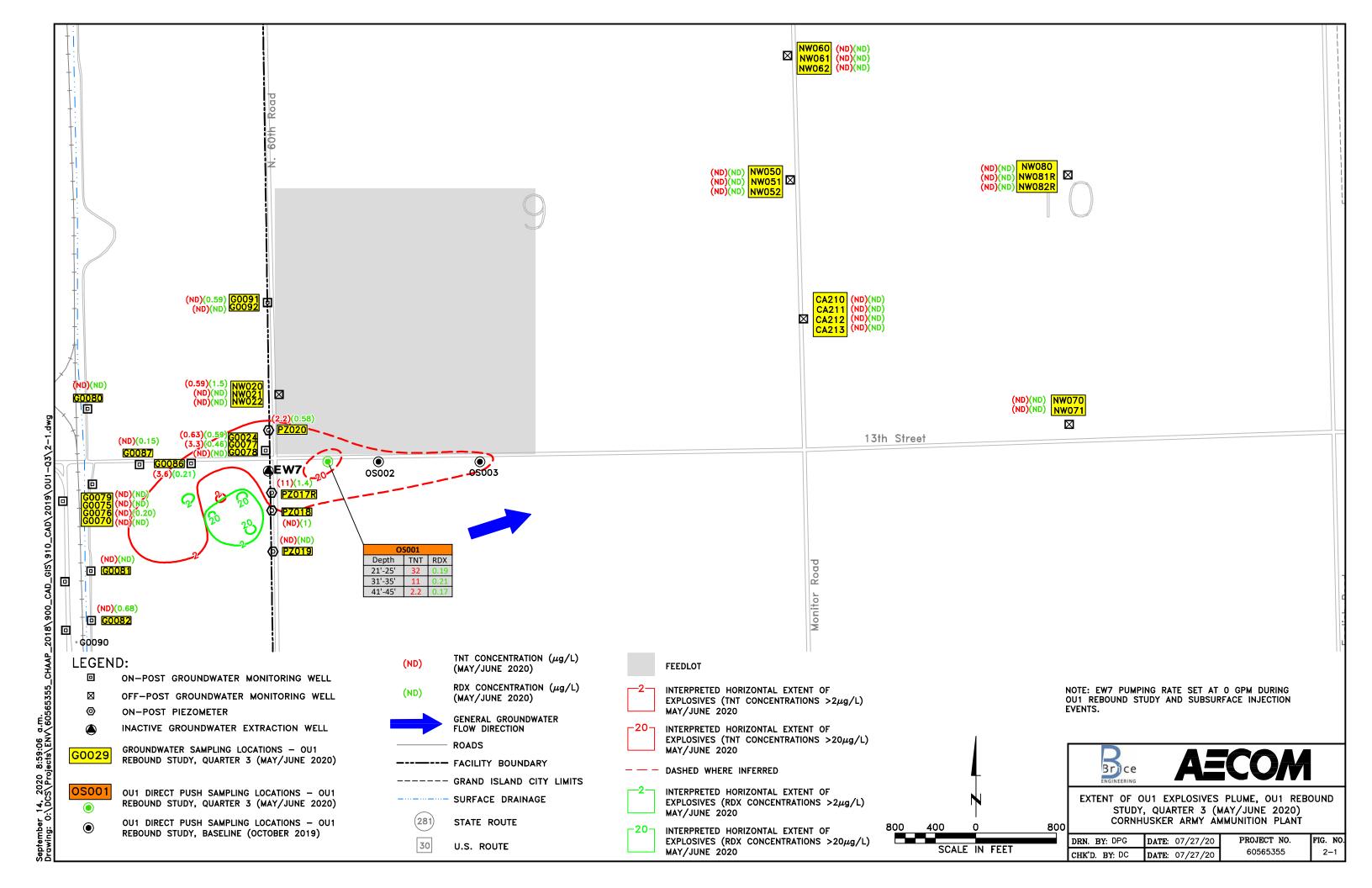
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.046	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.052	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.053	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.160	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.160	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.044	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.160	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.150	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.160	ND

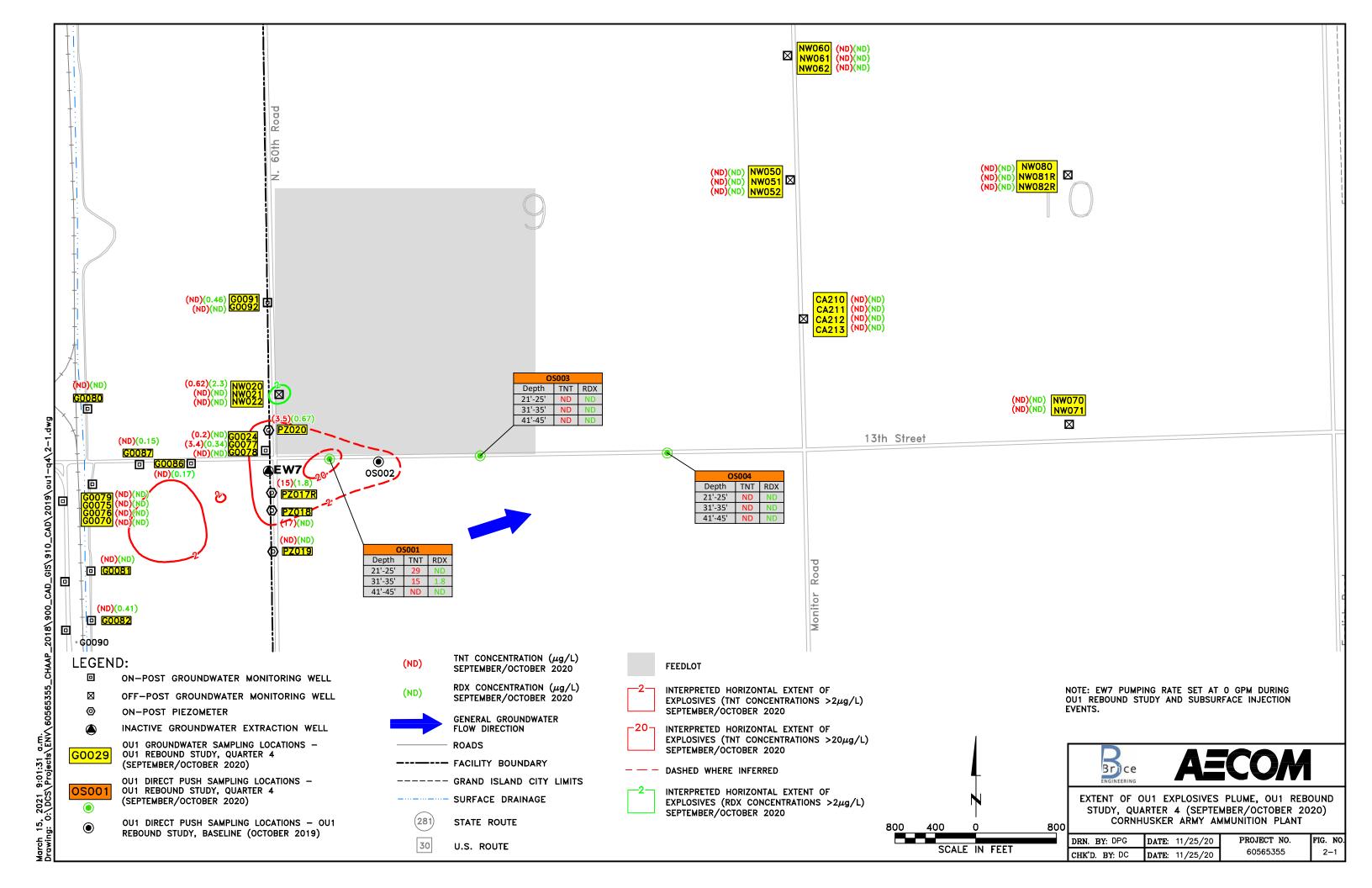
TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.044	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.048	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.050	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.150	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.048	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.150	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.043	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.048	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.150	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.049	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.049	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.055	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.150	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.041	ND
NW070	2,075,161		2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.043	ND


TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS


MAKOS DATA INI 013									
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags	
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.048	ND	
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND	
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND	
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.047	ND	
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.050	ND	
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.055	ND	
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND	
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND	
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.043	ND	
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.047	ND	
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND	
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.160	ND	
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.160	ND	
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.049	ND	
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.053	ND	
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND	
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.160	ND	
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.160	ND	
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.048	ND	
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.047	ND	
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.170	ND	
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND	
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.054	ND	
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.054	ND	
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.170	ND	
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND	
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.045	ND	
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.050	ND	
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND	
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND	
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.051	ND	
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.057	ND	
						-			


TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS


WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.160	ND
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.047	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.048	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.160	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.160	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.054	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.055	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.160	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.160	ND

Appendix F OU1 Rebound Study Historic Figures

