

February 1, 2022 60565355

Mr. Brian Fettin CENWO-PM-HB U.S. Army Corps of Engineers 1616 Capitol Avenue Omaha, NE 68102

Subject: Final OU1 Rebound Study Letter Report - Quarter 6 Event

Remedial Action Operation Groundwater Treatment Facility at OU1

and Groundwater Monitoring at OU1 and OU3

Cornhusker Army Ammunition Plant, Grand Island, Nebraska Contract W9128F-18-D-0020, Delivery Order Number F0041

Dear Mr. Fettin:

This Operable Unit (OU) 1 Rebound Study Letter Report – Quarter 6 (Q6) Event summarizes the sixth quarter of field activities completed for the OU1 Rebound Study and 2020 subsurface injections performance monitoring. The Letter Report presents the Q6 analytical results and evaluation for the OU1 Rebound Study and performance monitoring, a statistical trend evaluation for OU1 Rebound Study, and presents conclusions and recommendations for upcoming OU1 Rebound Study and performance monitoring activities at Cornhusker Army Ammunition Plant (CHAAP).

1.0 <u>INTRODUCTION</u>

1.1 PROJECT WORK AUTHORITY

Brice Engineering, LLC (Brice) and AECOM Technical Services (AECOM) have prepared this document as the OU1 Rebound Study Letter Report – Quarter 6 Event for CHAAP located at Grand Island, Nebraska (**Figures 1-1** and **1-2**). This work is being conducted under contract W9128F-18-D-0020, Delivery Order Number F0041 to the United States Army Corps of Engineers (USACE), Omaha District.

Conceptual basis for performing the OU1 Rebound Study was provided in the CHAAP OU1 2018 Groundwater Monitoring Results and Program Recommendations Technical Memorandum (Program Recommendations Tech Memo [Brice-AECOM 2019a]), the Final 2018 Annual Groundwater Monitoring Report, Remedial Action Operations (RAO), Groundwater Treatment Facility (GWTF) at OU1 and Groundwater Monitoring at OU1/OU3 (2018 Annual Groundwater Monitoring Report [Brice-AECOM 2019c]), and presented at several stakeholder meetings (April and November 2019). The approved OU1 Rebound Study work planning details are provided in the Final Addendum 3, Uniform Federal Policy — Quality Assurance Project Plan (UFP-QAPP) for RAO, GWTF at OU1 and Groundwater Monitoring at OU1/OU3 at CHAAP (OU1 Rebound Study Work Plan) (Addendum 3, UFP-QAPP [Brice-AECOM 2019b]). The approved 2019 and

2020 OU1 subsurface injection work planning details are provided in the Final UFP-QAPP (Bay West LLC and URS Group Inc. [BW-URS] 2014), its Final Addendum 2 (Brice-AECOM 2018), and the recommendations provided in the Final 2018 Annual Groundwater Monitoring Report (Brice-AECOM 2019c) and the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b).

1.2 PROJECT PURPOSE AND OBJECTIVE

OU1 consists of explosives-contaminated groundwater plumes (explosives concentrations exceeding regulatory action levels) at CHAAP. Health Advisory Levels (HALs) for explosives compounds hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) were established as regulatory action levels for CHAAP in the OU1 Record of Decision (ROD) (United States Army Environmental Center [USAEC] 1994) and the subsequent OU1 ROD Amendment (URS Greiner Woodward-Clyde Federal Services [URSGWCFS] 2001). The HALs for RDX and TNT are 2 micrograms per liter (μ g/L) and 400 μ g/L for HMX. The primary compounds of concern (i.e., compounds with historic concentrations in groundwater exceeding their corresponding HAL) are RDX and TNT. HMX has not historically exceeded the HAL during any past groundwater monitoring events. The current OU1 RAO is on-post pump and treatment and monitored natural attenuation for off-post.

Historically, due to the reduction in on-post concentrations and/or the implementation of supplemental remediation efforts (i.e., subsurface injections), operation of extraction wells (EW) 1 through EW6 (that began operation in 1998) have been discontinued since 2009. At the former facility boundary, EW7 began operation in 2000 and has been the only operating extraction well since 2009. Historic groundwater monitoring and subsequent statistical analysis have shown that concentrations of RDX and TNT near the former facility boundary between EW6 and EW7 have significantly declined over the past 23 years due to the existing on-post RAO. Numerical groundwater modeling predictions with EW7 not pumping indicate that the on-post plume will not migrate further downgradient (Brice-AECOM 2019c). Based on these results and simulations, an OU1 Rebound Study is being performed to temporarily discontinue pumping at EW7 and monitor groundwater near the former facility boundary. Eight total groundwater sampling events (one baseline and seven quarterly events) will be completed to closely monitor potential migration of the RDX and TNT plumes and to document any increases/decreases in explosives concentrations in groundwater. The objective of the OU1 Rebound Study is to establish a sufficient data set to initiate further identified Decision Points and Contingency Actions as presented in the OU1 Rebound Study Work Plan (i.e., groundwater extraction is no longer needed, groundwater extraction should be resumed, alternative actions) (Brice-AECOM 2019b).

Concurrent with the OU1 Rebound Study, subsurface injections (a voluntary action) were completed in 2019 (in the area of highest RDX and TNT concentrations near the former facility boundary) and in 2020 (for on-post areas with remaining residual RDX and TNT concentrations above HALs) to accelerate remedial timeframes. Four total groundwater sampling events (at approximate quarterly frequency) will be completed for each injection event to closely monitor performance of the subsurface injections and remediation of the RDX and TNT plumes, and to document any increases/decreases in explosives concentrations in groundwater. The 2019 and 2020 OU1 subsurface injection details and design were included in the Final 2018 Annual Groundwater Monitoring Report (Brice-AECOM 2019c), Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b), respectively; with the approved procedures outlined

in the Final UFP-QAPP (BW-URS 2014). Following the OU1 Rebound Study and the OU1 subsurface injections with associated performance monitoring activities, long-term monitoring (LTM) will continue at OU1.

2.0 FIELD ACTIVITIES

This section summarizes the Q6 OU1 Rebound Study and the 2020 subsurface injection performance monitoring field activities completed at CHAAP. All field activities were completed in accordance with field protocols and standard operating procedures (SOPs) presented in the *Groundwater Recovery and Treatment System Operation and Maintenance (O&M) Manual* (GWTF O&M Manual [Brice 2019]), the Final UFP-QAPP (BW-URS 2014) and its Final Addendum 2 (Brice-AECOM 2018), the Final OU1 Rebound Study Work Plan (Brice-AECOM 2019b), and the OU1 subsurface injection recommendations provided in the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b).

It should be noted that concurrent with OU1 Rebound Study – Q6 sampling activities (30 monitoring wells), the annual OU1 LTM groundwater sampling event (88 monitoring wells) was completed and overlapping DQCRs, weekly reports, plume interpretations, and laboratory data packages with reviews are included within this letter report. Only wells pertinent to OU1 Rebound Study and subsurface injections are further discussed and OU1 LTM sampling event data and discussion will be included in a separate deliverable (i.e., 2021 OU1/OU3 Annual Monitoring Report).

2.1 OU1 REBOUND STUDY FIELD ACTIVITIES

The Q6 field activities were completed in May/June 2021 to continue monitoring explosives concentrations following shutdown of EW7. The baseline, Q2, Q3, Q4, and Q5 events are summarized in the Final OU1 Rebound Study Letter Report – Baseline Event (Brice-AECOM 2020a), Final OU1 Rebound Study Letter Report – Quarter 2 Event (Brice-AECOM 2020c), Final OU1 Rebound Study Letter Report – Quarter 3 Event (Brice-AECOM 2020d), Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021a), and Final OU1 Rebound Study Letter Report – Quarter 5 Event (Brice-AECOM 2021b), respectively.

2.1.1 Quarter 6 Direct Push Groundwater Sampling Activities (Off-Post)

A total of nine direct push groundwater samples were collected on June 1 and 2, 2021 from three off-post locations (OS001, OS003, and NW050R) as shown on **Figure 2-1**. Off-post direct push groundwater sampling was completed to collect screening data to continue monitoring explosives concentrations from the select OU1 off-post locations where permanent monitoring wells are not present and are not able to be installed due to private land ownership. In accordance with the OU1 Rebound Study Work Plan (Brice-AECOM 2019b), off-post location OS001 was selected to evaluate existing explosives concentrations that migrated off-post, and off-post location OS003 was selected to delineate the furthest extent off-post of explosives concentrations above HALs. Off-post location NW050R was selected for direct push groundwater sampling due to private landowner no longer allowing property access to six OU1 Rebound Study off-post monitoring wells (NW050, NW051, NW052, NW080, NW081R, NW082R) (shown on **Figure 2-1**). These six off-post monitoring wells are no longer sampled and are scheduled for future abandonment. To

continue monitoring groundwater in the area of these wells, quarterly (Q5 through Q8) direct push groundwater sampling is conducted in the right-of-way (ROW) adjacent to off-post well cluster NW050 (with Hall County permitting). Samples are collected at similar depths to NW050, NW051, and NW052 following the same procedures currently used for the area downgradient of EW7 (see **Table 2-1**).

Direct push groundwater sampling was completed for all locations at predetermined vertical intervals within the unconfined shallow aquifer (Grand Island Formation) to verify the vertical extent of the explosives plume. The OS001 and OS003 depth intervals included: shallow – screened approximately 21 to 25 feet below ground surface [bgs], shallow-intermediate – screened approximately 31 to 35 feet bgs, and intermediate – screened approximately 41 to 45 feet bgs. The NW050R depth intervals included: shallow – screened approximately 16 to 20 feet bgs, shallow-intermediate – screened approximately 31 to 35 feet bgs, and intermediate – screened approximately 56 to 60 feet bgs.

Brice-AECOM obtained utility clearances prior to the start of intrusive direct push activities. The Nebraska One Call Diggers Hotline was contacted for utility clearances, which were requested a minimum of 48 hours prior to intrusive work. All identified underground utilities were marked with flagging, stakes, and/or paint. Utility locate tasks were documented in field logbooks to aid in subsequent clearance work. No intrusive work was completed within 5 feet of a marked utility.

The direct push locations OS001 and OS003 were sited using predetermined horizontal coordinates and a global positioning system (GPS) unit to ensure completion in the planned locations. The final sampling location has been vertically surveyed and referenced to previously surveyed locations (i.e., monitoring wells). Due to proximity, the direct push location NW050R utilizes the approximate horizontal coordinates and vertical elevations of the existing well cluster NW050. The approximate ground surface elevation and sample interval elevations are provided in **Table 2-1**.

The direct push groundwater samples were collected using a Geoprobe® rig (model 7720DT) by Plains Environmental Services (PES) of Salina, Kansas, with full-time oversight by Brice-AECOM. Nebraska well drilling contractor licenses for PES and Brice-AECOM are provided in **Appendix A**.

Direct push groundwater samples were completed using direct push technology with a GeoprobeTM stainless steel screen point sampler (SP15 with exposed screen) and collected from the screened interval using a Geotech GeopumpTM peristaltic pump and a check valve. Prior to groundwater sample collection, approximately 7 liters (3 to 5 rod volumes) were purged typically at rates of 0.5 to 1.0 liter per minute (lpm) for each sampling interval. Direct push groundwater samples were analyzed for explosives (including mono-nitroso-RDX [MNX]) by United States Environmental Protection Agency (USEPA) Method 8330A. Quality control (QC) samples (field duplicates) and matrix spike/matrix spike duplicate (MS/MSD) samples were collected at a 5-percent rate (i.e., one per 20 samples collected). Direct push groundwater sample locations, sample identification (ID) numbers, sample screened intervals, sample collection dates, QC locations, and sample parameters are provided in **Table 2-1**. Direct push groundwater sample collection field sheets (SCFSs) are provided in **Appendix B**.

2.1.2 Quarter 6 OU1 Monitoring Well Sampling Activities (Off-Post and On-Post)

During the Q6 OU1 Rebound Study sampling event, 12 off-post and 18 on-post monitoring wells were sampled from May 19 through May 26, 2021. A summary of the OU1 off-post and on-post sampling locations is presented in **Table 2-2** and shown on **Figure 2-1**.

The monitoring wells were purged and sampled with stainless steel ProActive Monsoon® submersible pumps. The ProActive Monsoon® pump with new disposable tubing was lowered to the middle of the screened interval prior to purging. Modified low-flow purging techniques were completed at each monitoring well location, maintaining less than (<) 0.3 foot of water level drawdown at a pumping rate of 0.5 lpm or less. Field water quality parameters, including dissolved oxygen (DO), oxidation/reduction potential (ORP), temperature, pH, conductivity, and turbidity were measured at monitoring wells using an In-Situ Aqua TROLL® 500 MPS water quality probe fitted with a flow-through cell. Turbidity was measured with a LaMotte 2020 turbidity meter and ferrous iron (Fe²⁺) was measured using a HACH DR820 colorimeter. Purging continued until field water quality parameters stabilized (i.e., three consecutive readings) within criteria ranges specified in the Final UFP-QAPP: SOP 3, Monitoring Well and Piezometer Groundwater Sampling (BW-URS 2014). During the Q6 event, turbidity stabilization was not met at sampling locations EW7-PM25A and EW7-PM26B, and DO stabilization was not met at CA210, NW021, G0077, and PZ018; however, based on the additional stabilization parameter criteria being met (provided below), professional field judgements were made deeming stabilization acceptable, and the wells were sampled.

- pH: plus or minus (\pm) 0.2 units
- Specific conductance: ± 3 percent of previous readings
- DO: ± 10 percent of previous readings
- ORP: ± 20 millivolts (mV)
- Turbidity: less than or equal (≤) to 5 nephelometric turbidity units or 10 percent of previous readings, whichever is greater
- Temperature: ± 10 percent of previous readings

After purging was completed, sample containers were filled from the discharge line at a rate of 0.5 lpm or less. Samples were collected and analyzed for explosives (including MNX) and laboratory monitored natural attenuation (MNA) parameters: alkalinity by Method 2320B, ammonia by Method 350.1, carbon dioxide (CO₂) back calculated by Method 2320B, nitrate/nitrite by Method 353.2, sulfate by Method 9056A, sulfide by Method 9034, total Kjeldahl nitrogen (TKN) by Method 351.2, dissolved organic carbon (DOC) by Method 9060A, and methane by Method Robert S. Kerr Environmental Research Laboratory 175 (RSK-175). QC samples (field duplicates) and MS/MSDs were collected at a 5-percent rate (i.e., one per 20 samples collected) for all parameters (**Table 2-2**). Off-post and on-post monitoring well SCFSs are provided in **Appendix B**.

2.2 OU1 SUBSURFACE INJECTION PERFORMANCE MONITORING FIELD ACTIVITIES

This section presents the Q6 subsurface injection performance monitoring activities completed at

LL1, LL2, the Decant Station, and at select locations between EW6 and EW7. The Q6 performance monitoring is the second monitoring event following the 2020 subsurface injection activities. The 2020 subsurface injection activities and the performance monitoring activities completed for the 2019 subsurface injections (baseline through Q4) are summarized in the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021a).

2.2.1 Quarter 6 Subsurface Injection Performance Monitoring

At LL1, LL2, the Decant Station, and between EW6 and EW7, 20 performance monitoring locations (ten LTM monitoring wells and 10 temporary wells) were sampled in May/June 2021, as shown on Figures 2-2 through 2-4. The Q6 event is the second of four quarterly performance monitoring events planned at these performance monitoring wells to evaluate the effectiveness of the 2020 subsurface injection activities completed in October/November 2020. Groundwater samples collected from the temporary monitoring wells and LTM wells were analyzed for explosives (including MNX) and laboratory water quality parameters: alkalinity, ammonia, nitrate/nitrite, sulfate, sulfide, TKN, DOC, and methane. QC samples (field duplicates) and MS/MSDs were collected at a 5-percent rate (i.e., one per 20 samples collected) for all parameters. Performance monitoring groundwater sampling locations and parameters are listed in Table 2-3. Performance monitoring SCFSs are provided in Appendix B. The Q6 performance monitoring included:

- Ten new temporary wells (EW7-PM21A, EW7-PM24A, EW7-PM25A/B, EW7-PM26A/B, EW7-PM27B, EW7-PM28A, EW7-PM29A/B) at seven locations between EW6 and EW7
- Ten existing monitoring wells
 - LL1: G0094, G0096
 - LL2: G0111, G0121, G0122, G0123
 - Decant Station: G0102
 - Between EW6 and EW7: G0022 and piezometers PZ017R and PZ018

As completed during the baseline through Q5 events, temporary monitoring wells were used to provide a higher quality groundwater sample that has lower turbidity (compared to direct push screen point samples) and is representative of the aquifer. Temporary monitoring wells were installed using direct push technology. The temporary monitoring wells were screened at select vertical intervals based on past direct push vertical profile sampling results. Six shallow temporary wells (screened 20 to 30 feet bgs [temporary well IDs ending in A]) and four shallow-intermediate temporary wells (screened 30 to 40 feet bgs [temporary well IDs ending in B]) were installed within the interpreted groundwater explosives plume or within areas of historically higher concentrations identified during the Q3 event. Temporary well construction details are provided in **Table 2-4**. Surveyed ground surface elevations for both temporary wells and monitoring wells are provided in **Tables 2-3** and **2-4**.

2.2.1.1 Groundwater Sampling from Temporary Wells

The 10 temporary monitoring wells (at seven locations) were installed, developed, purged, sampled, and abandoned from June 2 through June 6, 2021. Temporary performance monitoring well development, purging, and sampling were completed using a Geotech GeopumpTM peristaltic pump. Temporary wells were developed by purging approximately 10 well volumes (purge rates

between 0.5 and 1.0 lpm) and samples were collected after all field water quality parameters had stabilized.

Per Nebraska Administrative Code (NAC) Title 178, Chapter 12 (NAC 2014), temporary wells (i.e., test holes) can be used in conjunction with groundwater investigations but may be retained for no more than 10 days unless a surface seal is used and a pre-notification document is submitted to Nebraska Department of Health and Human Services within 30 days prior to construction, then a temporary well may be retained for up to 90 days. Upon completion of sample collection, all temporary monitoring wells were abandoned within 10 days of installation by a Nebraska-licensed well driller. Temporary monitoring wells were abandoned by removing approximately the top 3 feet of the well casing below the ground surface and grouting from the bottom of the well up to ground surface following the procedures outlined in SOP 4, Boring and Monitoring Well Abandonment in the Final UFP-QAPP (BW-URS 2014).

2.2.1.2 Groundwater Sampling from OU1 Monitoring Wells

Ten existing monitoring wells at LL1, LL2, the Decant Station, and between EW6 and EW7 were purged and sampled on May 21 and May 23 through May 26, 2021. These wells were purged and sampled in accordance with **Section 2.1.2**. Performance monitoring groundwater sampling locations and parameters are listed in **Table 2-3**. Performance monitoring SCFSs are provided in **Appendix B**.

2.3 INVESTIGATION-DERIVED WASTE DISPOSAL PROCEDURES

Investigation-derived waste (IDW) from the Q6 sampling events consisted of purge, decontamination, and development water. IDW disposal was completed in accordance with NDEE IDW procedures as outlined in the Final UFP-QAPP (BW-URS 2014), as follows:

- A visual inspection of the IDW was conducted for evidence of potential contamination (i.e., discoloration, sheen, etc.). No visual evidence of potential contamination was observed.
- All IDW water was containerized in an IDW-labeled poly tank located at the GWTF and sampled for site waste characterization analysis (Explosives [including MNX] only [Method 8330A]). All IDW analytical results were below HALs, as summarized in **Table 2-5** (included in **Appendix D**) and discharged to ground surface.

2.4 FIELD DOCUMENTATION, SAMPLE IDENTIFICATION, SAMPLE HANDLING, AND SHIPPING

The observations and data collected during field activities were recorded with waterproof ink in a permanently bound, waterproof logbook with consecutively numbered pages, and/or on field sheets (provided in **Appendix B**), if applicable. A photographic record of site activities and progress was maintained throughout the course of the OU1 Rebound Study and subsurface injection activities and is provided in **Appendix C**.

Samples were collected in laboratory-provided containers and given discrete ID codes that included the sample location number (sample depth for direct push groundwater samples) and collection date. Sample ID labels were attached to each sample container and completed using

waterproof, permanent ink. The labels were completed with the sampler's name, sample ID number, date and time of sample collection, preservation type, analyses requested, and sampling matrix. Sample containers were placed into coolers, packed with wet ice (to achieve a temperature of 6 degrees Celsius [°C] or less), and made ready for shipment. Chain-of-custody (CoC) forms were included in each cooler. A copy of each CoC was maintained to document sample handling between the field and the laboratory. Sample coolers were shipped to Eurofins TestAmerica Laboratories in Arvada, Colorado during each sampling event. All samples were shipped via FedEx Priority Overnight.

2.5 FIELD REPORTING

2.5.1 Daily Quality Control Reports

Daily Quality Control Reports (DQCRs) were completed for each day of fieldwork associated with the OU1 Rebound Study and subsurface injection activities. DQCRs include a summary of daily field activities, safety activities, quality assurance/QC activities pertaining to all features of work, problems encountered in the field, and any corrective actions that were taken to correct these problems. Copies of the completed DQCRs are provided in **Appendix B**.

2.5.2 Weekly Progress Reports

Weekly progress reports were completed and submitted to the USACE Project Manager throughout the duration of the field activities. The weekly reports included a summary of the work performed in a particular week including mobilization, site preparation, site access, surveying, groundwater sampling, injection, and demobilization actions. The reports also included a summary of the problems encountered, deviations from the scope of work, percentage of work performed, and records of conversations or other correspondence among CHAAP team members. Copies of the weekly progress reports are provided in **Appendix B**.

3.0 SUMMARY OF QUARTER 6 RESULTS AND DATA QUALITY REVIEW

3.1 QUARTER 6 ANALYTICAL RESULTS

Groundwater samples for the Q6 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring activities were analyzed in accordance with the Final Addendum 2, UFP-QAPP (Brice-AECOM 2018) for various compounds depending on sample location. Groundwater samples for the OU1 Rebound Study off-post direct push locations were analyzed for explosives (including MNX) (see **Table 2-1**). Groundwater samples for the OU1 Rebound Study off-post and on-post monitoring wells and the 2020 subsurface injection performance monitoring activities were analyzed for explosives (including MNX) and laboratory MNA/water quality parameters: alkalinity, ammonia, nitrate/nitrite, sulfate, sulfide, TKN, DOC, and methane (see **Tables 2-2** and **2-3**). All laboratory analyses were completed by Eurofins TestAmerica. A summary of all Q6 analytical results is presented below.

Tables 3-1 (off-post direct push samples), **3-2** (off-post and on-post monitoring wells), and **3-3** (performance monitoring wells) summarize the explosives compounds detected in groundwater during the Q6 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring

sampling activities. The primary explosives compounds detected in groundwater were RDX, HMX, and TNT (only compounds having HALs). Additionally, the explosives breakdown products 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-amino-4,6-dinitrotoluene (2-Am-DNT), 4-amino-2,6-dinitrotoluene (4-Am-DNT), MNX, and nitrobenzene were detected.

- One off-post direct push location (OS001) had concentrations of TNT above the HAL (2 μg/L), but no off-post direct push locations had detections above the RDX HAL (2 μg/L). Off-post direct push locations had detections of explosives breakdown products 1,3,5-trinitrobenzene, 2-Am-DNT, and 4-Am-DNT (**Table 3-1**).
- Five OU1 Rebound Study on-post monitoring wells (G0077, G0086, PZ017R, PZ018, PZ020) had TNT concentrations above the HAL and one OU1 Rebound Study on-post monitoring well (PZ017R) had an RDX concentration above the HAL. No OU1 Rebound Study off-post monitoring wells had RDX or TNT concentrations above the HALs. Nine OU1 Rebound Study off-post and on-post monitoring wells had small detections of HMX but were below the HAL (400 μg/L). OU1 Rebound Study off-post and on-post monitoring wells had detections of explosives breakdown products 1,3,5-trinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-Am-DNT, and 4-Am-DNT (**Table 3-2**).
- Five performance monitoring wells (G0094, G0111, PZ017R, PZ018, and EW7-PM21A) had TNT concentrations above the HAL and seven performance monitoring wells (G0094, G0096, G0102, G0111, G0122, PZ017R, and EW7-PM26A) had RDX concentrations above the HAL. Five performance monitoring wells had small detections of HMX but were below the HAL. Performance monitoring wells had detections of explosives breakdown products 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-Am-DNT, 4-Am-DNT, MNX, and nitrobenzene (Table 3-3).

The data collected during the Q6 OU1 Rebound Study and 2020 subsurface injection performance monitoring were used to update the explosives plume boundaries in these areas. Data for the Q6 off-post direct push groundwater sample locations and off-post and on-post monitoring wells are shown on **Figure 2-1** and data for the Q6 2021 subsurface injection performance monitoring are shown on **Figure 2-2** through **2-4**.

Tables 3-2 and **3-3** also summarize the laboratory MNA/water quality parameters detected in groundwater at off-post and on-post monitoring wells and performance monitoring wells, respectively. Field duplicate sample pairs were collected to assess both field and laboratory precision. Three field duplicate samples were collected and submitted to the laboratory for analysis. Analytical results for the Q6 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring field duplicate sample pairs are presented in **Table 3-4**.

3.2 FIELD WATER QUALITY PARAMETERS

Field water quality parameter measurements were taken at the time of sample collection during Q6 OU1 Rebound Study (off-post and on-post monitoring wells) and 2020 OU1 subsurface injection performance monitoring sampling activities. Field water quality parameter measurements included ORP, DO, pH, conductivity, temperature, turbidity, and Fe²⁺. Groundwater purging stabilization was successfully accomplished using these field water quality parameter criteria; however, at some wells select parameters were not met but stabilization was deemed acceptable

using professional field judgement (see Section 2.1.2). All field results were recorded on the SCFSs (included in Appendix B). OU1 off-post and on-post monitoring well and subsurface injection performance monitoring well field water quality parameter measurements are presented in Tables 3-5 and 3-6, respectively.

3.3 DATA QUALITY REVIEW/VALIDATION PROCESS

Analytical data were reviewed and verified in accordance with the Final Addendum 2, UFP-QAPP (Brice-AECOM 2018). The data review process included evaluations of the following elements, as required, including validation of raw data by an AECOM chemist. The validation software ADR.NET was used to supplement the manual validation.

- Laboratory case narrative/cooler receipt form
- Sample documentation
- Sample preservation and holding time compliance
- Instrument performance check (tuning)
- Initial calibration
- Initial calibration verification second source
- Second column confirmation
- Primary and secondary column relative percent difference (RPD)
- Continuing calibration verification (CCV)
- Internal standards
- Blank samples
- Laboratory control samples (LCS)
- Surrogate compounds
- MS/MSDs
- Field duplicates
- Sensitivity
- Additional qualifications, including professional judgment
- Completeness

3.3.1 Analytical Results Verification

The laboratory data reports, complete ADR.NET, and data verification reports are provided in **Appendix D**. Qualifications applied to the analytical results based on the data review findings are included in **Table D-1** (**Appendix D**). Due to Q6 (May/June 2021) OU1 Rebound Study and performance monitoring sampling events being completed concurrent with the OU1/OU3 annual sampling event, the laboratory data and verification reports and qualification summaries are provided cumulatively in **Appendix D** and **Table D-1**. However, the data quality review only

discusses the Q6 OU1 Rebound Study and 2020 OU1 subsurface injection performance monitoring activities.

General trends regarding the data validation are as follows:

- Some explosives results for samples OS001-DP06-25, OS001-DP06-45, OS501-DP06-25, EW7-PM21A-6-25, EW7-PM24A-6-25, EW7-PM26A-6-25, G0075-21A, G0077-21A, G0081-21A, G0082-21A, G0086-21A, G0090-21A, G0091-21A, G0094-21A, G0096-21A, G0102-21A, G0111-21A, G0296-21A, G0311-21A, PZ017R-21A, PZ018-21A, PZ020-21A, PZ021-21A were qualified as estimated or estimated nondetect (J/UJ) due to RPDs greater than (>) 40% between the primary and confirmation columns. Data was qualified using professional judgement.
- The ammonia results for samples G0075-21A and G0022-21A were qualified as nondetect (U) due to method blank contamination. Data was qualified using professional judgement.
- The nitrate-nitrite results for samples EW7-PM25A-6-25, EW7-PM25B-9-35, EW7-PM26B-6-35, EW7-PM29A-6-25, EW7-PM29B-6-35, EW7-PM27B-6-35, EW7-PM28A-6-25 were qualified as U due to method blank contamination. Data was qualified using professional judgement.
- The 4-amino-2,6-dinitrotoluene and TKN results for the duplicate pair G0096-21A / G0296-21A were qualified as J/UJ due to field duplicate RPDs outside of evaluation criteria. Data was qualified using professional judgement.
- The 4-amino-2,6-dinitrotoluene results for the duplicate pair PZ017R-21A / PZ021-21A were qualified as **J** due to field duplicate RPDs outside of evaluation criteria. Data was qualified using professional judgement.
- The methane results for the following samples were qualified as J/UJ due to the presence of headspace > six millimeters in the VOA vials: CA213-21A, NW060-21A, NW062-21A, EW7-PM29B-6-35. Data was qualified using professional judgement.
- All detected explosives were qualified as **J** due to surrogate recoveries above evaluation criteria for the samples G0122-21A and G0123-21A.
- The alkalinity results for sample G0296-21A was qualified as **J** due to holding time exceedance (laboratory analysis delay). Data was qualified using professional judgement.
- The 2-nitrotoluene, 2-amino-4,6-dinitrotoluene, 3-nitrotoluene, 4-amino-2,6-dinitrotoluene, 4-nitrotoluene, and nitrobenzene results for samples EW7-PM21A-6-25, EW7-PM24A-6-25, EW7-PM27B-6-35, EW7-PM28A-6-25, NW020-21A, NW021-21A, NW022-21A, NW023-21A, G0022-21A, G0080-21A, G0087-21A, G0091-21A, G0094-21A, G0096-21A, G0102-21A, G0111-21A, G0121-21A, G0122-21A, G0123-21A, G0296-21A, G0311-21A, PZ019-21A, Source 2021, Water-WC-Q6-June21 were qualified as J/UJ due to LCS/LCSD recoveries below evaluation criteria. Data was qualified using professional judgement.
- The results for all samples in SDG 280-149081 were qualified as J/UJ due to a temperature exceedance (FedEx delivery delay).
- The following analytes for samples OS003-DP06-45, EW7-PM29A-6-25, NW062-21A, G0024-21A, G0070-21A, G0077-21A, G0078-21A, G0086-21A, G0096-21A, PZ017R-21A, PZ018-21A, PZ019-21A, PZ020-21A, PZ021-21A were qualified as J/UJ due to MS/MSD

- recoveries below evaluation criteria: 2-nitrotoluene, 3-nitrotoluene, 2-amino-4,6-dinitrotoluene, 4-nitrotoluene, 4-amino-2,6-dinitrotoluene, methane, TKN, sulfide, sulfate, methane, nitrate-nitrite. Data was qualified using professional judgement.
- The explosives results for the following samples were qualified as J/UJ due to surrogate recoveries below evaluation criteria: G0121-21A, OS001-DP06-35, EW7-PM25B-6-35, G0096-21A, G0296-21A, G0094-21A, EW7-PM21A-6-25, EW7-PM24A-6-25, EW7-PM27B-6-35, EW7-PM28A-6-25, Water-WC-Q6-June21. Data was qualified using professional judgement.

3.3.2 Conclusions of Data and Quality Review

The analytical data were found to be acceptable for the intended use based on the data validation and the automated data review. Completeness, defined to be the percentage of analytical results judged to be valid, including estimated data, was 100 percent for the sampling events. No analytical data were rejected during the data validation. Generally, good precision was noted in the field duplicate samples for analytes reported above the laboratory limits of quantitation.

4.0 OU1 STATISTICAL TREND EVALUATION (OU1 REBOUND STUDY WELLS)

Following the OU1 Rebound Study Q6 event (6th sampling event for all respective wells), a statistical trend evaluation of RDX and TNT concentrations was completed. The OU1 Rebound Study statistical trend evaluation includes only the off-post and on-post OU1 Rebound Study monitoring wells (shown on **Figure 2-1**). While all OU1 Rebound Study wells are considered for trend evaluations, only the wells with detections are included in the quarterly report statistical trend figures, currently illustrated as two sets of wells (former facility boundary wells provided on **Figure 4-1** and upgradient wells provided on **Figure 4-2**).

4.1 STATISTICAL TREND EVALUATION PROCESS

OU1 Rebound Study analytical results were evaluated using Mann-Kendall analysis in Monitoring and Remediation Optimization System (MAROS) Version 3.0 (AFCEC 2012). Statistical trend analysis of RDX and TNT was completed using the Mann-Kendall analysis to assess the potential for future RDX and TNT concentration increases. Mann-Kendall is a non-parametric statistical procedure that is well suited for analyzing trends in data over time, that do not follow a normal distribution, and focus on the location of the probability distribution of the sampled population, rather than specific parameters of the population. (AFCEC 2012). The linear regression analysis, modeling, and empirical functions were not used during this evaluation.

Using the three statistical metrics for Mann-Kendall analysis (Mann-Kendall statistic [S], Confidence in Trend [CT], and Coefficient of Variation [COV]), the Mann-Kendall analyzes the trend in the data over time and is utilized in the analysis of groundwater plume stability. A concentration trend category is then determined following the Mann-Kendall Analysis Decision Matrix. Generally, positive S values indicate an increase in analyte concentrations over time and negative S values indicate a decrease in analyte concentrations over time. The CT provides a percentage value of confidence for the S validity, and the COV provides a general indicator of the degree of variability. Mann-Kendall analysis will be applied to RDX and TNT results to assess the potential for future RDX and TNT concentration increases.

Individual monitoring well concentration trends are categorized into one of seven categories based on the decision matrix:

MANN-KENDALL ANALYSIS DECISION MATRIX

Mann-Kendall Statistic (S)	Confidence in Trend (CT)	Concentration Trend
S > 0	> 95%	Increasing (I)
S > 0	90% to 95%	Probably Increasing (PI)
S > 0	< 90%	No Trend (NT)
$S \le 0$	< 90% and COV greater than or equal (≥) 1	No Trend (NT)
S ≤ 0	< 90% and COV < 1	Stable (S)
S < 0	90% to 95%	Probably Decreasing (PD)
S < 0	> 95%	Decreasing (D)
Dataset where a	ll values are nondetect	Nondetect (ND)

Notes

No Trend – No statistically significant trend with more variability in concentrations over time (COV) Stable – No statistically significant trend with less variability in concentrations over time (COV)

4.1.1 Program Input

4.1.1.1 Data Management

Groundwater monitoring data at each set of wells were tabulated into an importable format recognized by the MAROS software, as summarized and presented in **Appendix E** (**Tables E.1**, **E.2**, and **E.3**). The groundwater monitoring data set included:

- Well names
- Well location coordinates
- Chemical constituent(s)
- Sample results
- Sample dates
- Detection limits (used to estimate values for non-detects)
- Data flags (non-detect or estimated [J] values)

4.1.2 Program Output

Mann-Kendall Statistics Summary result sheets output for each well set are included in **Appendix E** with results discussed below.

4.2 STATISTICAL RESULTS SUMMARY

The Mann-Kendall Statistics Summary sheets lists monitoring wells used in the evaluation. General sampling information, such as the number of samples and average detected constituent

concentration, is also presented. A contaminant concentration trend is determined for each well using the Mann-Kendall technique.

Data for the Mann-Kendall analysis for wells at the 'former facility boundary' (near operating EW7) were used from 12 total wells (three off-post monitoring wells, six on-post monitoring wells, and three piezometers) and are shown on the Mann-Kendall Statistics Summary result sheet in **Appendix E**. Due to no RDX and TNT detections at four of the former facility boundary wells during OU1 Rebound Study sampling events (i.e., baseline through Q6), only eight wells were included for evaluation and shown on **Figure 4-1**. The Mann-Kendall trend analysis results for each of the eight wells including: detections, detection frequency, minimum, maximum, mean, median, Mann-Kendall statistic result, and concentration trend are provided on **Figure 4-1** and yielded the following summarized results for TNT and RDX:

- TNT increasing (I) at NW020 and G0077, no trend (NT) at G0024 and PZ020, stable (S) at PZ018, probably decreasing (PD) at PZ017R, and nondetect (ND) at NW021 and G0091.
- RDX increasing (I) at PZ017R, no trend (NT) at NW020, G0024, G0077, PZ018, and PZ020, stable (S) at NW021, and decreasing (D) at G0091.

Data for the Mann-Kendall analysis for 'upgradient wells' of EW7 were used from nine on-post monitoring wells and are shown on the Mann-Kendall Statistics Summary result sheet in **Appendix E**. Due to no RDX and TNT detections at four of the upgradient wells during OU1 Rebound Study sampling events (i.e., baseline through Q6), only five wells were included for evaluation and shown on **Figure 4-2**. The Mann-Kendall trend analysis results for each of the five wells including: detections, detection frequency, minimum, maximum, mean, median, Mann-Kendall statistic result, and concentration trend are provided on **Figure 4-2** and yielded the following summarized results for TNT and RDX:

- TNT no trend (NT) at G0082, stable (S) at G0086, decreasing (D) at G0081, and nondetect (ND) at G0076 and G0087.
- RDX increasing (I) at G0086 and G0087, no trend (NT) at G0081, and stable (S) at G0076 and G0082.

Data for the remaining OU1 Rebound Study 'downgradient' wells (15 wells downgradient of EW7 and feedlot) are included in **Appendix E** (**Tables E.3**); however, these wells were not included in Mann-Kendall analysis, analysis figures, or summary sheets due to all having no detections of RDX or TNT during OU1 Rebound Study sampling events (i.e., baseline through Q6).

The trend analysis results for the two sets of wells (shown on **Figures 4-1** and **4-2**) indicated that five wells had increasing trends (I), two wells had decreasing trends, and one well had a probably decreasing trend (PD). All other wells yielded no trend (NT), stable (S), or nondetect (ND) results for Mann-Kendall statistical analysis. Of the five wells with increasing trends, two 'former facility boundary' wells (NW020 and G0077) showed increasing TNT trends and one 'former facility boundary' well (PZ017R) showed an increasing RDX trend. Two 'upgradient' wells (G0086 and G0087) had an increasing trend for RDX. During the OU1 Rebound Study sampling events, G0077 has remained slightly above the TNT HAL for all events and NW020 has increased but has remained below the TNT HAL for all events. At PZ017R, the RDX concentration has increased and remained slightly above the RDX HAL since the Q5 event. 'Upgradient' wells G0086 and G0087 have increased in RDX concentrations but have remained below the HAL for all events.

One 'former facility boundary' well (G0091) had a decreasing trend for RDX and one 'upgradient' well (G0081) had a decreasing trend for TNT but both have not been above the HALs during the OU1 Rebound Study. 'Former facility boundary' well PZ017R had a probably decreasing trend for TNT but has remained above the HAL for all events. The tabulated groundwater monitoring data for each well are included in **Appendix E**.

5.0 OU1 REBOUND STUDY AND INJECTION PERFORMANCE EVALUATION

This section presents an evaluation of the Q6 data compared to the previous five quarters of data for the OU1 Rebound Study and the subsurface injection performance monitoring for the OU1 groundwater explosives plume, as summarized in **Tables 5-1** through **5-4**. This evaluation compares RDX and TNT concentrations and key MNA/water quality parameters in groundwater and qualitatively discusses any concentration trends observed. Although baseline through Q4 performance monitoring was specifically completed for evaluating the 2019 subsurface injection event, select locations were added (or continued) for Q5 through Q8 for performance monitoring of the 2020 subsurface injection event.

Previous baseline, Q2, Q3, Q4, Q5 event data are provided in the Final OU1 Rebound Study Letter Report – Baseline Event (Brice-AECOM 2020a), the Final OU1 Rebound Study Letter Report – Quarter 2 Event (Brice-AECOM 2020c), the Final OU1 Rebound Study Letter Report – Quarter 3 Event (Brice-AECOM 2020d), Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021a), and the Final OU1 Rebound Study Letter Report – Quarter 5 Event (Brice-AECOM 2021b), respectively. Additionally, for comparison, historic RDX and TNT plume interpretation figures from previous OU1 Rebound Study and performance monitoring events (baseline through Q5) are included in **Appendix F**.

5.1 OU1 REBOUND STUDY EVALUATION

5.1.1 RDX and TNT Concentrations

RDX and TNT concentrations for all OU1 Rebound Study locations are presented in Table 5-1. Of the 18 on-post wells sampled during the Q6 event, five wells (G0077, G0086, PZ017R, PZ018, and PZ020) had TNT concentrations above its HAL (2 µg/L) similar to Q5 event; during the Q4 event four wells had TNT concentrations above the HAL. G0086 was nondetect for TNT in Q4; however, it was slightly above the TNT HAL from baseline through Q3 events and again in Q5 and Q6 (4.9 µg/L for both events). For the five on-post wells, the RDX and TNT concentrations increased slightly at G0077 from Q5 to Q6 but is comparable to previous events (remaining slightly above the TNT HAL and slightly below the RDX HAL [2 µg/L]). The TNT concentrations decreased slightly at PZ018 and PZ020 and remained unchanged at G0086 and PZ017R from Q5 to Q6. At the five on-post wells, only minor fluctuations of RDX were observed from Q5 to Q6 with only PZ017R having an RDX concentration above the HAL in Q6 (2.1 μg/L) (Figures 4-1 and 4-2). For the 12 off-post wells, concentrations continued to be nondetect for RDX and TNT during the Q6 event, with exception of NW020 and NW021 (located at the former facility boundary). NW020 has had minor RDX and TNT detections in most events, was above the RDX HAL during Q4 event only (2.3 µg/L) but has decreased to below the RDX HAL during Q5 (1.2 μg/L) and Q6 (1 μg/L) events. TNT concentrations have remained below the HAL for all events at NW020. The only detection during all events at slightly deeper well NW021 was RDX (0.13 μ g/L) during the Q6 event.

At off-post direct push location OS001 during the Q6 event, all RDX concentrations were below the HAL (2 μ g/L) and two TNT concentrations were above the HAL (2 μ g/L) at the shallow and shallow-intermediate. At OS001, a comparison of TNT concentrations indicates that TNT has generally decreased since Q3 in the shallow interval (approximately 25 feet bgs) from 32 μ g/L, to 29 μ g/L, to 20 μ g/L, to 26 μ g/L, but still remains above the baseline concentration of 12 μ g/L. TNT concentrations in the shallow-intermediate interval (approximately 35 feet bgs) have fluctuated from 11 μ g/L, to 8.2 μ g/L, to 11 μ g/L, to 15 μ g/L, to 2 μ g/L, to 4.9 μ g/L and have been remained below the baseline concentration during Q5 and Q6. In the intermediate interval (approximately 45 feet bgs) TNT concentrations have generally remained below the HAL from nondetect, to 1.1 μ g/L, to 2.2 μ g/L, to nondetect, to 0.25 μ g/L, to 0.34 μ g/L. Off-post direct push locations OS003 (farther downgradient) and NW050R (downgradient of feedlot/adjacent to previous OU1 Rebound well cluster NW050) had no RDX or TNT detections during the Q6 event. At OS003 (sampled during baseline and Q4 through Q6 events), a comparison of TNT concentrations detected indicates that TNT concentrations have decreased to below the HAL from 3 μ g/L, to nondetect, to 0.2 μ g/L, to nondetect, respectively.

Q6 data indicate that TNT concentrations > 2 μ g/L are present on-post slightly upgradient of the former facility boundary and extend off-post approximately 1,000 feet downgradient of the former facility boundary in a narrow and shallow plume. One small RDX plume > 2 μ g/L is present on-post at the former facility boundary (**Figure 2-1**).

5.1.2 MNA Parameter Measurements

MNA parameters for all OU1 Rebound Study wells are presented in Table 5-2. MNA occurs through both destructive (biodegradation) and non-destructive (dispersion and dilution) processes. The Q6 MNA parameter results for the OU1 Rebound Study wells were comparable to baseline through O5 parameters at the same off-post and on-post wells. In general, the data indicate these OU1 Rebound Study off-post and on-post wells continue to have higher ORP, DO (with the exception of the lower portion of the aguifer which has low DO concentrations), nitrate/nitrite, and sulfate measurements and low ammonia, TKN, DOC, CO₂, methane, alkalinity, sulfide, and Fe²⁺ measurements. Geochemical conditions most conducive to biodegradation include negative ORP values, DO concentrations < 0.5 mg/L, low nitrate/nitrite concentrations, low sulfate concentrations, and DOC concentrations > 10 mg/L. Correspondingly, higher concentrations of sulfide, Fe²⁺, and methane can indicate an environment in which biodegradation is occurring. With the exception of the deeper portion of the aguifer and at OU1 Rebound Study wells that are used for subsurface injection performance monitoring (i.e., PZ017R and PZ018), the data do not provide strong evidence that biodegradation is the primary mechanism of MNA for RDX and TNT for OU1 Rebound Study wells. Given the low and generally decreasing concentrations of RDX and TNT in the areas where the OU1 Rebound Study wells are located (generally surrounding the plume; upgradient, cross gradient, and downgradient), it is likely that dispersion and dilution play a stronger role in MNA for the OU1 Rebound Study wells than biodegradation. Overall, conditions at the OU1 Rebound Study wells continue to indicate the effectiveness of MNA at reducing RDX and TNT concentrations.

5.2 OU1 SUBSURFACE INJECTION PERFORMANCE MONITORING EVALUATION

5.2.1 RDX and TNT Concentrations

Explosives results for all OU1 subsurface injection performance monitoring locations are presented in **Table 5-3**. The Q6 performance monitoring includes locations specific for evaluating the 2020 subsurface injection event that was completed in October-November 2020 at LL1, LL2, the Decant Station, and between EW6 and EW7. Although the 2019 subsurface injection event (October-November 2019) was evaluated using baseline through Q4 performance monitoring events, select locations are again included (for Q5 through Q8 events) for performance monitoring of the 2020 subsurface injection event. The Q6 event performance monitoring results continued to verify that RDX and/or TNT concentrations > 2 μ g/L remain at LL1, LL2, the Decant Station, and between EW6 and EW7; however, concentrations have been substantially reduced (including multiple locations decreasing to below HALs) within the 2020 subsurface injection areas (shown on **Figures 2-2** through **2-4**).

At LL1, performance monitoring was completed in Q6 to evaluate the 2020 subsurface injection at two on-post monitoring wells (G0094 and G0096) which had RDX and/or TNT concentrations above the HALs (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). Neither monitoring well was sampled during baseline, Q2, and Q4 events. During the Q6 event, both monitoring wells continue to have RDX and/or TNT concentrations above the HALs. At G0094, a comparison of RDX and TNT concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations increased from 2.7 μ g/L, to 16 μ g/L, to 8.1 μ g/L and TNT concentrations increased from 8.5 μ g/L, to 4.9 μ g/L, to 19 μ g/L. At G0096, a comparison of RDX and TNT concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations increased from 36 μ g/L, to 87 μ g/L, to 58 μ g/L and TNT concentrations decreased from 0.96 μ g/L, to 0.24 μ g/L, to 0.38 μ g/L.

At LL2, performance monitoring was completed in Q6 to evaluate the 2020 subsurface injection at four on-post monitoring wells (G0111, G0121, G0122, and G0123) which had RDX or TNT concentrations above the HALs (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). None of the monitoring wells were sampled during baseline, Q2, and Q4 events. During the Q6 event, only monitoring wells G0111 and G0122 continue to have RDX and/or TNT concentrations above the HALs. At G0111, a comparison of RDX and TNT concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations increased from nondetect, to nondetect, to 6.5 μ g/L and TNT concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations increased from 12 μ g/L, to nondetect, to 82 μ g/L and TNT concentrations were all nondetect.

At the Decant Station, performance monitoring was completed in Q6 to evaluate the 2020 subsurface injection at one on-post monitoring well (G0102) which had an RDX concentration above the HAL (2 μ g/L) during the Q3 event (annual OU1 LTM event – June 2020). G0102 was not sampled during the baseline, Q2, and Q4 events. During the Q6 event, G0102 had an RDX concentration above the HAL and was nondetect for TNT. At G0102, a comparison of RDX and TNT concentrations detected during the Q3, Q5, Q6 sampling events indicates RDX concentrations decreased from 41 μ g/L, to nondetect, to 8.5 μ g/L and TNT concentrations were all nondetect.

Between EW6 and EW7, performance monitoring was completed in Q6 to evaluate the 2020 subsurface injection at three on-post monitoring wells (G0022, PZ017R, and PZ018) and 10 temporary wells (EW7-PM21A, PM24A, PM25A, PM25B, PM26A, PM26B, PM27B, PM28A, PM29A, and PM29B) which had RDX and/or TNT concentrations above the HALs (2 µg/L) during the Q3 event (annual OU1 LTM event – June 2020) or Q4 event. During the Q6 event, two of the three monitoring wells continued to have RDX and/or TNT concentrations above the HALs (PZ017R and PZ018). At PZ017R, a comparison of RDX and TNT concentrations detected during the baseline through Q6 sampling events indicates RDX concentrations increased slightly from $0.87 \mu g/L$, to $1.4 \mu g/L$, to $1.4 \mu g/L$, to $1.8 \mu g/L$, to $2.2 \mu g/L$, to $2.1 \mu g/L$ and TNT concentrations generally decreased from 15 μ g/L, to 17 μ g/L, to 11 μ g/L, to 15 μ g/L, to 10 μ g/L, to 10 μ g/L. At PZ018, a comparison of RDX and TNT concentrations detected during the baseline through Q6 sampling events indicates RDX decreased from 0.88 µg/L, to nondetect, to 1 µg/L, to nondetect, to nondetect, to nondetect and TNT concentrations generally decreased from 15 µg/L, to 19 µg/L, to nondetect, 17 µg/L, to 6 µg/L, to 4.6 µg/L. At the ten temporary wells, only three locations had detections of RDX or TNT during Q6 event, of which one location is above the RDX HAL (EW7-PM26A) and one location remains above the TNT HAL (EW7-PM21A). At EW7-PM21A, a comparison of TNT concentrations detected during the baseline through Q6 sampling events indicate TNT concentrations have decreased from 29 µg/L, to 17 µg/L, to 11 µg/L, to 11 µg/L, to 5.8 µg/L, to 8.3 µg/L. At EW7-PM24A, a comparison of TNT concentrations detected during the baseline through Q6 sampling events indicate TNT concentrations have decreased from 9.8 µg/L, to 0.53 μ g/L, to 8.3 μ g/L, to 5.4 μ g/L, to 4.6 μ g/L, to 0.25 μ g/L. At EW7-PM26A, a comparison of RDX concentrations detected during the baseline through O6 sampling events indicate RDX concentrations have increased from 0.97 µg/L, to nondetect, to 0.46 µg/L, to nondetect, to nondetect, to 2.5 µg/L. The on-post groundwater explosives plumes at LL1, LL2, the Decant Station, and between EW6 and EW7 was refined based on the Q6 subsurface injection performance monitoring results as shown on Figures 2-2 through 2-4.

5.2.2 Water Quality Parameter Measurements

Water quality parameters for all OU1 subsurface injection performance monitoring locations are presented in **Table 5-4**. The Q6 water quality parameters for the performance monitoring wells indicate a continued anaerobic environment is present due to the 2020 subsurface injections. During the Q6 event, ORP and DO measurements remained low at all locations directly impacted by the 2020 injections, indicating that significant anaerobic conditions are present. Q6 nitrate and sulfate concentrations generally remained low. Concentrations of DOC, methane, and Fe²⁺ remain elevated which indicates that anaerobic conditions are present within the treatment zone.

6.0 CONCLUSIONS AND RECOMMENDATIONS

This section presents the conclusions for the Q6 OU1 Rebound Study and the 2020 OU1 subsurface injection performance monitoring activities, and recommendations for the next sampling event (Quarter 7 [Q7] – October 2021). For comparison, historic RDX and TNT plume interpretation figures from previous OU1 Rebound Study and performance monitoring events (baseline through Q5) are included in **Appendix F**.

6.1 CONCLUSIONS

6.1.1 OU1 Rebound Study

All Q6 OU1 Rebound Study sampling activities were completed successfully, 19 months after EW7 shutdown (October 2019). The Q6 analytical results indicate the OU1 on-post TNT plume generally maintains a similar shape and extent from previous sampling events, with detections below HALs to the north and south of EW7 (near well cluster NW020 and PZ019). During Q6, all RDX detections at OU1 Rebound Study monitoring wells and off-post direct push locations were below the HAL (2 μ g/L), with the exception of on-post piezometer PZ017R (2.1 μ g/L) which was also detected above the RDX HAL during Q5 event (2.2 μ g/L). The RDX concentration at PZ017R is likely a small, isolated pulse that was mobilized as a result of the upgradient subsurface injection activities in 2019 and 2020. Previous injection events at OU1 have shown that RDX concentrations will likely decrease as the compound is biodegraded within the established anaerobic conditions.

During Q6, TNT concentrations > 2 μ g/L were identified at five OU1 Rebound Study on-post wells. These results are similar to previous events, with a slight increase in TNT concentration at G0077, and a noteworthy decrease in TNT concentration at PZ018. At PZ017R (and generally at PZ018), TNT concentrations are lowest since well installations in 2001.

During Q6, TNT concentrations > 2 μ g/L were identified at off-post direct push location OS001. TNT concentrations increased at the shallow interval (25 feet bgs) and the shallow-intermediate interval (35 feet bgs) with both having a TNT concentration above the HAL; however, TNT concentrations at both interval depths continue to be lower than highest observed concentrations (Q3 and Q4 events). At off-post direct push locations OS003 and NW050R, all sample intervals were nondetect for RDX and TNT. The Q6 off-post direct push sample results indicate that the interpreted TNT plume is similar in size to Q5 (approximately 1,000 feet downgradient of former facility boundary), generally stable, and likely naturally attenuating. Additionally, off-post monitoring wells downgradient of the feedlot (which have been below HALs since 2012 or longer) continue to remain nondetect for both RDX and TNT.

Based on the observation of concentrations above HALs at off-post direct push locations and monitoring wells, the criteria were met to evaluate Decision Points #1 and #2 as outlined in the OU1 Rebound Study Work Plan. Continuation of the OU1 Rebound Study is recommended for Contingency Action #1 based on the following Decision Point #1 inputs:

- The current extent of off-post TNT concentrations above the HAL are defined by the Q6 off-post direct-push sample results.
- Based on the results of the previous rebound study off-post direct push sample locations, TNT
 concentrations above the HAL are unlikely to migrate beyond the feedlot (i.e., plume is
 attenuating).
- Existing institutional controls (ICs) (i.e., off-post City Ordinance extending to facility boundary [maintained by City of Grand Island and Central Platte Natural Resources District (CPNRD)], on-post deed restrictions) remain protective.

Continuation of the OU1 Rebound Study is recommended for Contingency Action #2 based on the following Decision Point #2 inputs:

- The current extent of on-post and off-post RDX concentrations are defined and RDX concentrations above the HAL are unlikely to migrate beyond the feedlot.
- Existing ICs (i.e., off-post City Ordinance extending to facility boundary [maintained by City of Grand Island and CPNRD], on-post deed restrictions) remain protective.

6.1.2 OU1 Subsurface Injection Performance Monitoring

All Q6 OU1 subsurface injection performance monitoring sampling was completed successfully approximately six months after the 2020 subsurface injection event (October/November 2020). Decreases in explosives concentrations were identified at LL1, LL2, the Decant Station, and between EW6 and EW7 during the Q6 event due to the establishment of a highly anaerobic subsurface environment conducive to explosives biodegradation.

During Q6, five of 20 performance monitoring locations (G0094 – LL1, G0111 – LL2, and PZ017R, PZ018, EW7-PM21A – between EW6 and EW7) had TNT concentrations above the HAL (six locations in Q5 and seven prior to the 2020 injection event). TNT concentrations have decreased at four of the five locations, from prior to 2020 subsurface injections to Q6 event, and two additional locations (G0022 and EW7-PM21A) have decreased to below the HAL. The largest decrease in TNT concentrations at Q6 performance monitoring wells, from prior to 2020 subsurface injections to Q6 event, was at PZ018 (17 μ g/L to 4.6 μ g/L, respectively).

During Q6, seven of the 20 performance monitoring locations (G0094 and G0096 – LL1, G0111 and G0122 – LL2, G0102 – Decant Station, and PZ017R and EW7-PM26A – between EW6 and EW7) had RDX concentrations above the HAL (three locations in Q5 and six prior to the 2020 injection event). Four of the seven locations increased to above the RDX HAL during Q6, which were nondetect in Q5, but conversely RDX concentrations also decreased at three locations since Q5. The largest increase in RDX concentrations at Q6 performance monitoring wells, from prior to 2020 subsurface injections to Q6, was at G0122 (12 μg/L to 82 μg/L, respectively). These increases in RDX concentrations (and the increase of TNT concentration at one location discussed above) are likely due to the 2020 injection activities causing mobilization of dissolved explosives, as similarly identified following the 2019 injection activities (increases during the Q2 and Q3 sampling events then decreasing to below the HAL during Q4). These current concentrations of RDX and TNT are expected to quickly biodegrade within the established anaerobic treatment zones. The largest decrease in RDX concentrations at Q6 performance monitoring wells, from prior to 2020 subsurface injections to Q6, was at G0123 (48 μg/L to nondetect, respectively).

6.2 RECOMMENDATIONS

6.2.1 OU1 Rebound Study

Proceed with the Q7 sampling event for the OU1 Rebound Study (October 2021) per the OU1 Rebound Study Work Plan (Brice-AECOM 2019b) and continue to evaluate based on Decision Points, Contingency Actions, and Inputs #1 and #2 (Brice-AECOM 2019b). As completed during the Q6 OU1 Rebound Study sampling event, and as detailed/shown on **Table 2-1** and **Figure 2-1**, off-post direct push locations OS001 (location of highest explosives concentrations off-post), and OS003, NW050R (locations identified with explosives below HALs) will be sampled during Q7 field activities. As completed in Q6, location NW050R will continue to be sampled for explosives data within Hall County ROW to supplement for adjacent OU1 Rebound Study off-post well

clusters NW050 and NW080 no longer being accessible (private landowner). In accordance with the OU1 Rebound Study Work Plan, these locations will continue to verify the current horizontal and vertical extent of explosives concentrations above HALs and to evaluate any potential explosives migration further downgradient off-post. Following future off-post data analysis, explosives concentrations and migration trends will continue to be evaluated, and if necessary, additional off-post direct push sampling will be completed to verify the off-post extent of explosives concentrations above HALs.

In accordance with OU1 Rebound Study Work Plan and Final Addendum 2 (Brice-AECOM 2018), groundwater samples will be collected at the remaining 30 on- and off-post monitoring wells (detailed/shown on **Table 2-2** and **Figure 2-1**) during Q7 field activities.

6.2.2 OU1 Subsurface Injection Performance Monitoring

Proceed with Q7 OU1 subsurface injection performance monitoring event (October 2021), which is the 3rd event evaluating the 2020 subsurface injections per the Final 2019 Annual Groundwater Monitoring Report (Brice-AECOM 2020b) and the recommendations detailed in the Final OU1 Rebound Study Letter Report – Quarter 4 Event (Brice-AECOM 2021a). As completed during the Q6 OU1 subsurface injection performance monitoring event, and as detailed/shown on **Table 2-3** and **Figures 2-2** through **2-4**, 20 performance monitoring locations at LL1, LL2, the Decant Station, and between EW6 and EW7 will be sampled during the Q7 field activities.

7.0 REFERENCES

- Air Force Civil Engineer Center (AFCEC) 2012. Monitoring and Remediation Optimization System (MAROS) Software Version 3.0 User's Guide. Technology Transfer Division, Air Force Center for Environmental Excellence. Brooks AFB, San Antonio, TX. September.
- Bay West LLC and URS Group Inc. (BW-URS). 2014. Uniform Federal Policy Quality Assurance Project Plan. Remediation Action Operations Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1 and OU3. Cornhusker Army Ammunition Plant, Grand Island, Nebraska. November.
- Brice Engineering, LLC (Brice). 2019. Groundwater Recovery and Treatment System Operation and Maintenance Manual. Final. January.
- Brice-AECOM Technical Services (Brice-AECOM). 2018. Addendum 2 UFP-QAPP, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Groundwater Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2019a. CHAAP OU1 2018 Groundwater Monitoring Results and Program Recommendations Technical Memorandum. Final. June.
- Brice-AECOM. 2019b. Addendum 3 UFP-QAPP, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Groundwater Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. November.

- Brice-AECOM. 2019c. 2018 Annual Groundwater Monitoring Report, Remedial Action Operations of the Groundwater Treatment Facility at OU1 and Long-Term Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. December.
- Brice-AECOM. 2020a. OU1 Rebound Study Letter Report Baseline Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. June.
- Brice-AECOM. 2020b. 2019 Annual Groundwater Monitoring Report, Remedial Action Operation of the Groundwater Treatment Facility at OU1 and Long-Term Monitoring of OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2020c. OU1 Rebound Study Letter Report Quarter 2 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. October.
- Brice-AECOM. 2020d. OU1 Rebound Study Letter Report Quarter 3 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. November.
- Brice-AECOM. 2021a. OU1 Rebound Study Letter Report Quarter 4 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. April.
- Brice-AECOM. 2021b. OU1 Rebound Study Letter Report Quarter 5 Event. Remedial Action Operation Groundwater Treatment Facility at OU1 and Groundwater Monitoring at OU1/OU3, Cornhusker Army Ammunition Plant, Grand Island, Nebraska. Final. September.
- Nebraska Administrative Code (NAC). 2014. Title 178 Water Well Standards, Chapter 12 Water Well Construction, Pump Installation, and Water Well Decommissioning Standards. August.
- URS Greiner Woodward-Clyde Federal Services (URSGWCFS). 2001. OU1 ROD Amendment. Final Report. Cornhusker Army Ammunition Plant. Prepared for USACE. August.
- United States Army Environmental Center (USAEC). 1994. Interim Record of Decision for Cornhusker Army Ammunition Plant Operable Unit 1 Groundwater. November.

We appreciate the opportunity to provide services for this project. If you have any questions, please contact the undersigned.

Sincerely,

Corey Schwabenlander Project Manager

Brice Engineering, LLC

Dean Converse Project Manager

AECOM

ATTACHMENTS

List of Tables	6					
		_		_	 _	

Table 2-1	Direct Push Groundwater Samples Collected (Off-Post), OU1 Rebound Study Quarter 6
Table 2-2	Off-Post and On-Post Groundwater Monitoring Wells Sampled, OU1 Rebound Study, Quarter 6
Table 2-3	Performance Monitoring Locations Sampled, OU1 Subsurface Injection, Quarter 6
Table 2-4	Summary of Temporary Performance Monitoring Well Construction, OU1 Subsurface Injection, Quarter 6
Table 2-5	Summary of Explosives Detected, IDW – Water
Table 3-1	Summary of Explosives Detected, Direct Push Groundwater Locations (Off-Post) OU1 Rebound Study, Quarter 6
Table 3-2	Summary of Explosives Detected and Laboratory MNA Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study, Quarter 6
Table 3-3	Summary of Explosives Detected and Laboratory Water Quality Parameters, Performance Monitoring Wells, OU1 Subsurface Injection, Quarter 6
Table 3-4	Summary of OU1 Field Duplicate Sample Pairs
Table 3-5	Field Water Quality Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study, Quarter 6
Table 3-6	Field Water Quality Parameters, Performance Monitoring Wells, OU1 Subsurface Injection, Quarter 6
Table 5-1	Summary of RDX and TNT Concentrations, OU1 Rebound Study Locations
Table 5-2	Summary of MNA Parameters, Off-Post and On-Post Monitoring Wells, OU1 Rebound Study
Table 5-3	Summary of RDX and TNT Concentrations, OU1 Performance Monitoring Locations
Table 5-4	Summary of Water Quality Parameters, Performance Monitoring Locations, OU1 Subsurface Injection
List of Figures	S

Figure 1-1	Facility Location Map
Figure 1-2	Site Location Map
Figure 2-1	Extent of OU1 Explosives Plume, OU1 Rebound Study, Quarter 6 (May/June 2021)
Figure 2-2	Extent of OU1 Explosives Plume, OU1 Subsurface Injection Performance Monitoring, Quarter 6 (May/June 2021)
Figure 2-3	Extent of OU1 Explosives Plume, OU1 Subsurface Injection, and Well Sampling Locations, Load Line 1, Load Line 2, and Between EW6 and EW7

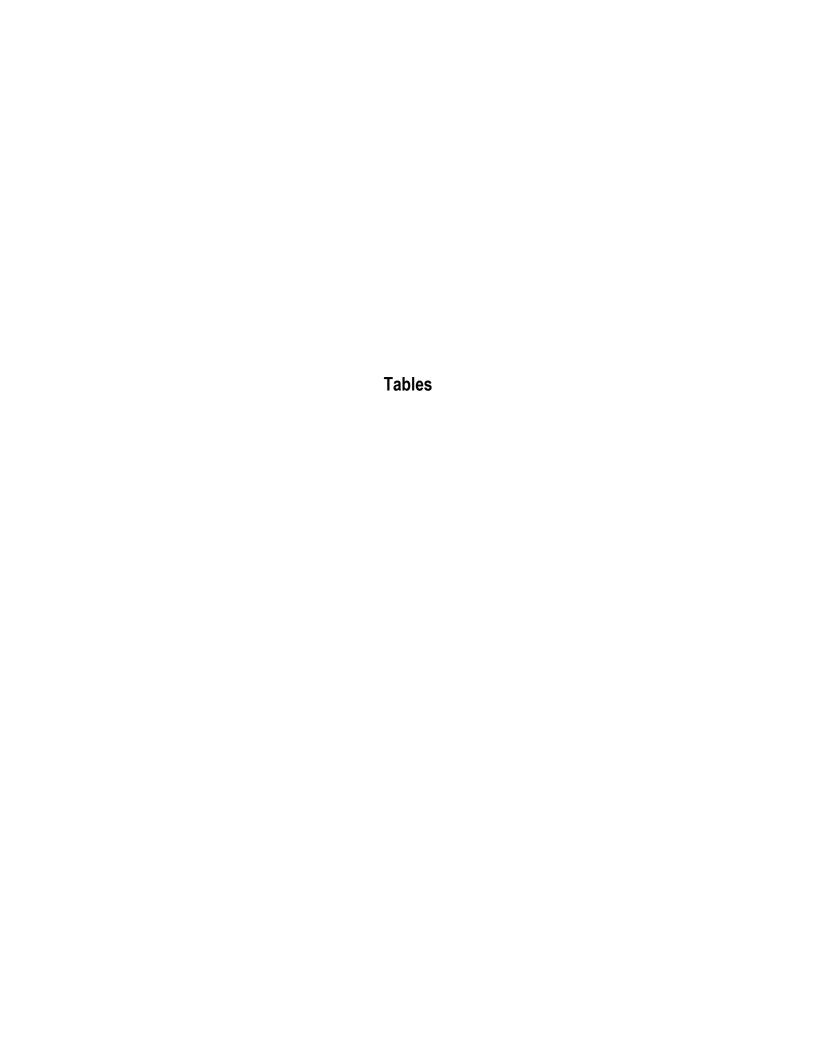
- Figure 2-4 Extent of OU1 Explosives Plume, OU1 Subsurface Injection and Well Sampling Locations, Decant Station

 Figure 4-1 Mann-Kendall Analysis for TNT and RDX, Former Facility Boundary Wells (OU1)
- Figure 4-2 Mann-Kendall Analysis for TNT and RDX, Upgradient Wells (OU1)

List of Appendices (CD Only)

Appendix A Well Drilling Licenses

Appendix B OU1 Rebound Study and Performance Monitoring Completed Field Forms


- Direct Push Groundwater Sample Collection Field Sheets (Off-post)
- OU1 Groundwater Monitoring Well Sample Collection Field Sheets
- Performance Monitoring Well Development Logs
- Performance Monitoring Sample Collection Field Sheets
- Direct Push Groundwater Sampling (Off-post), OU1 Groundwater Monitoring Well Sampling, and Performance Monitoring DQCRs and Weekly Reports

Appendix C Photographic Log

Appendix D Analytical Data and Validation

Appendix E OU1 Statistical Trend Data Sheets

Appendix F OU1 Rebound Study Historic Figures

TABLE 2-1 DIRECT PUSH GROUNDWATER SAMPLES COLLECTED (OFF-POST) OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	Coord	inates ¹							Pa	ramet	ers
Sample			Ground Elevation	In	reened terval	Sample Elevation			Explosives ²	Field Duplicate Samples ³	MS/MSD Samples ⁴
Location ID	Northing	Easting	(feet amsl) ¹	(fe	et bgs)	(feet amsl) ¹	Sample ID	Sample Date	Ξ	E S	Š ≤
OU1 Rebound	d Study - Off-post	Direct Push Samp	les ⁵								
				21	- 25	1865	OS001-DP06-25	6/2/2021	X	X	
OS001	403802.28	2067828.63	1890.06	31	- 35	1855	OS001-DP06-35	6/2/2021	X		
				41	- 45	1845	OS001-DP06-45	6/2/2021	X		
				21	- 25	1862	OS003-DP06-25	6/2/2021	X		
OS003	403834.73	2069322.13	1886.57	31	- 35	1852	OS003-DP06-35	6/2/2021	X		
				41	- 45	1842	OS003-DP06-45	6/2/2021	X		X
				16	- 20	#VALUE!	NW050R-DP06-20	6/1/2021	X		
NW050R	406567.11	2072396.24	it started	31	- 35	#VALUE!	NW050R-DP06-35	6/1/2021	X		
				56	- 60	#VALUE!	NW050R-DP06-60	6/1/2021	X		
			•			•		Totals	9	1	1

Notes:

% = percent ID = identification number OU = Operable Unit
amsl = above mean sea level MNX = mono-nitroso-RDX ROW = right-of-way (ditch)

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-tr

DP = direct push OS = off-post sample

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929. Coordinates and elevations for NW050R based upon adjacent well coordinates and elevations (i.e., NW050, NW051, NW052).

²Explosives (+MNX) analysis (SW846 Method 8330A) only completed.

³Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for explosives only. The 21-25 foot depth interval was chosen for a field duplicate sample because, if the explosives plume does extend to that location, it will most likely be observed at that depth.

⁴MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for explosives only. The 41-45 foot depth interval was chosen for an MS/MSD sample since that interval is likely clean.

⁵OU1 Rebound Study off-post direct push groundwater samples will be collected over eight total sampling events (one baseline, seven follow-up) at an approximate quarterly frequency, over approximately 2 years. The follow-up direct push sampling events (seven events at approximate quarterly frequency) will be collected from the established baseline locations (i.e., OS001 and OS003), with selective sample depths based on the baseline and/or follow-up events sample results. Beginning Quarter 5, due to no longer having property access at OU1 Rebound Study monitoing well clusters NW050 and NW080, off-post direct push groundwater samples will be collected from adjacent ROW location (i.e., NW050R) with comparable sample depth intervals (i.e., NW050, NW051, and NW052).

TABLE 2-2 OFF-POST AND ON-POST GROUNDWATER MONITORING WELLS SAMPLED **OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6**

Well Number	Sample Date	Explosives ¹	Laboratory MNA Parameters ²	Field MNA Parameters ³	Field Duplicate Sample ID ⁴	Field MS/MSD Sample ID ⁵
OU1 Off-Post	Monitoring Wel	ls				
CA210	5/19/2021	X	X	X		
CA211	5/19/2021	X	X	X		
CA212	5/19/2021	X	X	X		
CA213	5/19/2021	X	X	X		
NW020	5/25/2021	X	X	X	NW023-21A	
NW021	5/25/2021	X	X	X		
NW022	5/25/2021	X	X	X		
NW060	5/19/2021	X	X	X		
NW061	5/19/2021	X	X	X		
NW062	5/19/2021	X	X	X		
NW070	5/19/2021	X	X	X		
NW071	5/19/2021	X	X	X		
	Off-Post Totals	12	12	12	1	0
OU1 On-Post I	Monitoring Well	ls				
G0024	5/26/2021	X	X	X		
G0070	5/20/2021	X	X	X		G0070-21A MS/MSD
G0075	5/20/2021	X	X	X		
G0076	5/20/2021	X	X	X		
G0077	5/26/2021	X	X	X		
G0078	5/26/2021	X	X	X		
G0079	5/20/2021	X	X	X		
G0080	5/20/2021	X	X	X		
G0081	5/20/2021	X	X	X		
G0082	5/20/2021	X	X	X		
G0086	5/25/2021	X	X	X		

Notes:

% = percent

ID = identification number

MNX = mono-nitroso-RDX

MS/MSD = matrix spike/matrix spike duplicate

MNA = monitored natural attenuation

OU = Operable Unit

PZ = piezometer

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

RSK = Robert S. Kerr Environmental Research Laboratory

¹Explosives (+MNX) analysis (SW846 Method 8330A).

²Laboratory MNA parameters for OU1 (on- and off-post) include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

³Field MNA parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, specific conductance, turbidity, pH, and temperature.

⁴Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. NW020 and PZ017R were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁵MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. G0070 and PZ019 werer chosen for MS/MSD samples based on the lack of historic explosives concentrations at these locations.

TABLE 2-2 OFF-POST AND ON-POST GROUNDWATER MONITORING WELLS SAMPLED **OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6**

Well Number	Sample Date	Explosives ¹	Laboratory MNA Parameters ²	Field MNA Parameters ³	Field Duplicate Sample ID ⁴	Field MS/MSD Sample ID ⁵
G0087	5/25/2021	X	X	X		
G0091	5/24/2021	X	X	X		
G0092	5/24/2021	X	X	X		
PZ017R	5/26/2021	X	X	X	PZ021-21A	
PZ018	5/25/2021	X	X	X		
PZ019	5/24/2021	X	X	X		PZ019-21A MS/MSD
PZ020	5/26/2021	X	X	X		
	On-Post Totals	18	18	18	1	2
	Overall Totals	30	30	30	2	2

Notes:

% = percent

ID = identification number

MNA = monitored natural attenuation

MNX = mono-nitroso-RDX

MS/MSD = matrix spike/matrix spike duplicate

OU = Operable Unit

PZ = piezometer

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

RSK = Robert S. Kerr Environmental Research Laboratory

¹Explosives (+MNX) analysis (SW846 Method 8330A).

²Laboratory MNA parameters for OU1 (on- and off-post) include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

³Field MNA parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, specific conductance, turbidity, pH, and temperature.

⁴Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. NW020 and PZ017R were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁵MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. G0070 and PZ019 werer chosen for MS/MSD samples based on the lack of historic explosives concentrations at these locations.

TABLE 2-3 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

		Coord	linates ¹								Analyti	cal Para	ımeters
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Screened Interval (feet bgs)	Depth	Sample Elevation (feet amsl) ¹	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters ³	Field Water Quality Parameters ⁴	Field Duplicate Samples ⁵ MS/MSD Samples ⁶
Between EW6		8			(8 /	<u> </u>		•					
G0022	Monitoring Well	403241.74	2064370.31	1899.16	18 - 33	25	1874	G0022-21A	5/25/2021	X	X	X	
PZ017R	Piezometer	403469.08	2067255.25	1895.17	10 - 30	25	1870	PZ017R-21A	5/26/2021	X	X	X	X
PZ018	Piezometer	403293.15	2067256.61	1896.88	10 - 30	25	1872	PZ018-21A	5/25/2021	X	X	X	
EW7-PM21A	Temp. Well	403407.45	2066429.65	1899.12	20 - 30	25	1874	EW7-PM21A-6-25	6/5/2021	X	X	X	
EW7-PM24A	Temp. Well	403412.74	2066751.85	1899.72	20 - 30	25	1875	EW7-PM24A-6-25	6/5/2021	X	X	X	
EW7-PM25A	Temp. Well	403432.36	2066962.17	1895.73	20 - 30	25	1871	EW7-PM25A-6-25	6/4/2021	X	X	X	
EW7-PM25B	Temp. Well	403432.30	2000902.17	1093.73	30 - 40	35	1861	EW7-PM25B-6-35	6/4/2021	X	X	X	
EW7-PM26A	Temp. Well	403248.72	2066662.06	1899.73	20 - 30	25	1875	EW7-PM26A-6-25	6/3/2021	X	X	X	
EW7-PM26B	Temp. Well	403240.72	2000002.00	1079./3	30 - 40	35	1865	EW7-PM26B-6-35	6/3/2021	X	X	X	
EW7-PM27B	Temp. Well	403170.77	2066860.69	1897.55	30 - 40	35	1863	EW7-PM27B-6-35	6/5/2021	X	X	X	
EW7-PM28A	Temp. Well	403302.80	2067019.15	1894.82	20 - 30	25	1870	EW7-PM28A-6-25	6/5/2021	X	X	X	

Notes:

% = percent ID = identification PM = performance monitoring

amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-tr

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).

³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R, G0096, and G0111 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. Various other wells (i.e., 2021 LTM wells) were chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-3 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

\ <u></u>		Coord	linates ¹								Analytic	al Para	meters	;
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Screened Interval (feet bgs)	Sample Depth (feet bgs)	Sample Elevation (feet amsl) ¹	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters ³	Field Water Quality Parameters ⁴	Field Duplicate Samples ⁵	MS/MSD Samples ⁶
EW7-PM29A	Temp. Well	403108.54	2067050.13	1895.35	20 - 30	25	1870	EW7-PM29A-6-25	6/4/2021	X	X	X		
EW7-PM29B	Temp. Well	T03106.3T	2007030.13	1093.33	30 - 40	35	1860	EW7-PM29B-6-35	6/4/2021	X	X	X		
								Between EW6 and	EW7 Totals	13	13	13	1	0
Load Line 1														
G0094	Monitoring Well		2063084.23	1903.72	15 - 25	20	1884	G0094-21A	5/25/2021	X	X	X		
G0096	Monitoring Well	402127.49	2062746.66	1905.94	15 - 25	20	1886	G0096-21A	5/25/2021	X	X	X	X	
								Load I	ine 1 Totals	2	2	2	1	0
Load Line 2														
G0111	Monitoring Well		2059126.43	1911.94	15 - 25	20	1892	G0111-21A	5/24/2021	X	X	X	X	
G0121	Monitoring Well	401466.39	2058974.24	1909.10	20 - 30	25	1884	G0121-21A	5/24/2021	X	X	X		
G0122	Monitoring Well	401983.89	2058976.45	1909.68	20 - 30	25	1885	G0122-21A	5/23/2021	X	X	X		
G0123	Monitoring Well	401358.55	2059055.22	1908.65	20 - 30	25	1884	G0123-21A	5/24/2021	X	X	X		
								Load I	ine 2 Totals	4	4	4	1	0

Notes

% = percent ID = identification PM = performance monitoring

amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).

³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R, G0096, and G0111 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. Various other wells (i.e., 2021 annually sampled wells) were chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-3 PERFORMANCE MONITORING LOCATIONS SAMPLED OU1 SUBSURFACE INJECTION, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

		Coord	linates ¹								Analytic	cal Para	meters	
Sample Location ID	Well Type	Northing	Easting	Top of Casing Elevation (feet amsl) ¹	Screened Interval (feet bgs)	Sample Depth (feet bgs)	Sample Elevation (feet amsl) ¹	Sample ID	Sample Date	Explosives ²	Laboratory Water Quality Parameters ³	Field Water Quality Parameters ⁴	Field Duplicate Samples ⁵	MS/MSD Samples ⁶
Decant Statio				(11111	(*** *** 8**)	(8)	(111111 11)							
G0102	Monitoring Well	404235.26	2048906.45	1912.20	14 - 24	20	1892	G0102-21A	5/21/2021	X	X	X		
								Decar	nt Station Totals	1	1	1	0	0
		•	•	•			•		Overall Totals	20	20	20	3	0

Notes:

% = percent ID = identification PM = performance monitoring

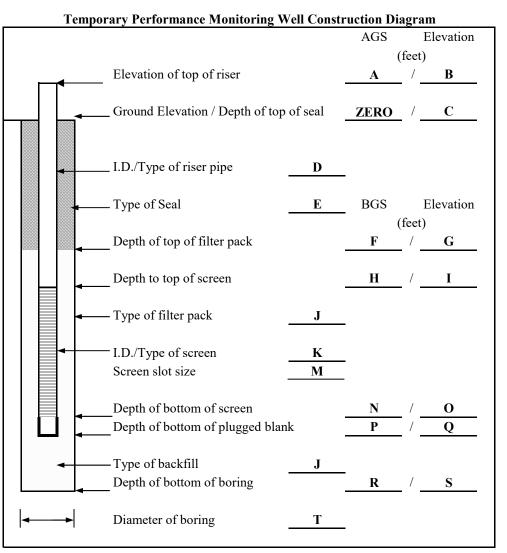
amsl = above mean sea level MNX = mono-nitroso-RDX PZ = piezometer

bgs = below ground surface MS/MSD = matrix spike/matrix spike duplicate RDX = hexahydro-1,3,5-trinziro-1,3,5-trinziro

EW = extraction well OU = Operable Unit RSK = Robert S. Kerr Environmental Research Laboratory

¹Horizontal coordinates are in Nebraska State Plane, North American Datum of 1983. Elevation datum based on National Geodetic Vertical Datum of 1929.

²Explosives (+MNX) analysis (SW846 Method 8330A).


³Laboratory water quality parameters for OU1 include: methane (Method RSK 175), total Kjeldahl nitrogen (Method 351.2), nitrate/nitrite (Method 353.2), sulfate (Method 9056A), sulfide (Method 9034), ammonia (Method 350.1), dissolved organic carbon (Method 9060A), alkalinity (Method 2320B), and carbon dioxide (back calculated Method 2320B).

⁴Field water quality parameters include: dissolved oxygen, oxidation/reduction potential, ferrous iron, turbidity, specific conductance, pH, and temperature.

⁵Field duplicate samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. PZ017R, G0096, and G0111 were chosen for field duplicate samples based on presence of historic explosives concentrations at those locations.

⁶MS/MSD samples were collected at a rate of 5% (1 per 20 samples collected) for the full suite of laboratory parameters. Various other wells (i.e., 2021 annually sampled wells) were chosen for MS/MSD samples based on the lack of historic explosives concentrations at this location.

TABLE 2-4
SUMMARY OF TEMPORARY PERFORMANCE MONITORING WELL CONSTRUCTION
OU1 SUBSURFACE INJECTION, QUARTER 6
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Notes

All temporary wells were installed by direct push methods (installation by Plains Environmental Services).

All temporary well installation activities were directed by AECOM.

Elevation datum based on National Geodetic Vertical Datum of 1929.

AGS = above ground surface

BGS = below ground surface

EW = extraction well

I.D. = inside diameter

OU = Operable Unit

PM = performance monitoring

The following information is the same for all temporary wells installed:

D = 1-inch inside diameter, Schedule 80, flush-threaded polyvinyl chloride

E = High-solids bentonite grount

J = Number 30-60, clean, washed, silica sand

K = 1-inch inside diameter, schedule 80, flush threaded, factory slotted polyvinyl chloride

M = Screen slot size standard 0.010-inch

T = 3.125-inch diameter

Well	Date Installed	Time	A	В	C	F	G	H	I	N	O	P	Q	R	S
EW7-PM21A	6/2/2021	1525	2.0	1899.12	1897.12	11.0	1886.1	20.0	1877.1	30.0	1867.1	30.1	1867.0	31.0	1866.1
EW7-PM24A	6/3/2021	1200	2.0	1899.72	1897.72	13.0	1884.7	20.0	1877.7	30.0	1867.7	30.1	1867.6	31.0	1866.7
EW7-PM25A	6/3/2021	1130	2.0	1895.73	1893.73	13.0	1880.7	20.0	1873.7	30.0	1863.7	30.1	1863.6	31.0	1862.7
EW7-PM25B	6/3/2021	1106	2.0	1895.73	1893.73	28.0	1865.7	30.0	1863.7	40.0	1853.7	40.1	1853.6	41.0	1852.7
EW7-PM26A	6/2/2021	1704	2.0	1899.73	1897.73	14.0	1883.7	20.0	1877.7	30.0	1867.7	30.1	1867.6	31.0	1866.7
EW7-PM26B	6/2/2021	1643	2.0	1899.73	1897.73	27.5	1870.2	30.0	1867.7	40.0	1857.7	40.1	1857.6	41.0	1856.7
EW7-PM27B	6/3/2021	0835	2.0	1897.55	1895.55	27.0	1868.6	30.0	1865.6	40.0	1855.6	40.1	1855.5	41.0	1854.6
EW7-PM28A	6/3/2021	1025	2.0	1894.82	1892.82	14.0	1878.8	20.0	1872.8	30.0	1862.8	30.1	1862.7	31.0	1861.8
EW7-PM29A	6/3/2021	0952	2.0	1895.35	1893.35	12.0	1881.4	20.0	1873.4	30.0	1863.4	30.1	1863.3	31.0	1862.4
EW7-PM29B	6/3/2021	0935	2.0	1895.35	1893.35	26.0	1867.4	30.0	1863.4	40.0	1853.4	40.1	1853.3	41.0	1852.4

TABLE 2-5 SUMMARY OF EXPLOSIVES DETECTED, IDW - WATER **OU1 REBOUND STUDY LETTER REPORT - QUARTER 6**

FIELD ID	CHAAP	WA	TER-	WC-Q	Q6-JUN21				
SAMPLE DATE	HALs		6/	6/2021	1				
	(µg/L)	Result	Qual	DL	LOD	LOQ			
EXPLOSIVES (USEPA Method 8330A) (µg/L)		2							
1,3,5-Trinitrobenzene	NA	<	UJ	0.092	0.22	0.23			
1,3-Dinitrobenzene	NA	<	UJ	0.04	0.11	0.12			
TNT	2	<	UJ	0.049	0.11	0.12			
2,4-Dinitrotoluene	NA	<	UJ	0.03	0.087	0.11			
2,6-Dinitrotoluene	NA	<	UJ	0.044	0.087	0.11			
2-Amino-4,6-dinitrotoluene	NA	<	UJ	0.055	0.11	0.12			
2-Nitrotoluene	NA	<	UJ	0.093	0.22	0.23			
3-Nitrotoluene	NA	<	UJ	0.21	0.44	0.44			
4-Amino-2,6-dinitrotoluene	NA	<	UJ	0.063	0.13	0.16			
4-Nitrotoluene	NA	<	UJ	0.11	0.44	0.45			
HMX	400	<	UJ	0.096	0.22	0.23			
MNX	NA	<	UJ	0.17	0.44	2.2			
Nitrobenzene	NA	<	UJ	0.099	0.22	0.23			
RDX	2	<	UJ	0.056	0.22	0.23			
Tetryl	NA	<	UJ	0.035	0.11	0.12			

Notes:

< = less than LOQ

 $\mu g/L = micrograms per liter$

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

IDW = investigation-derived waste

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

WC = waste characterization (water)

TABLE 3-1

SUMMARY OF EXPLOSIVES DETECTED, DIRECT PUSH GROUNDWATER LOCATIONS (OFF-POST) OU1 REBOUND STUDY, QUARTER 6

OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

FIELD ID	CHAAP	OS001-DP06-25			OS001-DP06-35				OS001-DP06-45				OS003-DP06-25				OS003-DP06-35					OS003-DP06-45				NW050R-DP06-20										
SAMPLE DATE	HALs		6/2/2021			6/2/2021			6/2/2021			6/2/2021				6/2/2021				6/2/2021				6/1/2021												
	(µg/L)	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)	•	•																																		
1,3,5-Trinitrobenzene	NA	0.84		0.083	0.2	0.21	23	J	0.083	0.2	0.21	5.4		0.083	0.2	0.21	<	U	0.083	0.2	0.21	<	U	0.086	0.2	0.21	<	U	0.084	0.2	0.21	<	U	0.082	0.2	0.2
1,3-Dinitrobenzene	NA	<	U	0.037	0.099	0.11	<	UJ	0.036	0.098	0.11	<	U	0.037	0.099	0.11	<	U	0.036	0.099	0.11	<	U	0.038	0.1	0.11	<	U	0.037	0.1	0.11	<	U	0.036	0.098	0.11
TNT	2	26		0.22	0.5	0.55	4.9	J	0.044	0.098	0.11	0.34	J	0.045	0.099	0.11	<	U	0.044	0.099	0.11	<	U	0.046	0.1	0.11	<	U	0.045	0.1	0.11	<	U	0.044	0.098	0.11
2,4-Dinitrotoluene	NA	<	U	0.027	0.079	0.099	<	UJ	0.027	0.079	0.098	<	U	0.027	0.079	0.099	<	U	0.027	0.079	0.099	<	U	0.028	0.082	0.1	<	U	0.027	0.08	0.1	<	U	0.027	0.078	0.098
2,6-Dinitrotoluene	NA	<	U	0.04	0.079	0.099	<	UJ	0.039	0.079	0.098	<	U	0.04	0.079	0.099	<	U	0.04	0.079	0.099	<	U	0.041	0.082	0.1	<	U	0.04	0.08	0.1	<	U	0.039	0.078	0.098
2-Amino-4,6-dinitrotoluene	NA	2.3		0.05	0.099	0.11	0.52	J	0.05	0.098	0.11	0.23	J	0.05	0.099	0.11	<	U	0.05	0.099	0.11	<	U	0.052	0.1	0.11	<	U	0.051	0.1	0.11	<	U	0.049	0.098	0.11
2-Nitrotoluene	NA	<	U	0.085	0.2	0.21	<	UJ	0.084	0.2	0.21	<	U	0.085	0.2	0.21	<	U	0.084	0.2	0.21	<	U	0.087	0.2	0.21	<	UJ	0.085	0.2	0.21	<	U	0.083	0.2	0.2
3-Nitrotoluene	NA	<	U	0.19	0.4	0.4	<	UJ	0.19	0.39	0.39	<	U	0.19	0.4	0.4	<	U	0.19	0.39	0.39	<	U	0.2	0.41	0.41	<	UJ	0.19	0.4	0.4	<	U	0.19	0.39	0.39
4-Amino-2,6-dinitrotoluene	NA	1.8		0.057	0.12	0.15	0.99	J	0.057	0.12	0.15	0.13	J	0.057	0.12	0.15	<	U	0.057	0.12	0.15	<	U	0.059	0.12	0.15	<	UJ	0.058	0.12	0.15	<	U	0.056	0.12	0.15
4-Nitrotoluene	NA	<	U	0.099	0.4	0.41	<	UJ	0.098	0.39	0.4	<	U	0.099	0.4	0.41	<	U	0.099	0.39	0.4	<	U	0.1	0.41	0.42	<	UJ	0.1	0.4	0.41	<	U	0.098	0.39	0.4
HMX	400	<	U	0.087	0.2	0.21	<	UJ	0.086	0.2	0.21	<	U	0.087	0.2	0.21	<	U	0.086	0.2	0.21	<	U	0.089	0.2	0.21	<	U	0.087	0.2	0.21	<	U	0.085	0.2	0.2
MNX	NA	<	U	0.15	0.4	2	<	UJ	0.15	0.39	2	<	U	0.15	0.4	2	<	U	0.15	0.39	2	<	U	0.16	0.41	2	<	U	0.15	0.4	2	<	U	0.15	0.39	2
Nitrobenzene	NA	<	U	0.09	0.2	0.21	<	UJ	0.09	0.2	0.21	<	U	0.09	0.2	0.21	<	U	0.09	0.2	0.21	<	U	0.093	0.2	0.21	<	U	0.091	0.2	0.21	<	U	0.089	0.2	0.2
RDX	2	0.4	J	0.051	0.2	0.21	<	UJ	0.051	0.2	0.21	<	U	0.051	0.2	0.21	<	U	0.051	0.2	0.21	<	U	0.053	0.2	0.21	<	U	0.051	0.2	0.21	<	U	0.05	0.2	0.2
Tetryl	NA	<	U	0.032	0.099	0.11	<	UJ	0.031	0.098	0.11	<	U	0.032	0.099	0.11	<	U	0.031	0.099	0.11	<	U	0.032	0.1	0.11	<	U	0.032	0.1	0.11	<	U	0.031	0.098	0.11

Notes:

Concentrations exceed HALs

< = less than LOQ

 $\mu g/L$ = micrograms per liter

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

DP = direct push

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OS = off-post sample

OU = Operable Unit Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

TABLE 3-1 SUMMARY OF EXPLOSIVES DETECTED, DIRECT PUSH GROUNDWATER LOCATIONS (OFF-POST) OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

FIELD ID	CHAAP		NW0	50R-DP	06-35		NW050R-DP06-60						
SAMPLE DATE	HALs			6/1/202	1	6/1/2021							
	(µg/L)	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ		
EXPLOSIVES (USEPA Method 8330A) (μg/L)													
1,3,5-Trinitrobenzene	NA	0.17	J	0.085	0.2	0.21	<	U	0.084	0.2	0.21		
1,3-Dinitrobenzene	NA	<	U	0.037	0.1	0.11	<	U	0.037	0.1	0.11		
TNT	2	<	U	0.046	0.1	0.11	<	U	0.045	0.1	0.11		
2,4-Dinitrotoluene	NA	<	U	0.028	0.081	0.1	<	U	0.027	0.08	0.1		
2,6-Dinitrotoluene	NA	<	U	0.041	0.081	0.1	<	U	0.04	0.08	0.1		
2-Amino-4,6-dinitrotoluene	NA	<	U	0.051	0.1	0.11	<	U	0.05	0.1	0.11		
2-Nitrotoluene	NA	<	U	0.087	0.2	0.21	<	U	0.085	0.2	0.21		
3-Nitrotoluene	NA	<	U	0.2	0.41	0.41	<	U	0.19	0.4	0.4		
4-Amino-2,6-dinitrotoluene	NA	<	U	0.058	0.12	0.15	<	U	0.057	0.12	0.15		
4-Nitrotoluene	NA	<	U	0.1	0.41	0.42	<	U	0.1	0.4	0.41		
HMX	400	<	U	0.089	0.2	0.21	<	U	0.087	0.2	0.21		
MNX	NA	<	U	0.16	0.41	2	<	U	0.15	0.4	2		
Nitrobenzene	NA	<	U	0.092	0.2	0.21	<	U	0.091	0.2	0.21		
RDX	2	<	U	0.052	0.2	0.21	<	U	0.051	0.2	0.21		
Tetryl	NA	<	U	0.032	0.1	0.11	<	U	0.032	0.1	0.11		

Notes:

Concentrations exceed HALs

< = less than LOQ

 μ g/L = micrograms per liter

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

DP = direct push

HAL = health advisory level

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

MNX = mono-nitroso-RDX

NA = not available

OS = off-post sample

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

TABLE 3-2 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР																	0	FF-PC	ST																
FIELD ID	HALs		(CA210-2	21A			(CA211-2	1A			(CA212-	21A			C	A213-2	1A			N	W020-2	1A			N	W021-2	1A			N	W022-2	21A	
SAMPLE DATE	(μg/L)			5/19/20	21				5/19/202	21				5/19/20	21			:	5/19/202	21			5	5/25/202	1			:	5/25/202	21				5/25/200)2	
		Result	Qual	l DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)																																				
1,3,5-Trinitrobenzene	NA	<	U	0.086	0.2	0.21	<	U	0.079	0.19	0.2	<	U	0.082	0.19	0.2	<	U	0.082	0.19	0.2	<	U	0.086	0.2	0.21	<	U	0.087	0.21	0.22	<	U	0.085	0.2	0.21
1,3-Dinitrobenzene	NA	<	U	0.038	0.1	0.11	<	U	0.035	0.094	0.1	<	U	0.036	6 0.097	0.11	<	U	0.036	0.097	0.11	<	U	0.038	0.1	0.11	<	U	0.038	0.1	0.11	<	U	0.037	0.1	0.11
TNT	2	<	U	0.046	0.1	0.11	<	U	0.042	0.094	0.1	<	U	0.044	0.097	0.11	<	U	0.044	0.097	0.11	0.93	J	0.046	0.1	0.11	<	U	0.047	0.1	0.11	<	UJ	0.046	0.1	0.11
2,4-Dinitrotoluene	NA	<	U	0.028	0.082	0.1	<	U	0.026	0.075	0.094	<	U	0.027	7 0.078	0.097	<	U	0.027	0.078	0.097	<	U	0.028	0.082	0.1	<	U	0.028	0.083	0.1	<	U	0.028	0.081	0.1
2,6-Dinitrotoluene	NA	<	U	0.041	0.082	0.1	<	U	0.038	0.075	0.094	<	U	0.039	0.078	0.097	<	U	0.039	0.078	0.097	<	U	0.041	0.082	0.1	<	U	0.042	0.083	0.1	<	U	0.041	0.081	0.1
2-Amino-4,6-dinitrotoluene	NA	<	U	0.052	0.1	0.11	<	U	0.048	0.094	0.1	<	U	0.049	0.097	0.11	<	U	0.049	0.097	0.11	1.3	J	0.052	0.1	0.11	1.5		0.053	0.1	0.11	<	UJ	0.052	0.1	0.11
2-Nitrotoluene	NA	<	U	0.087	0.2	0.21	<	U	0.081	0.19	0.2	<	U	0.083	0.19	0.2	<	U	0.083	0.19	0.2	<	UJ	0.087	0.2	0.21	<	UJ	0.089	0.21	0.22	<	UJ	0.087	0.2	0.21
3-Nitrotoluene	NA	<	U	0.2	0.41	0.41	<	U	0.18	0.38	0.38	<	U	0.19	0.39	0.39	<	U	0.19	0.39	0.39	<	UJ	0.2	0.41	0.41	<	UJ	0.2	0.42	0.42	<	UJ	0.2	0.41	0.41
4-Amino-2,6-dinitrotoluene	NA	<	U	0.059	0.12	0.15	<	U	0.054	0.11	0.14	<	U	0.056	0.12	0.15	<	U	0.056	0.12	0.15	1.3	J	0.059	0.12	0.15	0.95		0.06	0.12	0.16	<	UJ	0.059	0.12	0.15
4-Nitrotoluene	NA	<	U	0.1	0.41	0.42	<	U	0.094	0.38	0.39	<	U	0.097	7 0.39	0.4	<	U	0.097	0.39	0.4	<	UJ	0.1	0.41	0.42	<	UJ	0.1	0.42	0.43	<	UJ	0.1	0.41	0.42
HMX	400	<	U	0.089	0.41	2	<	U	0.083	0.19	0.2	<	U	0.085	0.19	0.2	<	U	0.085	0.19	0.2	1.4	J	0.09	0.2	0.21	<	U	0.091	0.21	0.22	<	UJ	0.089	0.2	0.21
MNX	NA	<	U	0.16	0.41	2	<	U	0.15	0.38	1.9	<	U	0.15	0.39	1.9	<	U	0.15	0.39	1.9	<	U	0.16	0.41	2	<	U	0.16	0.42	2.1	<	U	0.16	0.41	2
Nitrobenzene	NA	<	U	0.093	0.2	0.21	<	U	0.086	0.19	0.2	<	U	0.088	0.19	0.2	<	U	0.089	0.19	0.2	<	U	0.093	0.2	0.21	<	U	0.095	0.21	0.22	<	U	0.092	0.2	0.21
RDX	2	<	U	0.052	0.2	0.21	<	U	0.049	0.19	0.2	<	U	0.05	0.19	0.2	<	U	0.05	0.19	0.2	1		0.053	0.2	0.21	0.13	J	0.053	0.21	0.22	<	U	0.052	0.2	0.21
Tetryl	NA	<	U	0.032	0.1	0.11	<	U	0.03	0.094	0.1	<	U	0.031	0.097	0.11	<	U	0.031	0.097	0.11	<	U	0.033	0.1	0.11	<	U	0.033	0.1	0.11	<	U	0.032	0.1	0.11
LABORATORY MNA PARAMETERS																																				
Ammonia USEPA 350.1 (mg/L)		0.14		0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	2 0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	1.5		0.022	0.05	0.1	1.4	J	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	1.7		0.69	1	1	1.4		0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		41		0.19	0.5	1	32		0.095	0.25	0.5	14		0.038	3 0.1	0.2	1.5		0.019	0.05	0.1	67		0.19	0.5	1	0.87		0.019	0.05	0.1	<	UJ	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	1.6	J	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		190		1	2.5	5	89		1	2.5	5	68		1	2.5	5	60		1	2.5	5	240		5.2	13	25	200		5.2	13	25	250		5.2	13	25
Dissolved Organic Carbon SM 9060A (mg/L)		9.5		0.35	0.8	1	4.7		0.35	0.8	1	2.4		0.35	0.8	1	2		0.35	0.8	1	6.8		0.35	0.8	1	3.3		0.35	0.8	1	3.4	J	0.35	0.8	1
Alkalinity SM 2320B (mg/L)		390		3.1	6.4	10	180		3.1	6.4	10	170		3.1	6.4	10	130		3.1	6.4	10	340		3.1	6.4	10	340		3.1	6.4	10	430		3.1	6.4	10
Methane RSK-175 (μg/L)		2.7		0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	34		0.63	2	5	430	J	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		173		3.1	6.4	10	80		3.1	6.4	10	76		3.1	6.4	10	58		3.1	6.4	10	151		3.1	6.4	10	151		3.1	6.4	10	191		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $<= less than \ LOQ \\ \mu g/L = micrograms \ per \ liter \\ NA = not \ available$

CHAAP = Cornhusker Army Ammunition Plant OU = Operable Unit DL = detection limit PZ = piezometer HAL = health advisory level Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

 $J = estimated \\ LOD = limit of detection \\ SM = Standard Method \\ TNT = 2,4,6-trinitrotoluene$

LOQ = limit of quantification U = nondetect

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

TABLE 3-2
SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY, QUARTER 6
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР												0	FF-P	OST																ON-I	POST				
FIELD ID	HALs		N	W060-	21A			N	W061-2	1A			N	W062	21A			N	W070-2	21A			N	W071-2	21A			(G0024-2	1A			(G0070-2	1A	
SAMPLE DATE	(μg/L)		:	5/19/20	21				5/19/202	21				5/19/2)21			4	5/19/202	21			;	5/19/202	21				5/26/202	21				5/20/202	21	
		Resu	lt Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)																																				
1,3,5-Trinitrobenzene	NA	<	0.083	U	0.2	0.21	<	U	0.082	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.089	0.21	0.22	<	U	0.08	0.19	0.2
1,3-Dinitrobenzene	NA	<	0.036	U	0.099	0.11	<	U	0.036	0.097	0.11	<	U	0.03	5 0.095	0.1	<	U	0.035	0.095	0.11	<	U	0.035	0.095	0.1	<	U	0.039	0.11	0.12	<	U	0.035	0.095	0.1
TNT	2	<	0.045	U	0.099	0.11	<	U	0.044	0.097	0.11	<	U	0.04	3 0.095	0.1	<	U	0.043	0.095	0.11	<	U	0.043	0.095	0.1	0.44		0.048	0.11	0.12	<	U	0.043	0.095	0.1
2,4-Dinitrotoluene	NA	<	0.027	U	0.079	0.099	<	U	0.027	0.078	0.097	<	U	0.02	6 0.076	0.095	<	U	0.026	0.076	0.095	<	U	0.026	0.076	0.095	<	U	0.029	0.085	0.11	<	U	0.026	0.076	0.095
2,6-Dinitrotoluene	NA	<	0.04	U	0.079	0.099	<	U	0.039	0.078	0.097	<	U	0.03	8 0.076	0.095	<	U	0.038	0.076	0.095	<	U	0.038	0.076	0.095	<	U	0.043	0.085	0.11	<	U	0.038	0.076	0.095
2-Amino-4,6-dinitrotoluene	NA	<	0.05	U	0.099	0.11	<	U	0.049	0.097	0.11	<	U	0.04	8 0.095	0.1	<	U	0.048	0.095	0.11	<	U	0.048	0.095	0.1	1.2		0.054	0.11	0.12	<	UJ	0.048	0.095	0.1
2-Nitrotoluene	NA	<	0.085	U	0.2	0.21	<	U	0.083	0.19	0.2	<	UJ	0.08	0.19	0.2	<	U	0.082	0.19	0.2	<	U	0.082	0.19	0.2	<	UJ	0.091	0.21	0.22	<	UJ	0.081	0.19	0.2
3-Nitrotoluene	NA	<	0.19	U	0.4	0.4	<	U	0.19	0.39	0.39	<	UJ	0.19	0.38	0.38	<	U	0.19	0.38	0.38	<	U	0.19	0.38	0.38	<	UJ	0.21	0.42	0.42	<	UJ	0.19	0.38	0.38
4-Amino-2,6-dinitrotoluene	NA	<	0.057	U	0.12	0.15	<	U	0.056	0.12	0.15	<	U	0.05	5 0.11	0.14	<	U	0.055	0.11	0.14	<	U	0.055	0.11	0.14	1.1		0.061	0.13	0.16	<	U	0.055	0.11	0.14
4-Nitrotoluene	NA	<	0.099	U	0.4	0.41	<	U	0.097	0.39	0.4	<	U	0.09	5 0.38	0.39	<	U	0.095	0.38	0.39	<	U	0.095	0.38	0.39	<	UJ	0.11	0.42	0.44	<	UJ	0.095	0.38	0.39
HMX	400	<	0.087	U	0.2	0.21	<	U	0.085	0.19	0.2	<	U	0.08	0.19	0.2	<	U	0.084	0.19	0.2	<	U	0.084	0.19	0.2	<	U	0.093	0.21	0.22	<	U	0.083	0.19	0.2
MNX	NA	<	0.15	U	0.4	2	<	U	0.15	0.39	1.9	<	U	0.15	0.38	1.9	<	U	0.15	0.38	1.9	<	U	0.15	0.38	1.9	<	U	0.16	0.42	2.1	<	U	0.15	0.38	1.9
Nitrobenzene	NA	<	0.09	U	0.2	0.21	<	U	0.088	0.19	0.2	<	U	0.08	7 0.19	0.2	<	U	0.087	0.19	0.2	<	U	0.087	0.19	0.2	<	U	0.097	0.21	0.22	<	U	0.086	0.19	0.2
RDX	2	<	0.051	U	0.2	0.21	<	U	0.05	0.19	0.2	<	U	0.04	9 0.19	0.2	<	U	0.049	0.19	0.2	<	U	0.049	0.19	0.2	<	U	0.055	0.21	0.22	<	U	0.049	0.19	0.2
Tetryl	NA	<	0.031	U	0.099	0.11	<	U	0.031	0.097	0.11	<	U	0.03	0.095	0.1	<	U	0.03	0.095	0.11	<	U	0.03	0.095	0.1	<	U	0.034	0.11	0.12	<	U	0.03	0.095	0.1
LABORATORY MNA PARAMETERS																																				
Ammonia USEPA 350.1 (mg/L)		<	0.022	U	0.05	0.1	2.4		0.022	0.05	0.1	1		0.02	2 0.05	0.1	0.034	J	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	0.69	U	1	1	1.8		0.69	1	1	<	U	0.69	1	1	2		0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		2.4	0.019		0.05	0.1	9.8		0.019	0.05	0.1	0.053	J	0.01	9 0.05	0.1	0.031	J	0.019	0.05	0.1	32		0.19	0.5	1	7.8		0.019	0.05	0.1	<	U	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	0.79	U	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		9.4	2.1	J	5	10	150		1	2.5	5	190		2.1	5	10	18		1	2.5	5	63		1	2.5	5	54		1	2.5	5	44		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		2.6	0.35		0.8	1	4.7		0.35	0.8	1	2.9		0.35	0.8	1	15		0.35	0.8	1	3.2		0.35	0.8	1	3.3		0.35	0.8	1	1.1		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		36	3.1		6.4	10	290		3.1	6.4	10	270		3.1	6.4	10	120		3.1	6.4	10	110		3.1	6.4	10	220		3.1	6.4	10	220		3.1	6.4	10
Methane RSK-175 (μg/L)		<	0.63	U	2	5	28		0.63	2	5	7.6		0.63	2	5	7.5		0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		16	3.1		6.4	10	129		3.1	6.4	10	120		3.1	6.4	10	53		3.1	6.4	10	49		3.1	6.4	10	98		3.1	6.4	10	98		3.1	6.4	10

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $<= less than \ LOQ \\ \mu g/L = micrograms \ per \ liter \\ NA = not \ available$

CHAAP = Cornhusker Army Ammunition Plant OU = Operable Unit DL = detection limit PZ = piezometer HAL = health advisory level Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

TABLE 3-2 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS OU1 REBOUND STUDY, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР																	0	N-POS	ST																
FIELD ID	HALs			G0075-2	21A			G	G0076-2	1A			G	0077-21	A			G	0078-21	A			(G0079-2	1A			(G0080-2	lA			(G0081-21	1A	
SAMPLE DATE	(μg/L)			5/20/20	21			5	5/20/202	21				5/26/202	1			5	/26/202	1			:	5/20/202	21				5/20/202	1				5/20/202	21	
		Resul	t Qua	l DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																				
1,3,5-Trinitrobenzene	NA	<	U	0.08	0.19	0.2	<	U	0.082	0.19	0.2	4.3		0.086	0.2	0.22	<	U	0.089	0.21	0.22	<	U	0.079	0.19	0.2	<	U	0.087	0.21	0.22	<	U	0.079	0.19	0.2
1,3-Dinitrobenzene	NA	<	U	0.033	5 0.096	0.11	<	U	0.036	0.097	0.11	<	U	0.038	0.1	0.11	<	U	0.039	0.11	0.12	<	U	0.035	0.094	0.1	<	U	0.038	0.1	0.11	<	U	0.035	0.094	0.1
TNT	2	<	U	0.043	0.096	0.11	<	U	0.044	0.097	0.11	4.3		0.046	0.1	0.11	<	U	0.048	0.11	0.12	<	U	0.042	0.094	0.1	<	U	0.046	0.1	0.11	<	U	0.043	0.094	0.1
2,4-Dinitrotoluene	NA	<	U	0.020	6 0.077	0.096	<	U	0.027	0.078	0.097	0.061	J	0.028	0.082	0.1	<	U	0.029	0.085	0.11	<	U	0.026	0.075	0.094	<	U	0.028	0.082	0.1	<	U	0.026	0.076	0.094
2,6-Dinitrotoluene	NA	<	U	0.038	8 0.077	0.096	<	U	0.039	0.078	0.097	<	U	0.041	0.082	0.1	<	U	0.042	0.085	0.11	<	U	0.038	0.075	0.094	<	U	0.041	0.082	0.1	<	U	0.038	0.076	0.094
2-Amino-4,6-dinitrotoluene	NA	0.75		0.049	0.096	0.11	<	U	0.049	0.097	0.11	2.5		0.052	0.1	0.11	<	U	0.054	0.11	0.12	<	U	0.048	0.094	0.1	<	UJ	0.052	0.1	0.11	0.082	J	0.048	0.094	0.1
2-Nitrotoluene	NA	<	U	0.082	2 0.19	0.2	<	U	0.083	0.19	0.2	<	UJ	0.088	0.2	0.22	<	UJ	0.09	0.21	0.22	<	U	0.08	0.19	0.2	<	UJ	0.088	0.21	0.22	<	U	0.081	0.19	0.2
3-Nitrotoluene	NA	<	U	0.19	0.38	0.38	<	U	0.19	0.39	0.39	<	UJ	0.2	0.41	0.41	<	UJ	0.21	0.42	0.42	<	U	0.18	0.38	0.38	<	UJ	0.2	0.41	0.41	<	U	0.18	0.38	0.38
4-Amino-2,6-dinitrotoluene	NA	0.67		0.053	5 0.11	0.14	<	U	0.056	0.12	0.15	2.5		0.059	0.12	0.15	<	U	0.061	0.13	0.16	<	U	0.054	0.11	0.14	<	UJ	0.059	0.12	0.15	<	U	0.055	0.11	0.14
4-Nitrotoluene	NA	<	U	0.090	6 0.38	0.39	<	U	0.097	0.39	0.4	<	UJ	0.1	0.41	0.42	<	UJ	0.11	0.42	0.43	<	U	0.094	0.38	0.39	<	UJ	0.1	0.41	0.42	<	U	0.094	0.38	0.39
HMX	400	2	J	0.084	4 0.19	0.2	<	U	0.085	0.19	0.2	0.57		0.09	0.2	0.22	<	U	0.093	0.21	0.22	<	U	0.082	0.19	0.2	<	U	0.09	0.21	0.22	0.42		0.083	0.19	0.2
MNX	NA	<	U	0.15	0.38	1.9	<	U	0.15	0.39	1.9	<	U	0.16	0.41	2	<	U	0.16	0.42	2.1	<	U	0.14	0.38	1.9	<	U	0.16	0.41	2.1	<	U	0.15	0.38	1.9
Nitrobenzene	NA	<	U	0.08	7 0.19	0.2	<	U	0.089	0.19	0.2	<	U	0.093	0.2	0.22	<	U	0.096	0.21	0.22	<	U	0.086	0.19	0.2	<	U	0.094	0.21	0.22	<	U	0.086	0.19	0.2
RDX	2	<	U	0.049	0.19	0.2	<	U	0.05	0.19	0.2	1.2	J	0.053	0.2	0.22	<	U	0.055	0.21	0.22	<	U	0.048	0.19	0.2	<	U	0.053	0.21	0.22	0.3		0.049	0.19	0.2
Tetryl	NA	<	U	0.03	0.096	0.11	<	U	0.031	0.097	0.11	<	U	0.033	0.1	0.11	<	U	0.034	0.11	0.12	<	U	0.03	0.094	0.1	<	U	0.033	0.1	0.11	<	U	0.03	0.094	0.1
LABORATORY MNA PARAMETERS																																				
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	2 0.05	0.1	1.6		0.022	0.05	0.1	<	U	0.022	0.05	0.1	0.29		0.022	0.05	0.1	<	U	0.022	0.05	0.1	1.3		0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	1.8		0.69	1	1	<	U	0.69	1	1	0.7	J	0.69	1	1	0.83	J	0.69	1	1	2.1		0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		3.3		0.019	9 0.05	0.1	<	U	0.019	0.05	0.1	9		0.019	0.05	0.1	<	U	0.019	0.05	0.1	1.8		0.019	0.05	0.1	1.4		0.019	0.05	0.1	3.6		0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		190		1	2.5	5	320		2.1	5	10	140		1	2.5	5	270		5.2	13	25	50		1	2.5	5	100		1	2.5	5	140		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		2.7		0.35	0.8	1	3.4		0.35	0.8	1	4.4		0.35	0.8	1	2.9		0.35	0.8	1	5		0.35	0.8	1	8.3		0.35	0.8	1	3.6		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		290		3.1	6.4	10	370		3.1	6.4	10	310		3.1	6.4	10	320		3.1	6.4	10	310		3.1	6.4	10	270		3.1	6.4	10	280		3.1	6.4	10
Methane RSK-175 (µg/L)		<	U	0.63	2	5	210		0.63	2	5	530		0.63	2	5	130		0.63	2	5	<	U	0.63	2	5	1.1	J	0.63	2	5	76		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		129		3.1	6.4	10	164		3.1	6.4	10	138		3.1	6.4	10	142		3.1	6.4	10	138		3.1	6.4	10	120		3.1	6.4	10	124		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $<= less than \ LOQ \\ \mu g/L = micrograms \ per \ liter \\ NA = not \ available$

CHAAP = Cornhusker Army Ammunition Plant

DL = detection limit

OU = Operable Unit

PZ = piezometer

HAL = health advisory level Qual = qualifier HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

 $J = estimated \\ LOD = limit of detection \\ SM = Standard Method \\ TNT = 2,4,6-trinitrotoluene$

LOQ = limit of quantification U = nondetect

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

TABLE 3-2
SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY, QUARTER 6
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР																	О	N-POS	ST																
FIELD ID	HALs			G0082-2	1A			G	0086-21	lA			G	0087-21	A			G	0091-21	A			G	0092-21	A			P	Z017R-2	1A			F	PZ018-21	A	
SAMPLE DATE	(μg/L)			5/20/202	21			5	5/26/202	1			:	5/25/202	1			5	5/24/202	1			5	5/24/202	1			:	5/26/202	1			1	5/25/202	1	
		Result	Qua	l DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																				
1,3,5-Trinitrobenzene	NA	3.9		0.08	0.19	0.2	14	J	0.089	0.21	0.22	<	U	0.085	0.2	0.21	<	U	0.082	0.2	0.21	<	U	0.11	0.26	0.28	1.1		0.088	0.21	0.22	<	U	0.091	0.22	0.23
1,3-Dinitrobenzene	NA	<	U	0.035	0.095	0.1	<	UJ	0.039	0.11	0.12	<	U	0.037	0.1	0.11	<	U	0.036	0.098	0.11	<	U	0.049	0.13	0.15	<	U	0.038	0.1	0.11	<	U	0.04	0.11	0.12
TNT	2	0.73		0.043	0.095	0.1	4.9	J	0.048	0.11	0.12	<	U	0.045	0.1	0.11	<	U	0.044	0.098	0.11	<	U	0.059	0.13	0.15	10		0.047	0.1	0.11	4.6		0.049	0.11	0.12
2,4-Dinitrotoluene	NA	<	U	0.026	0.076	0.095	0.053	J	0.029	0.084	0.11	<	U	0.028	0.08	0.1	<	U	0.027	0.078	0.098	<	U	0.036	0.11	0.13	<	U	0.029	0.083	0.1	<	U	0.03	0.086	0.11
2,6-Dinitrotoluene	NA	<	U	0.038	0.076	0.095	<	UJ	0.042	0.084	0.11	<	U	0.04	0.08	0.1	<	U	0.039	0.078	0.098	<	U	0.053	0.11	0.13	0.36	J	0.042	0.083	0.1	<	U	0.043	0.086	0.11
2-Amino-4,6-dinitrotoluene	NA	0.55		0.048	0.095	0.1	1.4	J	0.054	0.11	0.12	0.22		0.051	0.1	0.11	0.16	J	0.05	0.098	0.11	<	U	0.067	0.13	0.15	3		0.053	0.1	0.11	2.5		0.055	0.11	0.12
2-Nitrotoluene	NA	<	U	0.082	0.19	0.2	<	UJ	0.09	0.21	0.22	<	UJ	0.086	0.2	0.21	<	UJ	0.084	0.2	0.21	<	UJ	0.11	0.26	0.28	<	UJ	0.089	0.21	0.22	<	UJ	0.092	0.22	0.23
3-Nitrotoluene	NA	<	U	0.19	0.38	0.38	<	UJ	0.21	0.42	0.42	<	UJ	0.2	0.4	0.4	<	UJ	0.19	0.39	0.39	<	UJ	0.26	0.53	0.53	<	UJ	0.2	0.42	0.42	<	UJ	0.21	0.43	0.43
4-Amino-2,6-dinitrotoluene	NA	0.88		0.055	0.11	0.14	1.1	J	0.061	0.13	0.16	0.7		0.058	0.12	0.15	0.17	J	0.056	0.12	0.15	<	U	0.076	0.16	0.2	2.7	J	0.06	0.13	0.16	4.9	J	0.062	0.13	0.16
4-Nitrotoluene	NA	<	U	0.095	0.38	0.39	<	UJ	0.11	0.42	0.43	<	UJ	0.1	0.4	0.41	<	UJ	0.098	0.39	0.4	<	UJ	0.13	0.53	0.54	<	UJ	0.1	0.42	0.43	<	UJ	0.11	0.43	0.44
HMX	400	<	U	0.084	0.19	0.2	0.44	J	0.093	0.21	0.22	0.7		0.088	0.2	0.21	0.3		0.086	0.2	0.21	<	U	0.12	0.26	0.28	1.6	J	0.091	0.21	0.22	<	U	0.095	0.22	0.23
MNX	NA	<	U	0.15	0.38	1.9	<	UJ	0.16	0.42	2.1	<	U	0.15	0.4	2	<	U	0.15	0.39	2	<	U	0.2	0.53	2.6	<	U	0.16	0.42	2.1	<	U	0.17	0.43	2.2
Nitrobenzene	NA	<	U	0.087	0.19	0.2	<	UJ	0.096	0.21	0.22	<	U	0.092	0.2	0.21	<	U	0.089	0.2	0.21	<	U	0.12	0.26	0.28	<	U	0.095	0.21	0.22	<	U	0.098	0.22	0.23
RDX	2	0.43	J	0.049	0.19	0.2	0.84	J	0.054	0.21	0.22	0.23		0.052	0.2	0.21	0.31		0.05	0.2	0.21	<	U	0.068	0.26	0.28	2.1		0.054	0.21	0.22	<	U	0.056	0.22	0.23
Tetryl	NA	<	U	0.03	0.095	0.1	<	UJ	0.034	0.11	0.12	<	U	0.032	0.1	0.11	<	U	0.031	0.098	0.11	<	U	0.042	0.13	0.15	<	U	0.033	0.1	0.11	<	U	0.034	0.11	0.12
LABORATORY MNA PARAMETERS																																				
Ammonia USEPA 350.1 (mg/L)		0.19		0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1	0.033	J	0.022	0.05	0.1	0.32	J	0.11	0.25	0.5
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		0.96	J	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	U	0.69	1	1	<	UJ	0.69	1	1	<	U	0.69	1	1	2.4		0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		2.8		0.019	0.05	0.1	5.4		0.019	0.05	0.1	8.2		0.019	0.05	0.1	38		0.095	0.25	0.5	<	U	0.019	0.05	0.1	24		0.48	1.3	2.5	5		0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		99		1	2.5	5	180		1	2.5	5	110		1	2.5	5	200		1	2.5	5	350		5.2	13	25	81		1	2.5	5	53		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		4.9		0.35	0.8	1	3		0.35	0.8	1	2.8		0.35	0.8	1	3.1		0.35	0.8	1	2.7		0.35	0.8	1	4.2		0.35	0.8	1	11		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		370		3.1	6.4	10	310		3.1	6.4	10	290		3.1	6.4	10	270		3.1	6.4	10	360		3.1	6.4	10	280		3.1	6.4	10	360		3.1	6.4	10
Methane RSK-175 (μg/L)		850		0.63	2	5	14		0.63	2	5	<	U	0.63	2	5	<	U	0.63	2	5	3.6	J	0.63	2	5	6500		0.63	2	5	7900		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		164		3.1	6.4	10	138		3.1	6.4	10	129		3.1	6.4	10	120		3.1	6.4	10	160		3.1	6.4	10	124		3.1	6.4	10	160		3.1	6.4	10

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX μ g/L = micrograms per liter NA = not available CHAAP = Cornhusker Army Ammunition Plant OU = Operable Unit

 $DL = detection \ limit$ PZ = piezometer $HAL = health \ advisory \ level$ Qual = qualifier

 $HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine \\ RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine \\ RDX = hexahydro-1,3,5-triazine \\ RDX = h$

ID = identification number RSK = Robert S. Kerr Environmental Research Laboratory

 $J = estimated \\ LOD = limit of detection \\ SM = Standard Method \\ TNT = 2,4,6-trinitrotoluene$

LOQ = limit of quantification U = nondetect

mg/L = milligrams per liter USEPA = United States Environmental Protection Agency

TABLE 3-2 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS **OU1 REBOUND STUDY, QUARTER 6** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	CHAAD					ON-l	POST				
FIELD ID	CHAAP HALs		P	Z019-21	A			P.	Z020-21	A	
SAMPLE DATE	(µg/L)		5	5/24/202	1			5	/26/202	1	
		Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (µg/L)											
1,3,5-Trinitrobenzene	NA	<	U	0.086	0.2	0.21	2.2		0.087	0.21	0.22
1,3-Dinitrobenzene	NA	<	U	0.038	0.1	0.11	<	U	0.038	0.1	0.11
TNT	2	<	U	0.046	0.1	0.11	3.8		0.047	0.1	0.11
2,4-Dinitrotoluene	NA	<	U	0.028	0.082	0.1	<	U	0.028	0.083	0.1
2,6-Dinitrotoluene	NA	<	U	0.041	0.082	0.1	<	U	0.042	0.083	0.1
2-Amino-4,6-dinitrotoluene	NA	<	UJ	0.052	0.1	0.11	2.5		0.053	0.1	0.11
2-Nitrotoluene	NA	<	UJ	0.087	0.2	0.21	<	UJ	0.089	0.21	0.22
3-Nitrotoluene	NA	<	UJ	0.2	0.41	0.41	<	UJ	0.2	0.42	0.42
4-Amino-2,6-dinitrotoluene	NA	<	U	0.059	0.12	0.15	2.7		0.06	0.12	0.16
4-Nitrotoluene	NA	<	UJ	0.1	0.41	0.42	<	UJ	0.1	0.42	0.43
HMX	400	<	U	0.089	0.2	0.21	0.73		0.091	0.21	0.22
MNX	NA	<	U	0.16	0.41	2	<	U	0.16	0.42	2.1
Nitrobenzene	NA	<	U	0.093	0.2	0.21	<	U	0.094	0.21	0.22
RDX	2	<	U	0.053	0.2	0.21	0.68	J	0.053	0.21	0.22
Tetryl	NA	<	U	0.032	0.1	0.11	<	U	0.033	0.1	0.11
LABORATORY MNA PARAMETERS											
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	<	U	0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	UJ	0.69	1	1	<	U	0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		36	J	0.19	0.5	1	13		0.095	0.25	0.5
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		79		1	2.5	5	150		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		2		0.35	0.8	1	3.5		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		130		3.1	6.4	10	320		3.1	6.4	10
Methane RSK-175 (μg/L)		<	U	0.63	2	5	0.79	J	0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		58		3.1	6.4	10	142		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ

 μ g/L = micrograms per liter CHAAP = Cornhusker Army Ammunition Plant NA = not available OU = Operable Unit

MNX = mono-nitroso-RDX

DL = detection limit

PZ = piezometer

HAL = health advisory level

Qual = qualifier

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

ID = identification number

RSK = Robert S. Kerr Environmental Research Laboratory

J = estimated

SM = Standard Method TNT = 2,4,6-trinitrotoluene

LOD = limit of detection LOQ = limit of quantification

U = nondetect

mg/L = milligrams per liter

USEPA = United States Environmental Protection Agency

TABLE 3-3 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY WATER QUALITY PARAMETERS, PERFORMANCE MONITORING WELLS **OU1 SUBSURFACE INJECTION, QUARTER 6** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР																BETV	VEEN	EW6	AND	EW7															
FIELD ID	HALs		(G0022-2	1A			P7	Z017R-2	21A			P	PZ018-2	1A			EW7	-PM21 <i>A</i>	\-6-25			EW7	-PM24A	\-6-25			EW7	-PM25	A-6-25			EW7	-PM25B	3-6-35	
SAMPLE DATE	(μg/L)			5/25/202	21			5	5/26/202	21			:	5/25/20	21				6/5/2021	1				6/5/2021	1				6/4/202	1				6/4/2021	[
		Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																				
1,3,5-Trinitrobenzene	NA	0.22		0.082	0.2	0.21	1.1		0.088	0.21	0.22	<	U	0.091	0.22	0.23	15	J	0.085	0.2	0.21	<	UJ	0.084	0.2	0.21	<	U	0.083	0.2	0.21	<	UJ	0.094	0.22	0.24
1,3-Dinitrobenzene	NA	<	U	0.036	0.098	0.11	<	U	0.038	0.1	0.11	<	U	0.04	0.11	0.12	<	UJ	0.037	0.1	0.11	<	UJ	0.037	0.1	0.11	<	U	0.037	0.099	0.11	<	UJ	0.041	0.11	0.12
TNT	2	0.69		0.044	0.098	0.11	10		0.047	0.1	0.11	4.6		0.049	0.11	0.12	8.3	J	0.046	0.1	0.11	0.25	J	0.045	0.1	0.11	<	U	0.045	0.099	0.11	<	UJ	0.051	0.11	0.12
2,4-Dinitrotoluene	NA	<	U	0.027	0.078	0.098	<	U	0.029	0.083	0.1	<	U	0.03	0.086	0.11	<	UJ	0.028	0.081	0.1	<	UJ	0.027	0.08	0.1	<	U	0.027	0.079	0.099	<	UJ	0.031	0.09	0.11
2,6-Dinitrotoluene	NA	<	U	0.039	0.078	0.098	0.36	J	0.042	0.083	0.1	<	U	0.043	0.086	0.11	<	UJ	0.041	0.081	0.1	<	UJ	0.04	0.08	0.1	<	U	0.04	0.079	0.099	<	UJ	0.045	0.09	0.11
2-Amino-4,6-dinitrotoluene	NA	1		0.05	0.098	0.11	3		0.053	0.1	0.11	2.5		0.055	0.11	0.12	4	J	0.051	0.1	0.11	0.2	J	0.051	0.1	0.11	<	U	0.05	0.099	0.11	<	UJ	0.057	0.11	0.12
2-Nitrotoluene	NA	<	UJ	0.084	0.2	0.21	<	UJ	0.089	0.21	0.22	<	UJ	0.092	0.22	0.23	<	UJ	0.087	0.2	0.21	<	UJ	0.086	0.2	0.21	<	U	0.085	0.2	0.21	<	UJ	0.096	0.22	0.24
3-Nitrotoluene	NA	<	UJ	0.19	0.39	0.39	<	UJ	0.2	0.42	0.42	<	UJ	0.21	0.43	0.43	<	UJ	0.2	0.41	0.41	<	UJ	0.2	0.4	0.4	<	U	0.19	0.4	0.4	<	UJ	0.22	0.45	0.45
4-Amino-2,6-dinitrotoluene	NA	0.7		0.056	0.12	0.15	2.7	J	0.06	0.13	0.16	4.9	J	0.062	0.13	0.16	3.4	J	0.058	0.12	0.15	0.17	J	0.058	0.12	0.15	<	U	0.057	0.12	0.15	<	UJ	0.065	0.13	0.17
4-Nitrotoluene	NA	<	UJ	0.098	0.39	0.4	<	UJ	0.1	0.42	0.43	<	UJ	0.11	0.43	0.44	<	UJ	0.1	0.41	0.42	<	UJ	0.1	0.4	0.41	<	U	0.099	0.4	0.41	<	UJ	0.11	0.45	0.46
HMX	400	<	U	0.086	0.2	0.21	1.6	J	0.091	0.21	0.22	<	U	0.095	0.22	0.23	<	UJ	0.089	0.2	0.21	<	UJ	0.088	0.2	0.21	<	U	0.087	0.2	0.21	<	UJ	0.098	0.22	0.24
MNX	NA	<	U	0.15	0.39	2	<	U	0.16	0.42	2.1	<	U	0.17	0.43	2.2	<	UJ	0.16	0.41	2	<	UJ	0.15	0.4	2	<	U	0.15	0.4	2	<	UJ	0.17	0.45	2.2
Nitrobenzene	NA	<	U	0.089	0.2	0.21	<	U	0.095	0.21	0.22	<	U	0.098	0.22	0.23	<	UJ	0.092	0.2	0.21	<	UJ	0.091	0.2	0.21	<	U	0.09	0.2	0.21	<	UJ	0.1	0.22	0.24
RDX	2	<	U	0.05	0.2	0.21	2.1		0.054	0.21	0.22	<	U	0.056	0.22	0.23	<	UJ	0.052	0.2	0.21	<	UJ	0.052	0.2	0.21	<	U	0.051	0.2	0.21	<	UJ	0.058	0.22	0.24
Tetryl	NA	<	U	0.031	0.098	0.11	<	U	0.033	0.1	0.11	<	U	0.034	0.11	0.12	<	UJ	0.032	0.1	0.11	<	UJ	0.032	0.1	0.11	<	U	0.032	0.099	0.11	<	UJ	0.036	0.11	0.12
LABORATORY WATER QUALITY PARAMETER	RS																																			
Ammonia USEPA 350.1 (mg/L)		<	U	0.022	0.05	0.1	0.033	J	0.022	0.05	0.1	0.32	J	0.11	0.25	0.5	1.7		0.022	0.05	0.1	1.1		0.044	0.1	0.2	1.9		0.22	0.5	1	2.5		0.22	0.5	1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	0.69	1	1	2.4		0.69	1	1	1.8		0.69	1	1	3.5		0.69	1	1	<	U	17	25	25	<	U	17	25	25
Nitrate/Nitrite USEPA 353.2 (mg/L)		5.3		0.019	0.05	0.1	24		0.48	1.3	2.5	5		0.019	0.05	0.1	17		0.095	0.25	0.5	<	U	0.019	0.05	0.1	<	U	0.019	0.05	0.1	<	U	0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		130		1	2.5	5	81		1	2.5	5	53		1	2.5	5	96		1	2.5	5	2.3	J	1	2.5	5	1.7	J	1	2.5	5	9.4		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		3.2		0.35	0.8	1	4.2		0.35	0.8	1	11		0.35	0.8	1	7.1		0.35	0.8	1	15		0.35	0.8	1	39		0.35	0.8	1	20		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		330		3.1	6.4	10	280		3.1	6.4	10	360		3.1	6.4	10	440		3.1	6.4	10	680		3.1	6.4	10	740		3.1	6.4	10	570		3.1	6.4	10
Methane RSK-175 (μg/L)		6100		0.63	2	5	6500		0.63	2	5	7900		0.63	2	5	16000		0.63	2	5	12000		0.63	2	5	14000		0.63	2	5	15000		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		147		3.1	6.4	10	124		3.1	6.4	10	160		3.1	6.4	10	196		3.1	6.4	10	302		3.1	6.4	10	329		3.1	6.4	10	253		3.1	6.4	10

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX μ g/L = micrograms per liter NA = not available

CHAAP = Cornhusker Army Ammunition Plant OU = Operable Unit DL = detection limit PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

ID = identification number SM = Standard Method J = estimated TNT = 2,4,6-trinitrotoluene

LOD = limit of detection U = nondetect

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

TABLE 3-3
SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY WATER QUALITY PARAMETERS, PERFORMANCE MONITORING WELLS
OU1 SUBSURFACE INJECTION, QUARTER 6
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР													В	ETWI	EEN E	W6 Al	ND EV	W7														LOA	AD LIN	NE 1	
FIELD ID	HALs		EW'	7-PM26	A-6-25			EW7	-PM26l	B-6-35			EW7	-PM27	B-6-35			EW7	-PM28A	A-6-25			EW7	-PM29A	A-6-25			EW	7-PM29I	3-6-35			G	0094-21	A	
SAMPLE DATE	(μg/L)			6/3/202	1				6/3/202	1				6/5/202	1				6/5/2021	1				6/4/202	1				6/4/202	1			5	/25/2021	1	
		Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																																				
1,3,5-Trinitrobenzene	NA	0.55		0.085	0.2	0.21	<	U	0.082	0.19	0.2	<	UJ	0.082	0.19	0.2	<	UJ	0.086	0.2	0.21	<	U	0.086	0.2	0.21	<	U	0.085	0.2	0.21	<	UJ	0.086	0.2	0.21
1,3-Dinitrobenzene	NA	<	U	0.037	0.1	0.11	<	U	0.036	0.097	0.11	<	UJ	0.036	0.097	0.11	<	UJ	0.038	0.1	0.11	<	U	0.038	0.1	0.11	<	U	0.037	0.1	0.11	<	UJ	0.038	0.1	0.11
TNT	2	<	U	0.046	0.1	0.11	<	U	0.044	0.097	0.11	<	UJ	0.044	0.097	0.11	<	UJ	0.046	0.1	0.11	<	U	0.046	0.1	0.11	<	U	0.045	0.1	0.11	19	J	0.046	0.1	0.11
2,4-Dinitrotoluene	NA	<	U	0.028	0.081	0.1	<	U	0.027	0.078	0.097	<	UJ	0.027	0.078	0.097	<	UJ	0.028	0.081	0.1	<	U	0.028	0.081	0.1	<	U	0.028	0.08	0.1	<	UJ	0.028	0.081	0.1
2,6-Dinitrotoluene	NA	<	U	0.041	0.081	0.1	<	U	0.039	0.078	0.097	<	UJ	0.039	0.078	0.097	<	UJ	0.041	0.081	0.1	<	U	0.041	0.081	0.1	<	U	0.04	0.08	0.1	<	UJ	0.041	0.081	0.1
2-Amino-4,6-dinitrotoluene	NA	2.1		0.052	0.1	0.11	<	U	0.049	0.097	0.11	<	UJ	0.049	0.097	0.11	<	UJ	0.052	0.12	0.15	<	U	0.052	0.1	0.11	<	U	0.051	0.1	0.11	35	J	0.26	0.51	0.56
2-Nitrotoluene	NA	<	U	0.087	0.2	0.21	<	U	0.083	0.19	0.2	<	UJ	0.083	0.19	0.2	<	UJ	0.087	0.2	0.21	<	U	0.087	0.2	0.21	<	U	0.086	0.2	0.21	<	UJ	0.087	0.2	0.21
3-Nitrotoluene	NA	<	U	0.2	0.41	0.41	<	U	0.19	0.39	0.39	<	UJ	0.19	0.39	0.39	<	UJ	0.2	0.41	0.41	<	U	0.2	0.41	0.41	<	U	0.2	0.4	0.4	<	UJ	0.2	0.41	0.41
4-Amino-2,6-dinitrotoluene	NA	2.9	J	0.059	0.12	0.15	<	U	0.056	0.12	0.15	<	UJ	0.056	0.12	0.15	<	UJ	0.059	0.12	0.15	<	U	0.059	0.12	0.15	<	U	0.058	0.12	0.15	39	J	0.29	0.61	0.76
4-Nitrotoluene	NA	<	U	0.1	0.41	0.42	<	U	0.097	0.39	0.4	<	UJ	0.097	0.39	0.4	<	UJ	0.1	0.41	0.42	<	U	0.1	0.41	0.42	<	U	0.1	0.4	0.41	<	UJ	0.1	0.41	0.42
HMX	400	0.56	J	0.089	0.2	0.21	<	U	0.085	0.19	0.2	<	UJ	0.085	0.19	0.2	<	UJ	0.089	0.2	0.21	<	U	0.089	0.2	0.21	<	U	0.088	0.4	2	<	UJ	0.089	0.2	0.21
MNX	NA	2.6		0.16	0.41	2	<	U	0.15	0.39	1.9	<	UJ	0.15	0.39	1.9	<	UJ	0.16	0.41	2	<	U	0.16	0.41	2	<	U	0.15	0.2	0.21	<	UJ	0.16	0.41	2
Nitrobenzene	NA	<	U	0.092	0.2	0.21	<	U	0.088	0.19	0.2	<	UJ	0.089	0.19	0.2	<	UJ	0.093	0.2	0.21	<	U	0.093	0.2	0.21	<	U	0.092	0.2	0.21	15	J	0.093	0.2	0.21
RDX	2	2.5	J	0.052	0.2	0.21	<	U	0.05	0.19	0.2	<	UJ	0.05	0.19	0.2	<	UJ	0.052	0.2	0.21	<	U	0.052	0.2	0.21	<	U	0.052	0.2	0.21	8.1	J	0.052	0.2	0.21
Tetryl	NA	<	U	0.032	0.1	0.11	<	U	0.031	0.097	0.11	<	UJ	0.031	0.097	0.11	<	UJ	0.032	0.1	0.11	<	U	0.032	0.1	0.11	<	U	0.032	0.1	0.11	<	UJ	0.032	0.1	0.11
LABORATORY WATER QUALITY PARAMETER	RS																																			
Ammonia USEPA 350.1 (mg/L)		0.94		0.022	0.05	0.1	1.7		0.22	0.5	1	3.9		0.22	0.5	1	4.7		0.44	1	2	1.7		0.044	0.1	0.2	4		0.11	0.25	0.5	4.2		0.022	0.05	0.1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		<	U	0.69	1	1	<	U	17	25	25	7.5		1.1	1.7	1.7	9.5		1.1	1.7	1.7	3.1	J	0.69	1	1	3.4		0.69	1	1	2.5		0.69	1	1
Nitrate/Nitrite USEPA 353.2 (mg/L)		<	U	0.095	0.25	0.5	<	U	0.019	0.05	0.1	<	U	0.019	0.05	0.1	<	U	0.019	0.05	0.1	<	UJ	0.019	0.05	0.1	<	U	0.019	0.05	0.1	<	U	0.48	1.3	2.5
Sulfide SM 9034 (mg/L)		<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		100		1	2.5	5	13		1	2.5	5	3.1	J	1	2.5	5	<	U	1	2.5	5	6.3		1	2.5	5	1.8	J	1	2.5	5	89		1	2.5	5
Dissolved Organic Carbon SM 9060A (mg/L)		6.2		0.35	0.8	1	22		0.35	0.8	1	15		0.35	0.8	1	30		0.35	0.8	1	9.3		0.35	0.8	1	12		0.35	0.8	1	6.5		0.35	0.8	1
Alkalinity SM 2320B (mg/L)		450		3.1	6.4	10	630		3.1	6.4	10	520		3.1	6.4	10	670		3.1	6.4	10	450		3.1	6.4	10	460		3.1	6.4	10	340		3.1	6.4	10
Methane RSK-175 (μg/L)		8800		0.63	2	5	13000		0.63	2	5	14000		1.9	6	15	15000		0.63	2	5	10000	J	0.63	2	5	12000	J	0.63	2	5	13000		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		200		3.1	6.4	10	280		3.1	6.4	10	231		3.1	6.4	10	298		3.1	6.4	10	200		3.1	6.4	10	204		3.1	6.4	10	151		3.1	6.4	10

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

< = less than LOQ MNX = mono-nitroso-RDX $\mu g/L$ = micrograms per liter NA = not available

CHAAP = Cornhusker Army Ammunition Plant

OU = Operable Unit

DL = detection limit PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

 $ID = identification number \\ J = estimated \\ SM = Standard Method \\ TNT = 2,4,6-trinitrotoluene$

LOD = limit of detection U = nondetect

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

TABLE 3-3 SUMMARY OF EXPLOSIVES DETECTED AND LABORATORY WATER QUALITY PARAMETERS, PERFORMANCE MONITORING WELLS OU1 SUBSURFACE INJECTION, QUARTER 6 OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	СНААР		LO	AD LI	NE 1										L	OAD	LINE	2									D	ECA	NT ST	ATIO	N
FIELD ID	HALs		(G0096-2	lA			G	G0111-2	1A			(0121-21	A			G	G0122-21	A			C	G0123-21	lA			G	0102-21	lA	
SAMPLE DATE	(μg/L)		:	5/25/202	1			4	5/24/202	21			:	5/24/202	1			:	5/23/202	1			:	5/24/202	1			5	5/21/202	1	
		Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ
EXPLOSIVES (USEPA Method 8330A) (μg/L)																															
1,3,5-Trinitrobenzene	NA	<	UJ	0.083	0.2	0.21	4.6		0.08	0.19	0.2	<	UJ	0.083	0.2	0.21	<	U	0.083	0.2	0.21	<	UJ	0.082	0.19	0.2	<	U	0.086	0.21	0.22
1,3-Dinitrobenzene	NA	<	UJ	0.037	0.099	0.11	1.7	J	0.035	0.095	0.1	<	UJ	0.036	0.099	0.11	<	U	0.036	0.098	0.11	<	UJ	0.036	0.097	0.11	<	U	0.038	0.1	0.11
TNT	2	0.38	J	0.045	0.099	0.11	6.6		0.043	0.095	0.1	<	UJ	0.045	0.099	0.11	<	U	0.044	0.098	0.11	<	UJ	0.044	0.097	0.11	<	U	0.046	0.1	0.11
2,4-Dinitrotoluene	NA	<	UJ	0.027	0.079	0.099	0.44		0.026	0.076	0.095	<	UJ	0.027	0.079	0.099	<	U	0.027	0.079	0.098	<	UJ	0.027	0.078	0.097	<	U	0.028	0.082	0.1
2,6-Dinitrotoluene	NA	<	UJ	0.04	0.079	0.099	<	U	0.038	0.076	0.095	<	UJ	0.04	0.079	0.099	<	U	0.039	0.079	0.098	<	UJ	0.039	0.078	0.097	<	U	0.041	0.082	0.1
2-Amino-4,6-dinitrotoluene	NA	1.1	J	0.05	0.099	0.11	4.9		0.048	0.095	0.1	<	UJ	0.05	0.099	0.11	<	U	0.05	0.098	0.11	<	UJ	0.049	0.097	0.11	<	UJ	0.052	0.1	0.11
2-Nitrotoluene	NA	<	UJ	0.085	0.2	0.21	<	UJ	0.081	0.19	0.2	<	UJ	0.085	0.2	0.21	<	UJ	0.084	0.2	0.21	<	UJ	0.083	0.19	0.2	<	UJ	0.088	0.21	0.22
3-Nitrotoluene	NA	<	UJ	0.19	0.4	0.4	<	UJ	0.19	0.38	0.38	<	UJ	0.19	0.4	0.4	<	UJ	0.19	0.39	0.39	<	UJ	0.19	0.39	0.39	<	UJ	0.2	0.41	0.41
4-Amino-2,6-dinitrotoluene	NA	1.7	J	0.057	0.12	0.15	6.8		0.055	0.11	0.14	<	UJ	0.057	0.12	0.15	<	U	0.057	0.12	0.15	<	UJ	0.056	0.12	0.15	<	UJ	0.059	0.12	0.15
4-Nitrotoluene	NA	<	UJ	0.099	0.4	0.41	<	UJ	0.095	0.38	0.39	<	UJ	0.099	0.4	0.41	<	UJ	0.098	0.39	0.4	<	UJ	0.097	0.39	0.4	<	UJ	0.1	0.41	0.42
HMX	400	39	J	0.87	2	2.1	<	U	0.083	0.19	0.2	<	UJ	0.087	0.2	0.21	9.6	J	0.086	0.39	2	19	J	0.085	0.19	0.2	<	U	0.09	0.21	0.22
MNX	NA	<	UJ	0.15	0.4	2	<	U	0.15	0.38	1.9	<	UJ	0.15	0.4	2	<	U	0.15	0.2	0.21	<	UJ	0.15	0.39	1.9	<	U	0.16	0.41	2.1
Nitrobenzene	NA	<	UJ	0.09	0.2	0.21	<	U	0.087	0.19	0.2	<	UJ	0.09	0.2	0.21	<	U	0.09	0.2	0.21	<	UJ	0.088	0.19	0.2	<	U	0.093	0.21	0.22
RDX	2	58	J	0.51	2	2.1	6.5	J	0.049	0.19	0.2	<	UJ	0.051	0.2	0.21	82	J	0.51	2	2.1	<	UJ	0.05	0.19	0.2	8.5	J	0.053	0.21	0.22
Tetryl	NA	<	UJ	0.031	0.099	0.11	<	U	0.03	0.095	0.1	<	UJ	0.031	0.099	0.11	<	U	0.031	0.098	0.11	<	UJ	0.031	0.097	0.11	<	U	0.033	0.1	0.11
LABORATORY WATER QUALITY PARAMETE	CRS																														
Ammonia USEPA 350.1 (mg/L)		4.3		0.044	0.1	0.2	0.33		0.022	0.05	0.1	24		4.4	10	20	3.3		0.22	0.5	1	1.9	J	0.022	0.05	0.1	3.5		0.22	0.5	1
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)		6.1	J	0.69	1	1	1.9		0.69	1	1	44		3.4	5	5	5.6		0.69	1	1	3.5	J	0.69	1	1	<	U	6.9	10	10
Nitrate/Nitrite USEPA 353.2 (mg/L)		6.8	J	0.019	0.05	0.1	6.5		0.019	0.05	0.1	0.054	J	0.019	0.05	0.1	0.68		0.019	0.05	0.1	<	UJ	0.019	0.05	0.1	0.32		0.019	0.05	0.1
Sulfide SM 9034 (mg/L)		0.8	J	0.79	1.9	4	1.6	J	0.79	1.9	4	4.8		0.79	1.9	4	4.8		0.79	1.9	4	<	UJ	0.79	1.9	4	4.8		0.79	1.9	4
Sulfate USEPA 9056A (mg/L)		72		1	2.5	5	200		1	2.5	5	45		5.2	13	25	360		5.2	13	25	230	J	5.2	13	25	740		5.2	13	25
Dissolved Organic Carbon SM 9060A (mg/L)		46		0.69	1.6	2	8.2		0.35	0.8	1	650		6.6	15	19	32		0.35	0.8	1	9.4	J	0.35	0.8	1	88		0.69	1.6	2
Alkalinity SM 2320B (mg/L)		490		3.1	6.4	10	910		3.1	6.4	10	660		3.1	6.4	10	1100		3.1	6.4	10	760	J	3.1	6.4	10	770		3.1	6.4	10
Methane RSK-175 (μg/L)		5900		0.63	2	5	3400		0.63	2	5	10000		0.63	2	5	11000		0.63	2	5	18000	J	0.63	2	5	120		0.63	2	5
Carbon Dioxide SM 2320B (mg/L) ¹		218		3.1	6.4	10	404		3.1	6.4	10	293		3.1	6.4	10	489		3.1	6.4	10	337.8	J	3.1	6.4	10	342		3.1	6.4	10

Notes:

Concentrations exceed HALs

¹Carbon dioxide back calculated from alkalinity SM 2320B.

 $< = less than \ LOQ \\ \mu g/L = micrograms \ per \ liter \\ CHAAP = Cornhusker \ Army \ Ammunition \ Plant$ $OU = Operable \ Unit$

DL = detection limit PM = performance monitoring

EW = extraction well Qual = qualifier

HAL = health advisory level RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine RSK = Robert S. Kerr Environmental Research Laboratory

LOQ = limit of quantification USEPA = United States Environmental Protection Agency

mg/L = milligrams per liter

TABLE 3-4 SUMMARY OF OU1 FIELD DUPLICATE SAMPLE PAIRS OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

WELL NUMBER					os	001-DP0	6-25										NW020											G0096					
FIELD ID		OS	001-DP0	6-25			OS	501-DP0	6-25				ľ	NW020-21	1A			N	W023-21	A				(G0096-21	l A			(G0296-21	. A		
SAMPLE DATE			6/2/2021					6/2/2021						5/25/202	1				5/25/202	1					5/25/202	1				5/25/2021	1		1
	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD
EXPLOSIVES (USEPA Method 8330A) (µg/L)																																	
1,3,5-Trinitrobenzene	0.84		0.083	0.2	0.21	0.89		0.084	0.2	0.21	<2x	<	U	0.086	0.2	0.21	<	U	0.082	0.2	0.2		<	UJ	0.083	0.2	0.21	<	UJ	0.083	0.2	0.21	
1,3-Dinitrobenzene	<	U	0.037	0.099	0.11	<	U	0.037	0.1	0.11		<	U	0.038	0.1	0.11	<	U	0.036	0.098	0.11		<	UJ	0.037	0.099	0.11	<	UJ	0.036	0.099	0.11	1
TNT	26		0.22	0.5	0.55	27		0.22	0.5	0.55	4	0.93	J	0.046	0.1	0.11	0.88		0.044	0.098	0.11	<2x	0.38	J	0.045	0.099	0.11	0.22	J	0.044	0.099	0.11	<2x
2,4-Dinitrotoluene	<	U	0.027	0.079	0.099	<	U	0.027	0.08	0.1		<	U	0.028	0.082	0.1	<	U	0.027	0.078	0.098		<	UJ	0.027	0.079	0.099	<	UJ	0.027	0.079	0.099	1
2,6-Dinitrotoluene	<	U	0.04	0.079	0.099	<	U	0.04	0.08	0.1		<	U	0.041	0.082	0.1	<	U	0.039	0.078	0.098		<	UJ	0.04	0.079	0.099	<	UJ	0.04	0.079	0.099	1
2-Amino-4,6-dinitrotoluene	2.3		0.05	0.099	0.11	2.4		0.051	0.1	0.11	4	1.3	J	0.052	0.1	0.11	1.2		0.049	0.098	0.11	<2x	1.1	J	0.05	0.099	0.11	0.93	J	0.05	0.099	0.11	17
2-Nitrotoluene	<	U	0.085	0.2	0.21	<	U	0.085	0.2	0.21		<	UJ	0.087	0.2	0.21	<	UJ	0.083	0.2	0.2		<	UJ	0.085	0.2	0.21	<	UJ	0.084	0.2	0.21	1
3-Nitrotoluene	<	U	0.19	0.4	0.4	<	U	0.19	0.4	0.4		<	UJ	0.2	0.41	0.41	<	UJ	0.19	0.39	0.39		<	UJ	0.19	0.4	0.4	0.31	J	0.19	0.39	0.39	<2x
4-Amino-2,6-dinitrotoluene	1.8		0.057	0.12	0.15	1.8		0.058	0.12	0.15	0	1.3	J	0.059	0.12	0.15	1.2		0.056	0.12	0.15	<2x	1.7	J	0.057	0.12	0.15	<	UJ	0.057	0.12	0.15	>2x
4-Nitrotoluene	<	U	0.099	0.4	0.41	<	U	0.1	0.4	0.41		<	UJ	0.1	0.41	0.42	<	UJ	0.098	0.39	0.4		<	UJ	0.099	0.4	0.41	<	UJ	0.099	0.39	0.4	1
HMX	<	U	0.087	0.2	0.21	<	U	0.087	0.2	0.21		1.4	J	0.09	0.2	0.21	1.3		0.085	0.2	0.2	<2x	39	J	0.87	2	2.1	35	J	0.86	2	2.1	11
MNX	<	U	0.15	0.4	2	<	U	0.15	0.4	2		<	U	0.16	0.41	2	<	U	0.15	0.39	2		<	UJ	0.15	0.4	2	<	UJ	0.15	0.39	2	1
Nitrobenzene	<	U	0.09	0.2	0.21	<	U	0.091	0.2	0.21		<	U	0.093	0.2	0.21	<	U	0.089	0.2	0.2		<	UJ	0.09	0.2	0.21	<	UJ	0.09	0.2	0.21	1
RDX	0.4	J	0.051	0.2	0.21	0.39	J	0.051	0.2	0.21	<2x	1		0.053	0.2	0.21	0.99		0.05	0.2	0.2	<2x	58	J	0.51	2	2.1	52	J	0.51	2	2.1	11
Tetryl	<	U	0.032	0.099	0.11	<	U	0.032	0.1	0.11		<	U	0.033	0.1	0.11	<	U	0.031	0.098	0.11		<	UJ	0.031	0.099	0.11	<	UJ	0.031	0.099	0.11	
LABORATORY MNA PARAMETERS																																	
Ammonia USEPA 350.1 (mg/L)												<	UJ	0.022	0.05	0.1	<	U	0.022	0.05	0.1		4.3		0.044	0.1	0.2	4.4		0.022	0.05	0.1	2
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)												<	U	0.69	1	1	<	U	0.69	1	1		6.1	J	0.69	1	1	3.9	J	0.69	1	1	>2x
Nitrate/Nitrite USEPA 353.2 (mg/L)												59	J	0.48	1.3	2.5	67		0.19	0.5	1	13	6.8	J	0.019	0.05	0.1	6.5		0.019	0.05	0.1	5
Sulfide SM 9034 (mg/L)		1	No Analys	is			N	lo Analys	sis			<	U	0.79	1.9	4	1.6	J	0.79	1.9	4	<2x	0.8	J	0.79	1.9	4	0.8	J	0.79	1.9	4	<2x
Sulfate USEPA 9056A (mg/L)												240		5.2	13	25	240		5.2	13	25	0	72		1	2.5	5	64		5.2	13	25	<2x
Dissolved Organic Carbon SM 9060A (mg/L)												6.9	J	0.35	0.8	1	6.8		0.35	0.8	1	1	46		0.69	1.6	2	51		0.69	1.6	2	10
Alkalinity SM 2320B (mg/L)												350		3.1	6.4	10	340		3.1	6.4	10	3	490		3.1	6.4	10	530	J	3.1	6.4	10	8
Methane RSK-175 (μg/L)												<	UJ	0.63	2	5	<	U	0.63	2	5		5900		0.63	2	5	6900		0.63	2	5	16
Carbon Dioxide SM 2320B (mg/L) ¹												156		3.1	6.4	10	151		3.1	6.4	10	3	218		3.1	6.4	10	236	J	3.1	6.4	10	8

¹Carbon dioxide back calculated from alkalinity SM 2320.

field duplicate RPD > 30 or >2X the LOQ

< = less than LOQ

 μ g/L = micrograms per liter

DL = detection limit

DP = direct push

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

mg/L = milligrams per liter

MNA = monitored natural attenuation

MNX = mono-nitroso-RDX

OS = off-post sample

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

RPD = relative percent difference

RSK = Robert S. Kerr Environmental Research Laboratory

SM = Standard Method

TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

X = times

TABLE 3-4 SUMMARY OF OU1 FIELD DUPLICATE SAMPLE PAIRS OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

WELL NUMBER						G0111	'-										PZ017R	L				
FIELD ID		(G0111-21.	Ā			(G0311-21	A				P	Z017R-21	1A			F	PZ021-21	. A		
SAMPLE DATE			5/24/2021	1	'			5/24/2021	1		i			5/26/2021	1				5/26/202	1	ļ	
	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD	Result	Qual	DL	LOD	LOQ	Result	Qual	DL	LOD	LOQ	RPD
EXPLOSIVES (USEPA Method 8330A) (μg/L)																						
1,3,5-Trinitrobenzene	4.6		0.08	0.19	0.2	4.8		0.081	0.19	0.2	<2x	1.1		0.088	0.21	0.22	1.2		0.083	0.2	0.21	9
1,3-Dinitrobenzene	1.7	J	0.035	0.095	0.1	1.8	J	0.036	0.097	0.11	<2x	<	U	0.038	0.1	0.11	<	U	0.036	0.099	0.11	
TNT	6.6		0.043	0.095	0.1	6.8		0.043	0.097	0.11	<2x	10		0.047	0.1	0.11	10		0.044	0.099	0.11	0
2,4-Dinitrotoluene	0.44		0.026	0.076	0.095	0.45		0.026	0.077	0.097	<2x	<	U	0.029	0.083	0.1	<	U	0.027	0.079	0.099	
2,6-Dinitrotoluene	<	U	0.038	0.076	0.095	<	U	0.039	0.077	0.097		0.36	J	0.042	0.083	0.1	0.32	J	0.04	0.079	0.099	<2x
2-Amino-4,6-dinitrotoluene	4.9		0.048	0.095	0.1	5.2		0.049	0.097	0.11	6	3		0.053	0.1	0.11	3.3		0.05	0.099	0.11	10
2-Nitrotoluene	<	UJ	0.081	0.19	0.2	<	UJ	0.083	0.19	0.2	l	<	UJ	0.089	0.21	0.22	<	UJ	0.085	0.2	0.21	
3-Nitrotoluene	<	UJ	0.19	0.38	0.38	<	UJ	0.19	0.39	0.39	l	<	UJ	0.2	0.42	0.42	<	UJ	0.19	0.4	0.4	
4-Amino-2,6-dinitrotoluene	6.8		0.055	0.11	0.14	6.6		0.056	0.12	0.14	3	2.7	J	0.06	0.13	0.16	4	J	0.057	0.12	0.15	39
4-Nitrotoluene	<	UJ	0.095	0.38	0.39	<	UJ	0.097	0.39	0.4	l	<	UJ	0.1	0.42	0.43	<	UJ	0.099	0.4	0.41	
HMX	<	U	0.083	0.19	0.2	<	U	0.085	0.19	0.2	l	1.6	J	0.091	0.21	0.22	1.6	J	0.087	0.2	0.21	0
MNX	<	U	0.15	0.38	1.9	<	U	0.15	0.39	1.9	l	<	U	0.16	0.42	2.1	<	U	0.15	0.4	2	
Nitrobenzene	<	U	0.087	0.19	0.2	<	U	0.088	0.19	0.2	l	<	U	0.095	0.21	0.22	<	U	0.09	0.2	0.21	
RDX	6.5	J	0.049	0.19	0.2	6.2	J	0.05	0.19	0.2	5	2.1		0.054	0.21	0.22	2.3		0.051	0.2	0.21	9
Tetryl	<	U	0.03	0.095	0.1	<	U	0.031	0.097	0.11	<u> </u>	<	U	0.033	0.1	0.11	<	U	0.031	0.099	0.11	<u> </u>
LABORATORY MNA PARAMETERS																						
Ammonia USEPA 350.1 (mg/L)	0.33		0.022	0.05	0.1	0.43		0.044	0.1	0.2	<2x	0.033	J	0.022	0.05	0.1	0.028	J	0.022	0.05	0.1	<2x
Total Kjeldahl Nitrogen USEPA 351.2 (mg/L)	1.9		0.69	1	1	1.5		0.69	1	1	<2x	<	U	0.69	1	1	<	U	0.69	1	1	
Nitrate/Nitrite USEPA 353.2 (mg/L)	6.5		0.019	0.05	0.1	6.3		0.019	0.05	0.1	3	24		0.48	1.3	2.5	23		0.48	1.3	2.5	4
Sulfide SM 9034 (mg/L)	1.6	J	0.79	1.9	4	2.4	J	0.79	1.9	4	<2x	<	U	0.79	1.9	4	0.8	J	0.79	1.9	4	<2x
Sulfate USEPA 9056A (mg/L)	200		1	2.5	5	170		5.2	13	25	16	81		1	2.5	5	82		1	2.5	5	1
Dissolved Organic Carbon SM 9060A (mg/L)	8.2		0.35	0.8	1	9		0.35	0.8	1	9	4.2		0.35	0.8	1	4.3		0.35	0.8	1	<2x
Alkalinity SM 2320B (mg/L)	910		3.1	6.4	10	910		3.1	6.4	10	0	280		3.1	6.4	10	280		3.1	6.4	10	0
Methane RSK-175 (μg/L)	3400		0.63	2	5	3400		0.63	2	5	0	6500		0.63	2	5	6400		0.63	2	5	2
Carbon Dioxide SM 2320B (mg/L) ¹	404		3.1	6.4	10	404		3.1	6.4	10	0	124		3.1	6.4	10	124		3.1	6.4	10	0

¹Carbon dioxide back calculated from alkalinity SM 2320.

field duplicate RPD > 30 or >2X the LOQ

< = less than LOQ

 $\mu g/L$ = micrograms per liter

DL = detection limit

DP = direct push

HMX = octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine

ID = identification number

J = estimated

LOD = limit of detection

LOQ = limit of quantification

mg/L = milligrams per liter

MNA = monitored natural attenuation

MNX = mono-nitroso-RDX

OS = off-post sample

OU = Operable Unit

Qual = qualifier

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

RPD = relative percent difference

RSK = Robert S. Kerr Environmental Research Laboratory

SM = Standard Method TNT = 2,4,6-trinitrotoluene

U = nondetect

USEPA = United States Environmental Protection Agency

X = times

TABLE 3-5 FIELD WATER QUALITY PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS **OU1 REBOUND STUDY, QUARTER 6** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

				Specific				Ferrous
Well	Sample		Temperature	Conductance	DO	ORP	Turbidity	Iron
Number	Date	pН	(°C)	(mS/cm)	(mg/L)	(mV)	(NTU)	(mg/L)
OU1 Off-Post	Monitoring W	ells						
CA210	5/19/2021	6.66	14.29	1.611	0.06	192.0	16.39	0.15
CA211	5/19/2021	6.33	12.80	0.809	0.70	149.5	40.79	0.02
CA212	5/19/2021	6.65	14.77	0.555	0.05	124.8	470.29	0.10
CA213	5/19/2021	7.44	16.59	0.366	0.33	106.5	19.22	0.60
NW020	5/25/2021	6.85	12.86	1.633	6.69	193	0.04	0.00
NW021	5/25/2021	7.02	13.20	1.084	0.67	148.3	0.00	0.02
NW022	5/25/2021	7.03	13.49	1.338	0.03	-29.7	0.00	0.92
NW060	5/19/2021	6.12	15.34	0.105	10.89	214.5	0.90	0.10
NW061	5/19/2021	6.79	20.49	0.920	0.29	243.4	105.42	0.03
NW062	5/19/2021	7.04	17.69	0.853	0.21	-56.9	2.25	0.94
NW070	5/19/2021	6.88	15.65	0.279	0.19	137.0	2.09	0.04
NW071	5/19/2021	6.35	14.33	0.640	1.80	165.3	3.03	0.08
OU1 On-Post	Monitoring W	ells ells						
G0024	5/26/2021	6.74	12.24	0.613	5.07	221.4	0.00	0.04
G0070	5/20/2021	7.09	14.32	0.451	5.09	176.3	0.00	0.00
G0075	5/20/2021	6.68	12.57	0.900	0.01	143.9	0.00	0.10
G0076	5/20/2021	6.65	13.45	1.264	0.01	-10.4	0.18	2.42
G0077	5/26/2021	6.87	12.79	0.881	1.55	165.7	0.00	0.00
G0078	5/26/2021	6.95	14.93	1.118	0.08	-21.5	0.00	1.09
G0079	5/20/2021	6.51	12.23	0.666	0.88	123.7	0.00	0.03
G0080	5/20/2021	6.51	13.19	0.701	0.04	170.1	0.00	0.00
G0081	5/20/2021	6.38	17.54	0.780	0.39	204.1	2.03	0.04
G0082	5/20/2021	6.24	16.75	0.860	0.13	105.6	1.61	0.00
G0086	5/25/2021	6.67	14.51	0.966	0.13	186.9	0.38	0.02
G0087	5/25/2021	6.62	13.96	0.774	0.25	121.2	0.00	0.00
G0091	5/24/2021	6.92	13.83	1.195	4.74	94.3	0.00	0.02
G0092	5/24/2021	7.23	14.38	1.051	0.06	15	0.00	0.12
PZ017R	5/26/2021	6.17	12.16	0.910	0.03	144.5	0.88	0.27
PZ018	5/25/2021	5.96	14.65	0.870	0.01	11.5	0.70	6.30
PZ019	5/24/2021	6.39	13.35	0.709	8.36	145.8	0.00	0.05
PZ020	5/26/2021	6.91	12.80	1.003	2.77	92.8	0.00	0.00

Field water quality parameters for all wells were measured using an In-Situ Aqua TROLL 500 MPS equipped with a flow-through cell with the exception of turbidity and ferrous iron. Turbidity was measured using a LaMotte 2020 turbidity meter and ferrous iron was measured using a Hach colorimeter (DR/820).

°C = degrees Celsius

DO = dissolved oxygen

mg/L = milligrams per liter

MPS = multiprobe system

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

ORP = oxidation/reduction potential

OU = Operable Unit

PZ = piezometer

TABLE 3-6
FIELD WATER QUALITY PARAMETERS, PERFORMANCE MONITORING WELLS
OU1 SUBSURFACE INJECTION, QUARTER 6
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Well Number	Sample Date	рН	Temperature (°C)	Specific Conductance (mS/cm)	DO (mg/L)	ORP (mV)	Turbidity (NTU)	Ferrous Iron (mg/L)
Between EW6	and EW7							
G0022	5/25/2021	6.68	11.99	0.940	0.10	18.2	0.87	0.35
PZ017R	5/26/2021	6.17	12.16	0.910	0.03	144.5	0.88	0.27
PZ018	5/25/2021	5.96	14.65	0.870	0.01	11.5	0.70	6.30
EW7-PM21A	6/5/2021	6.31	13.85	1.130	0.01	-42.4	4.05	8.67
EW7-PM24A	6/5/2021	6.38	14.59	1.270	0.01	-78.4	3.50	3.10
EW7-PM25A	6/4/2021	6.23	14.30	1.550	0.01	-99.3	8.39	2.72
EW7-PM25B	6/4/2021	6.38	15.61	1.210	0.01	-120.1	3.75	9.15
EW7-PM26A	6/3/2021	6.36	13.32	1.170	0.01	-33.3	1.13	7.56
EW7-PM26B	6/3/2021	6.38	13.38	1.320	0.01	-140.4	6.74	2.69
EW7-PM27B	6/5/2021	6.32	14.55	1.130	0.01	-100.5	4.84	6.42
EW7-PM28A	6/5/2021	6.35	14.87	1.460	0.01	-104.7	20.60	1.87
EW7-PM29A	6/4/2021	6.33	14.94	0.930	0.01	-93.7	3.67	8.70
EW7-PM29B	6/4/2021	6.57	18.14	1.010	0.01	-125.6	3.56	9.27
Load Line 1								
G0094	5/25/2021	6.13	11.62	1.080	0.02	-62.6	2.60	4.98
G0096	5/25/2021	6.29	11.83	1.230	0.02	-138.6	2.10	1.09
Load Line 2								
G0111	5/24/2021	6.38	12.11	2.130	0.04	-63.8	3.44	1.79
G0121	5/24/2021	5.59	12.36	2.330	0.08	-173.6	16.20	2.88
G0122	5/23/2021	6.69	13.10	2.440	0.02	-341.4	2.24	2.79
G0123	5/24/2021	6.40	12.57	1.880	0.05	-128.6	2.17	5.12
Decant Station	1							
G0102	5/21/2021	6.70	13.39	2.530	0.01	-335.7	2.32	1.86

Field water quality parameters for all wells were measured using an In-Situ Aqua TROLL 500 MPS equipped with a flow-through cell with the exception of turbidity and ferrous iron. Turbidity was measured using a LaMotte 2020 turbidity meter and ferrous iron was measured using a Hach colorimeter (DR/820).

> = greater than

°C = degrees Celsius

DO = dissolved oxygen

EW = extraction well

mg/L = milligrams per liter

MPS = multiprobe system

mS/cm = milliSiemens per centimeter

mV = millivolts

NTU = nephelometric turbidity units

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

TABLE 5-1 SUMMARY OF RDX AND TNT CONCENTRATIONS **OU1 REBOUND STUDY LOCATIONS** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	BASE	LINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5	QUAR	TER 6
Well Number /	RDX	TNT										
Sample Interval	(µg/L)											
OU1 Off-Post Wells												
CA210	ND											
CA211	ND											
CA212	ND											
CA213	ND											
NW020	0.2	ND	0.94	0.6	1.5	0.59	2.3	0.62	1.2	0.8	1	0.93
NW021	ND	0.13	ND									
NW022	ND											
NW050*	ND	NS	NS	NS	NS							
NW051*	ND	NS	NS	NS	NS							
NW052*	ND	NS	NS	NS	NS							
NW060	ND											
NW061	ND											
NW062	ND											
NW070	ND											
NW071	ND											
NW080*	ND	NS	NS	NS	NS							
NW081R*	ND	NS	NS	NS	NS							
NW082R*	ND	NS	NS	NS	NS							
OU1 On-Post Wells												
G0024	ND	ND	ND	ND	0.59	0.63	ND	0.2	ND	0.48	ND	0.44
G0070	ND											
G0075	ND											
G0076	ND	ND	ND	ND	0.2	ND	0.2	ND	ND	ND	ND	ND
G0077	0.91	3.2	0.19	2.7	0.46	3.3	0.34	3.4	0.82	3.6	1.2	4.3
G0078	ND											
G0079	ND											
G0080	ND											
G0081	ND	0.29	ND	0.3	ND							
G0082	0.63	ND	ND	ND	0.68	ND	0.41	ND	0.53	ND	0.43	0.73
G0086	ND	3.8	ND	5.9	0.21	3.6	0.17	ND	0.59	4.9	0.84	4.9
G0087	ND	ND	ND	ND	0.15	ND	0.15	ND	0.17	ND	0.23	ND
G0091	0.81	ND	0.83	ND	0.59	ND	0.46	ND	0.27	ND	0.31	ND
G0092	ND											
PZ017R	0.87	15	1.4	17	1.4	11	1.8	15	2.2	10	2.1	10
PZ018	0.88	8	ND	19	1	ND	ND	17	ND	6	ND	4.6
PZ019	ND											
PZ020	0.42	3.7	0.62	3.2	0.58	2.2	0.67	3.5	0.57	3.9	0.68	3.8

Notes:

Concentrations exceed HALs

 $\mu g/L = micrograms per liter \quad OU = Operable Unit$ ND = nondetectPZ = piezometer

NS = not sampledRDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

OS = off-post sampleTNT = 2,4,6-trinitrotoluene

^{*}Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

TABLE 5-1 SUMMARY OF RDX AND TNT CONCENTRATIONS **OU1 REBOUND STUDY LOCATIONS** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	BASE	LINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5	QUAR	TER 6
Well Number / Sample Interval	RDX (µg/L)	TNT (µg/L)	RDX (µg/L)	TNT (µg/L)	RDX (µg/L)	TNT (µg/L)	RDX (µg/L)	TNT (μg/L)	RDX (μg/L)	TNT (µg/L)	RDX (μg/L)	TNT (µg/L)
Direct Push Samples (Off-Post)										
OS001-25	ND	12	ND	9.2	0.19	32	ND	29	ND	20	0.4	26
OS001-35	ND	11	ND	8.2	0.21	11	1.8	15	0.82	2	ND	4.9
OS001-45	ND	ND	ND	1.1	0.17	2.2	ND	ND	ND	0.25	ND	0.34
OS002-25	0.63	1.3	NS									
OS002-35	ND	ND	NS									
OS002-45	ND	3.3	NS									
OS003-25	ND	ND	NS	NS	NS	NS	ND	ND	ND	0.2	ND	ND
OS003-35	ND	3	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
OS003-45	ND	ND	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND
OS004-25	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS
OS004-35	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS
OS004-45	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS
NW050R-20	NS	ND	ND	ND	ND							
NW050R-35	NS	ND	ND	ND	ND							
NW050R-60	NS	ND	ND	ND	ND							

Notes:

Concentrations exceed HALs

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = micrograms per liter \quad OU = Operable Unit$ ND = nondetectPZ = piezometer

NS = not sampledRDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

OS = off-post sampleTNT = 2,4,6-trinitrotoluene

TABLE 5-2
SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Well Number			ORP	(mV)		_			DO (mg/L)		_			Nitrate/Ni	trite (mg/	L)				Ammor	nia (mg/L))		_		TKN	(mg/L)		
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21
Shallow Wells																									<u></u>					
CA210	165.5	61.3	70	210.0	177.6	192.0	0.45	1.99	0.48	0.17	0.21	0.06	22	13	19	2.7	42	41	ND	ND	0.052	0.098	0.06	0.14	ND	1.5	0.72	ND	ND	ND
NW020	113.9	41.1	153	118.2	138.9	193.0	3.30	6.04	6.30	5.41	5.54	6.69	62	49	42	56	68	59	0.46	0.025	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW050*	112.8	140.3	130	118.6	NS	NS	0.24	0.37	0.40	0.02	NS	NS	62	79	78	87	NS	NS	4.8	0.72	0.98	ND	NS	NS	ND	ND	ND	ND	NS	NS
NW060	171.6	29.2	130	156.7	196.7	214.5	10.75	10.20	10.63	9.26	10.23	10.89	1.8	3.0	2.4	4.9	4.1	2.4	0.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW070	127.0	-307.4	-7	107.0	163.2	137.0	0.38	1.59	0.40	0.12	0.07	0.19	0.03	ND	ND	39	29	0.031	0.024	0.059	0.087	ND	ND	0.034	ND	1.1	1.3	ND	ND	2.0
NW080*	197.0	146.2	186	133.8	NS	NS	7.28	8.38	7.66	7.38	NS	NS	47	32	26	40	NS	NS	0.029	ND	ND	ND	NS	NS	ND	ND	ND	ND	NS	NS
G0024	156.5	22.5	119	155.4	175.4	221.4	4.88	5.57	7.26	5.01	5.31	5.07	40	32	26	23	12	7.8	ND	0.025	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
G0079	144.0	170.4	69	18.5	81.8	123.7	3.82	5.13	5.90	1.03	2.51	0.88	0.21	0.36	0.83	0.03	3.8	1.8	ND	0.058	0.065	ND	ND	ND	0.76	ND	ND	1.3	ND	0.83
G0091	156.8	27.4	105	196.8	170.1	94.3	2.79	3.13	6.55	6.99	5.53	4.74	32	27	40	4.1	40	38	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PZ017R	173.9	154.3	111	68.6	6.8	144.5	5.68	2.63	3.44	0.65	0.01	0.03	41	26	30	20	10	24	0.060	0.13	ND	0.032	0.041	0.033	ND	ND	ND	ND	ND	ND
PZ018	167.4	177.2	127	136.6	-9.9	11.5	1.34	9.09	9.26	5.99	0.36	0.01	24	31	26	26	8.1	5.0	0.21	0.023	ND	ND	0.055	0.32	ND	ND	ND	ND	14	2.4
PZ019	77.3	-4.3	112	166.3	162.2	145.8	6.44	9.44	10.83	9.36	7.35	8.36	34	31	34	36	37	36	ND	ND	ND	0.08	ND	ND	ND	ND	ND	ND	ND	ND
PZ020	160.2	166.3	104	114.1	104.1	92.8	2.54	4.17	7.07	4.06	2.65	2.77	29	28	38	27	14	13	ND	ND	0.032	ND	ND	ND	ND	ND	ND	ND	ND	ND
Shallow-Intermediate Wells																														
CA211	161.2	33.6	94	188.2	162.3	149.5	0.44	0.93	0.78	0.10	0.75	0.70	30	34	33	5.7	40	32	0.11	ND	ND	0.032	ND	ND	ND	ND	ND	ND	ND	ND
NW021	112.2	26.7	150	137.5	-110.2	148.3	0.26	0.83	0.34	0.06	0.04	0.67	0.84	0.43	1.5	1.5	1.3	0.87	3.8	2.7	1.4	1.6	1.4	1.5	3.5	2.8	1.8	1.9	1.7	1.7
NW051*	132.3	157.2	126	159.1	NS	NS	0.32	7.01	0.37	0.56	NS	NS	27	36	24	45	NS	NS	ND	0.033	ND	ND	NS	NS	ND	ND	ND	ND	NS	NS
NW061	137.4	0.1	180	196.8	35.3	243.4	0.18	0.68	0.38	0.22	0.03	0.29	4.6	10	5.7	26	8.3	9.8	5.7	3.8	4.5	4.1	3.6	2.4	4.9	2.6	2.5	1.2	3.4	1.8
NW071	158.1	-151.2	88	130.0	107.8	165.3	2.18	3.43	3.00	0.46	1.94	1.80	2.9	32	30	26	36	32	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW081R*	171.2	144.8	161	129.5	NS	NS	0.65	0.62	1.46	0.14	NS	NS	29	29	26	29	NS	NS	ND	ND	ND	ND	NS	NS	ND	ND	ND	ND	NS	NS
G0075	132.7	154.9	73	257.3	88.2	143.9	6.86	1.05	0.71	0.03	2.09	0.01	1.2	0.94	2.4	0.76	4.7	3.3	0.056	ND	0.062	0.059	0.055	ND	0.92	ND	ND	ND	ND	ND
G0077	144.8	20.4	115	115.5	194.5	165.7	1.86	5.43	2.67	2.62	2.34	1.55	20	16	13	14	10	9.0	ND	ND	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND
G0080	-16.4	32.0	36	148.6	48.7	170.1	1.23	1.02	0.39	0.2	0.09	0.04	2.7	2.8	2.9	3.1	3.2	1.4	0.064	0.41	0.83	ND	0.55	1.30	ND	0.70	0.97	ND	ND	2.1
G0081	14.9	24.2	52	32.7	-25.1	204.1	0.18	0.75	0.59	0.07	0.05	0.39	0.36	0.051	ND	0.02	ND	3.6	0.26	0.26	0.31	0.34	0.35	ND	ND	0.69	1.1	1.1	ND	ND
G0082	32.9	14.4	-12	104.1	-21.0	105.6	0.20	0.51	0.23	0.23	0.13	0.13	3.4	0.31	0.46	0.69	2.4	2.8	ND	ND	0.11	0.30	0.027	0.190	ND	ND	ND	ND	ND	0.96
G0086	156.2	12.2	111	193.8	70.7	186.9	0.52	0.69	1.14	0.05	0.06	0.13	4.8	2.6	6.5	3.8	3.0	5.4	ND	0.039	0.025	ND	ND	ND	ND	ND	ND	ND	ND	ND
G0087	164.9	14.3	111	115.9	100.1	121.2	0.39	0.80	0.40	0.09	0.05	0.25	1.3	2.0	2.7	7.8	9.9	8.2	ND	ND	0.032	ND	ND	ND	ND	ND	1.1	ND	ND	ND
G0092	122.9	14.7	103	56.4	43.8	15.0	0.26	0.74	0.41	0.11	0.04	0.06	0.45	0.19	0.18	ND	ND	ND	ND	ND	0.031	ND	ND	ND	ND	ND	ND	ND	ND	ND
Intermediate Wells																														
CA212	149.6	22.3	98	167.4	161.4	124.8	0.46	0.89	0.41	0.13	0.05	0.05	14	17	18	14	15	14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NW022	26.7	15.4	85	-34.9	-19.9	-29.7	0.19	0.72	0.33	0.05	0.08	0.03	53	ND	ND	ND	ND	ND	0.42	0.47	1.4	1.3	1.2	1.4	ND	0.70	1.7	1.5	1.5	1.4
NW052*	134.5	87.4	27	20.1	NS	NS	0.66	0.31	0.36	0.63	NS	NS	0.12	0.022	0.052	ND	NS	NS	0.027	0.039	0.031	0.029	NS	NS	0.80	0.80	1.0	1.6	NS	NS
NW062	38.6	-15.8	-67	-62.2	-100.6	-56.9	0.26	0.65	0.33	0.15	0.05	0.21	ND	ND	ND	ND	ND	0.053	0.59	0.63	0.91	0.35	0.86	1.0	1.0	1.3	1.5	1.1	1.1	ND
NW082R*	153.8	144.8	153	151.9	NS	NS	0.50	0.51	0.49	0.01	NS	NS	20	18	17	25	NS	NS	ND	ND	0.024	ND	NS	NS	ND	ND	ND	ND	NS	NS
G0076	-36.2	83.2	-27	-13.1	-49.0	-10.4	1.91	0.23	0.56	0.09	0.05	0.01	ND	ND	ND	ND	ND	ND	1.1	1.1	1.4	1.4	1.3	1.6	1.3	1.2	1.3	1.8	1.1	1.8
G0078	28.1	9.9	68	-21.2	-10.9	-21.5	0.25	0.45	0.31	0.09	0.10	0.08	ND	ND	ND	ND	ND	ND	0.53	0.48	0.46	0.42	0.30	0.29	ND	ND	ND	0.80	ND	0.70
Deep Wells	-	-				-	-	-	-		-									-	-			-						
CA213	118.3	17.4	95	97.9	172.3	106.5	0.22	1.51	0.48	0.09	0.66	0.33	1.3	1.4	1.0	0.81	1.3	1.5	ND	ND	ND	1.0	ND	ND	0.97	ND	ND	ND	ND	ND
G0070	16.5	87.3	120	68.5	84.2	176.3	3.29	0.58	1.40	0.09	1.80	5.09	0.025	ND	ND	ND	ND	ND	ND ND	0.023	0.039	0.025	ND	ND	ND	ND ND	ND	ND	ND	ND ND
00070	10.3	01.3	120	00.5	07.2	1/0.5	3.49	0.50	1.70	0.54	1.00	3.03	0.023	ND	מאו	ND	עא	עוו	עא	0.023	0.039	0.023	ND	ND	עוו	ND	ND	ND	ND	ND

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = micrograms per liter$ NA = no analysis $CO_2 = carbon dioxide$ ND = nondetect

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = specific conductance not measured due to instrument error

mg/L = milligrams per liter ORP = oxidation/reduction potential

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-2
SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Well Number			DOC	(mg/L)					CO ₂	(mg/L)					Methai	ne (μg/L)					Alkalini	ity (mg/L))			1	Ferrous I	ron (mg/l	۲)	
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21
Shallow Wells																														
CA210	9.7	14	14	9.2	7.8	9.5	138	156	151	142	164	173	23	6.6	2.3	1.6	1.7	2.7	310	350	340	320	370	390	ND	0.44	1.13	ND	0.18	0.15
NW020	3.6	6.1	5.9	6.7	6.2	6.9	129	138	142	151	160	151	ND	ND	ND	ND	ND	ND	290	310	320	340	360	340	0.07	0.14	0.96	ND	0.15	ND
NW050*	8.1	8.7	6.5	6.5	NS	NS	107	116	98	80	NS	NS	1.4	ND	ND	2.1	NS	NS	240	260	220	180	NS	NS	ND	0.02	0.30	ND	NS	NS
NW060	1.8	1.6	0.96	2.5	2.2	2.6	15	14	12	28	18	16	ND	ND	ND	ND	20	ND	33	31	28	64	41	36	ND	ND	0.10	ND	ND	0.10
NW070	7.2	9.3	10	5.9	6.4	15	23	49	32	67	93	53	18	630	3900	ND	ND	7.5	51	110	72	150	210	120	ND	0.35	1.21	ND	ND	0.04
NW080*	4.7	3.9	3.9	4.0	NS	NS	111	116	93	84	NS	NS	ND	ND	ND	ND	NS	NS	250	260	210	190	NS	NS	ND	0.02	0.26	ND	NS	NS
G0024	4.9	5.8	5.5	5.3	4.0	3.3	49	89	129	89	107	98	ND	ND	ND	ND	ND	ND	110	200	290	200	240	220	ND	0.07	1.26	ND	0.10	0.04
G0079	3.2	2.6	6.0	8.8	3.6	5.0	58	58	138	67	124	138	ND	ND	ND	ND	2.6	ND	130	130	310	150	280	310	0.06	ND	0.25	ND	0.30	0.03
G0091	3.6	3.4	3.8	3.7	2.8	3.1	160	160	124	111	116	120	ND	ND	ND	ND	ND	ND	360	360	280	250	260	270	ND	ND	0.28	ND	0.14	0.02
PZ017R	3.5	4.5	5.1	5.4	6.8	4.2	62	116	84	120	196	124	140	520	1800	7800	120	6500	140	260	190	270	440	280	ND	0.04	0.42	ND	1.25	0.27
PZ018	3.3	3.3	4.0	3.9	7.9	11	89	32	43	44	142	160	240	ND	ND	60	8600	7900	200	73	96	100	320	360	ND	0.02	0.42	ND	2.62	6.30
PZ019	2.2	2.1	2.0	ND	1.8	2.0	39	32	33	30	53	58	ND	ND	ND	ND	15000	ND	88	73	75	68	120	130	0.07	0.06	0.23	ND	0.23	0.05
PZ020	3.8	4.6	6.4	5.7	3.4	3.5	124	142	138	147	151	142	ND	ND	ND	ND	0.78	0.79	280	320	310	330	340	320	0.11	0.06	0.91	ND	0.05	ND
Shallow-Intermediate Wells																														
CA211	4.3	4.9	6.0	4.2	4.8	4.7	89	93	93	84	102	80	ND	ND	ND	ND	ND	ND	200	210	210	190	230	180	ND	ND	0.91	ND	0.08	0.02
NW021	2.9	2.8	2.8	3.3	2.6	3.3	182	178	151	147	164	151	55	1.2	5.7	4.2	8.5	34	410	400	340	330	370	340	ND	0.06	1.09	ND	0.18	0.02
NW051*	9.0	9.4	9.2	9.1	NS	NS	156	156	147	124	NS	NS	8.3	4.9	1.9	0.9	NS	NS	350	350	330	280	NS	NS	ND	0.08	0.41	ND	NS	NS
NW061	4.4	4.2	4.1	3.5	4.7	4.7	133	124	120	93	129	129	21	14	19	13	62	28	300	280	270	210	290	290	ND	NS	0.20	ND	ND	0.03
NW071	ND	3.3	3.7	4.1	2.8	3.2	49	44	43	42	44	49	ND	ND	ND	140	ND	ND	110	100	96	95	98	110	ND	0.12	0.95	ND	0.18	0.08
NW081R*	4.5	4.6	5.0	4.3	NS	NS	111	111	98	98	NS	NS	ND	ND	ND	ND	NS	NS	250	250	220	220	NS	NS	ND	ND	0.62	ND	NS	NS
G0075	3.4	3.1	3.4	2.7	2.4	2.7	173	164	160	142	129	129	12	ND	ND	ND	0.75	ND	390	370	360	320	290	290	ND	ND	0.25	ND	0.14	0.10
G0077	4.5	4.0	3.6	3.9	2.8	4.4	138	111	116	102	124	138	26	ND	ND	ND	47	530	310	250	260	230	280	310	ND	0.06	1.28	ND	0.16	ND
G0080	2.9	2.7	2.8	2.6	2.7	8.3	156	151	138	133	156	120	1.1	4.6	8.8	2.0	5.0	1.1	350	340	310	300	350	270	0.45	ND	0.78	ND	0.21	ND
G0081	7.8	6.5	6.6	5.1	5.3	3.6	164	156	124	138	151	124	3500	2400	1100	2100	1000	76	370	350	280	310	340	280	0.68	0.62	0.71	0.51	1.16	0.04
G0082	ND	4.5	4.0	3.0	3.2	4.9	111	138	116	120	129	164	1100	2700	460	2200	230	850	250	310	260	270	290	370	0.04	1.35	0.10	ND	0.20	ND
G0086	2.6	2.7	3.6	3.1	2.3	3.0	138	151	124	124	138	138	110	150	22	31	44	14	310	340	280	280	310	310	ND	0.04	0.16	ND	ND	0.02
G0087	2.9	2.8	2.9	2.8	2.4	2.8	138	142	138	120	133	129	ND	ND	ND	ND	ND	ND	310	320	310	270	300	290	0.06	0.23	0.16	ND	0.06	ND
G0092	2.9	2.8	2.9	3.3	2.5	2.7	182	169	156	142	164	160	1.1	1.4	18	9.3	11	3.6	410	380	350	320	370	360	ND	ND	0.22	ND	0.10	0.12
Intermediate Wells																														
CA212	2.6	2.7	3.1	2.5	2.1	2.4	84	102	76	84	80	76	ND	ND	ND	ND	ND	ND	190	230	170	190	180	170	ND	2.98	0.93	ND	0.16	0.10
NW022	2.9	2.7	2.6	3.4	2.8	3.4	182	191	178	178	204	191	290	250	440	420	350	430	410	430	400	400	460	430	0.27	1.02	1.94	0.34	1.00	0.92
NW052*	6.3	6.7	6.6	9.7	NS	NS	169	160	142	164	NS	NS	150	240	450	630	NS	NS	380	360	320	370	NS	NS	ND	0.39	0.96	0.62	NS	NS
NW062	2.8	2.5	2.3	2.3	2.6	2.9	120	120	107	107	120	120	18	21	21	20	ND	7.6	270	270	240	240	270	270	0.18	0.39	0.90	0.62	0.73	0.94
NW082R*	ND	4.0	4.2	3.6	NS	NS	107	107	107	93	NS	NS	ND	0.66	2.0	ND	NS	NS	240	240	230	210	NS	NS	0.16	ND	0.33	ND	NS	NS
G0076	ND	2.9	3.3	2.6	2.7	3.4	156	156	142	138	156	164	330	200	180	190	310	210	350	350	320	310	350	370	1.68	1.21	0.33	1.33	2.11	2.42
G0078	2.8	2.8	3.8	3.2	2.3	2.9	187	182	151	133	142	142	350	240	130	71	ND	130	420	410	340	300	320	320	0.48	0.79	1.11	0.11	1.41	1.09
Deep Wells												·-																		
CA213	2.2	2.0	1.7	1.8	1.7	2.0	58	53	53	53	58	58	ND	ND	ND	ND	ND	ND	130	120	120	120	130	130	ND	0.09	1.02	ND	ND	0.60
G0070	1.0	0.89	1.7	0.75	0.9	1.1	98	102	33 89	33 89	93	98	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	220	230	200	200	210	220	ND ND	0.09 ND	0.32	ND ND	ND ND	ND
00070	1.0	0.09	1.0	0.73	0.7	1.1	70	102	07	07	73	70	ND	ND	ND	עוו	עא	ND	220	230	200	200	210	220	ND	עא	0.32	ND	ND	עא

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = micrograms \ per \ liter \\ CO_2 = carbon \ dioxide \\ ND = nondetect$

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = specific conductance not measured due to instrument error

mg/L = milligrams per liter ORP = oxidation/reduction potential

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-2
SUMMARY OF MNA PARAMETERS, OFF-POST AND ON-POST MONITORING WELLS
OU1 REBOUND STUDY
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Well Number			Sulfate	(mg/L)					Sulfide	(mg/L)					ŗ	Н				C	onductar	ice (mS/ci	m)	
	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21	Oct-19	Mar-20	Jun-20	Oct-20	Mar-21	May-21
Shallow Wells																								
CA210	120	99	150	190	190	190	ND	ND	ND	ND	ND	ND	6.55	5.83	6.40	6.66	6.75	6.66	0.977	0.708	1.550	1.560	1.545	1.611
NW020	150	200	230	190	230	240	ND	NA	ND	ND	0.80	ND	6.53	6.45	6.57	6.81	6.90	6.85	1.118	0.994	1.450	1.510	1.504	1.633
NW050*	120	210	200	190	NS	NS	ND	NA	ND	ND	NS	NS	6.71	6.50	5.97	6.56	NS	NS	1.178	1.916	0.567	1.560	NS	NS
NW060	3.8	7.5	5.2	20	30	9.4	ND	0.80	ND	ND	ND	ND	6.01	5.82	5.88	6.46	6.56	6.12	0.075	0.077	0.065	0.200	0.203	0.105
NW070	3.9	6.4	5.9	93	98	18	ND	0.80	ND	ND	ND	ND	7.10	6.59	6.51	7.25	7.24	6.88	0.096	0.184	0.195	0.910	0.926	0.279
NW080*	200	160	130	130	NS	NS	ND	ND	ND	ND	NS	NS	6.23	6.12	6.26	6.60	NS	NS	1.161	0.991	1.070	1.050	NS	NS
G0024	50	110	150	98	65	54	ND	NA	ND	ND	0.80	ND	6.36	6.60	6.71	6.70	6.64	6.74	0.670	0.729	1.170	0.740	0.654	0.613
G0079	17	12	48	53	68	50	ND	ND	ND	ND	ND	ND	6.34	5.73	6.63	6.13	6.67	6.51	0.278	0.273	0.706	0.502	0.575	0.666
G0091	190	200	190	190	210	200	ND	ND	ND	ND	ND	0.80	6.83	6.65	7.29	6.98	6.93	6.92	1.325	0.973	1.300	1.140	1.170	1.195
PZ017R	74	83	62	64	53	81	ND	NA	ND	1.6	ND	ND	6.34	6.16	6.90	6.07	6.38	6.17	0.652	0.797	0.788	0.840	0.902	0.910
PZ018	100	62	67	65	49	53	ND	NA	ND	ND	ND	ND	6.57	5.52	6.46	5.99	6.28	5.96	0.664	0.520	0.590	0.550	0.713	0.870
PZ019	67	57	58	62	71	79	ND	0.80	ND	ND	0.80	0.80	6.16	6.03	6.49	6.22	6.32	6.39	0.602	0.377	0.616	0.570	0.663	0.709
PZ020	160	160	190	170	160	150	ND	NA	ND	ND	ND	0.80	6.67	6.54	6.86	6.85	6.87	6.91	1.061	1.049	1.350	1.160	0.916	1.003
Shallow-Intermediate Wells																								
CA211	93	99	110	97	120	89	ND	ND	0.80	ND	ND	ND	6.49	6.45	6.46	6.72	6.72	6.33	0.662	0.705	1.110	0.860	1.026	0.809
NW021	210	210	220	200	200	200	ND	NA	ND	ND	0.80	0.80	6.77	6.69	6.84	6.93	6.79	7.02	1.154	0.825	1.180	1.070	0.982	1.084
NW051*	170	180	190	190	NS	NS	ND	NA	ND	ND	NS	NS	6.47	6.32	6.14	6.75	NS	NS	1.088	1.451	0.442	1.520	NS	NS
NW061	170	160	170	160	140	150	ND	ND	ND	ND	ND	ND	7.00	7.01	6.59	7.00	7.13	6.79	0.790	0.685	0.308	1.070	0.941	0.920
NW071	60	54	64	61	63	63	ND	ND	ND	ND	ND	0.80	6.32	6.32	6.40	6.62	6.61	6.35	0.563	0.519	0.745	0.610	0.686	0.640
NW081R*	98	91	95	97	NS	NS	ND	ND	0.80	ND	NS	NS	6.51	6.48	6.42	6.55	NS	NS	0.797	0.925	1.050	0.990	NS	NS
G0075	150	170	150	200	160	190	ND	ND	ND	ND	0.80	ND	6.57	6.44	6.83	6.72	6.98	6.68	0.995	0.926	0.987	0.730	0.809	0.900
G0077	150	100	99	110	140	140	ND	NA	0.80	ND	ND	0.80	6.63	6.65	6.68	6.71	6.61	6.87	1.012	0.620	0.874	0.780	0.795	0.881
G0080	ND	72	87	98	100	100	2.9	ND	ND	ND	ND	0.80	6.64	6.48	6.70	6.54	6.82	6.51	0.795	0.557	0.884	0.840	0.703	0.701
G0081	120	140	190	130	170	140	ND	0.80	ND	ND	ND	ND	6.19	6.22	6.43	6.31	6.51	6.38	0.910	0.664	1.020	0.550	0.891	0.780
G0082	76	130	130	140	170	99	ND	ND	ND	ND	ND	ND	6.28	6.29	6.47	6.45	6.62	6.24	0.652	0.637	0.858	0.820	0.790	0.860
G0086	140	150	130	160	200	180	ND	NA	ND	ND	ND	ND	6.84	6.69	7.03	6.91	6.92	6.67	0.684	0.725	0.923	0.880	0.808	0.966
G0087	120	120	110	100	99	110	ND	NA	ND	ND	0.80	0.80	6.70	6.75	7.03	6.79	6.82	6.62	0.808	0.663	0.851	0.710	0.731	0.774
G0092	300	290	330	340	370	350	ND	ND	0.80	ND	ND	0.80	7.14	7.06	7.54	7.36	7.28	7.23	1.269	0.940	1.240	1.290	1.297	1.051
Intermediate Wells																								
CA212	72	73	79	79	78	68	ND	ND	ND	ND	ND	0.80	6.70	6.88	6.64	7.05	6.97	6.65	0.496	0.573	0.732	0.660	0.621	0.555
NW022	360	260	290	250	260	250	ND	NA	ND	ND	ND	0.80	6.96	7.02	7.05	7.14	6.97	7.03	1.270	1.019	1.390	1.280	1.257	1.338
NW052*	130	130	140	150	NS	NS	ND	NA	ND	ND	NS	NS	7.24	6.15	6.26	7.00	NS	NS	0.738	0.920	0.312	1.140	NS	NS
NW062	180	180	190	180	190	190	ND	ND	ND	ND	0.80	ND	8.11	6.97	6.71	7.38	7.41	7.04	0.738	0.584	0.270	0.850	0.883	0.853
NW082R*	86	88	85	88	NS	NS	ND	NA	ND	ND	NS	NS	6.84	6.48	6.64	6.58	NS	NS	0.687	0.884	0.916	0.890	NS	NS
G0076	280	280	310	300	320	320	ND	ND	ND	ND	ND	ND	6.66	6.62	6.93	6.74	6.81	6.65	1.189	1.116	1.260	NS*	1.135	1.264
G0078	250	260	250	250	270	270	ND	NA	ND	ND	ND	0.80	6.90	6.94	6.91	6.78	6.78	6.95	1.213	0.972	1.280	1.070	0.957	1.118
Deep Wells	200	200			2,3		1.2		1,12	1,12		0.00	0.70	0., .	0.71	0.,0	0.70	0.,,	1.213	0.5,2	1.200	1.070	0.,,,,	
•	62	60	57	61	61	60	ND	NIA	ND	ND	ND	ND	7.47	761	756	7.93	7.62	7.44	0.272	0.279	0.501	0.450	0.447	0.266
CA213 G0070	63	60	57 30	61	64 42	60	ND ND	NA ND	ND	ND	ND ND	ND	7.47	7.64	7.56	7.82 6.88	7.63 7.02	7.44	0.373	0.378	0.501	0.450	0.447	0.366
G0070	34	33	39	40	43	44	ND	ND	ND	ND	ND	ND	7.12	6.88	7.01	0.88	7.02	7.09	0.461	0.452	0.511	NS*	0.427	0.451

*Beginning Quarter 5, wells are no longer accessed/sampled due to private property restrictions.

 $\mu g/L = micrograms per liter$ NA = no analysis $CO_2 = carbon \ dioxide$ ND = nondetect

DO = dissolved oxygen NS = no sample/measurement collected

DOC = dissolved organic carbon NS* = specific conductance not measured due to instrument error

mg/L = milligrams per liter ORP = oxidation/reduction potential

MNA = monitored natural attenuation OU = Operable Unit mS/cm = milliSiemens per centimeter PZ = piezometer

mV = millivolts TKN = total Kjeldahl nitrogen

TABLE 5-3 SUMMARY OF RDX AND TNT CONCENTRATIONS **OU1 PERFORMANCE MONITORING LOCATIONS** OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

	BASE	LINE	QUAR	TER 2	QUAR	TER 3	QUAR	TER 4	QUAR	TER 5	QUAR	TER 6
Performance	RDX	TNT										
Monitoring Location	(µg/L)											
Between EW6 and EW												
G0022	NS	NS	NS	NS	ND	2.3	NS	NS	ND	1.1	ND	0.69
PZ017R	0.87	15	1.4	17	1.4	11	1.8	15	2.2	10	2.1	10
PZ018	0.88	8	ND	19	1	ND	ND	17	ND	6	ND	4.6
EW7-PM21A-25	1	29	6.2	17	7.3	11	ND	11	ND	5.8	ND	8.3
EW7-PM21B-35	0.39	5.7	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM22A-25	0.47	27	ND	1.1	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM22B-35	0.28	5.7	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM23A-25	1	28	2.2	38	ND	ND	ND	0.39	NS	NS	NS	NS
EW7-PM23B-35	0.32	5.2	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM24A-25	1.4	9.8	0.19	0.53	ND	8.3	ND	5.4	ND	4.6	ND	0.25
EW7-PM24B-35	0.41	11	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM25A-25	1.6	13	ND	2.3	ND							
EW7-PM25B-35	ND	4.1	ND	ND	57	ND						
EW7-PM26A-25	0.97	14	ND	0.73	0.46	0.87	ND	ND	ND	0.66	2.5	ND
EW7-PM26B-35	0.38	7.2	37	ND	34	ND						
EW7-PM27A-25	1.7	9.5	2.2	9.8	ND	0.45	ND	ND	NS	NS	NS	NS
EW7-PM27B-35	0.62	4.9	ND	0.26	17	ND						
EW7-PM28A-25	1.1	13	1.1	8.2	15	ND						
EW7-PM28B-35	0.22	5.6	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS
EW7-PM29A-25	1.2	5.9	ND	ND	26	ND						
EW7-PM29B-35	ND	3.6	ND	ND	44	ND						
Load Line 1												
G0094	NS	NS	NS	NS	2.7	8.5	NS	NS	16	4.9	8.1	19
G0096	NS	NS	NS	NS	36	0.96	NS	NS	87	0.24	58	0.38
Load Line 2												
G0111	NS	NS	NS	NS	ND	12	NS	NS	ND	3.7	6.5	6.6
G0121	NS	NS	NS	NS	13	ND	NS	NS	ND	ND	ND	ND
G0122	NS	NS	NS	NS	12	ND	NS	NS	ND	ND	82	ND
G0123	NS	NS	NS	NS	48	ND	NS	NS	ND	ND	ND	ND
Decant Station												
G0102	NS	NS	NS	NS	41	ND	NS	NS	ND	ND	8.5	ND
		- L										

Concentrations exceed HALs

 $\mu g/L = micrograms per liter$

EW = extraction well

ND = nondetect

NS = not sampled

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

TNT = 2,4,6-trinitrotoluene

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Performance Monitroing			ORF	P (mV)					DO (mg/L)				1	Nitrate/Ni	trite (mg	/L)				Ammon	nia (mg/L))				TKN	(mg/L)		
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21
Shallow Wells																								-						
G0022	NS	NS	64	NS	-94.9	18.2	NS	NS	2.07	NS	3.32	0.10	NS	NS	8.8	NS	9.8	5.3	NS	NS	ND	NS	ND	ND	NS	NS	ND	NS	ND	ND
PZ017R	173.9	154.3	111	68.6	6.8	144.5	5.68	2.63	3.44	0.65	0.01	0.03	41	26	30	20	10	24	0.060	0.13	ND	0.032	0.041	0.033	ND	ND	ND	ND	ND	ND
PZ018	167.4	177.2	127	136.6	-9.9	11.5	1.34	9.09	9.26	5.99	0.36	0.01	24	31	26	26	8.1	5.0	0.21	0.023	ND	ND	0.055	0.32	ND	ND	ND	ND	14	2.4
EW7-PM21A	-36.9	-307.7	-235	-81.2	-146.6	-42.4	0.57	1.45	0.69	0.07	0.05	0.01	23	11	8.0	7.2	16	17	1.1	0.77	0.8	0.93	0.95	1.7	ND	1.3	1.8	1.0	ND	1.8
EW7-PM22A	-10.3	-326.1	-148	-101.5	NS	NS	0.32	1.04	0.53	0.06	NS	NS	13	2.3	5.4	2.1	NS	NS	1.8	0.59	2.3	2.1	NS	NS	ND	3.9	7.5	4.9	NS	NS
EW7-PM23A	-26.7	-325.2	-91	-81.8	NS	NS	0.36	1.18	0.41	0.00	NS	NS	24	24	0.26	22	NS	NS	1.8	1.3	1.6	ND	NS	NS	ND	ND	3.7	2.3	NS	NS
EW7-PM24A	-28.7	-288.4	-68	-85.6	-129.6	-78.4	1.49	0.35	0.54	0.03	0.07	0.01	51	10	6.9	7.2	2.8	ND	0.33	0.34	0.20	0.42	1.1	1.1	ND	1.3	2.1	3.5	3.6	3.5
EW7-PM25A	17.9	-331.9	7	-111.1	-184.5	-99.3	3.48	0.33	8.07	0.00	0.01	0.01	25	6.8	3.0	ND	0.10	ND	0.13	1.2	1.4	0.20	1.9	1.9	ND	3.8	6.8	6.2	6.3	ND
EW7-PM26A	-39.0	-321.4	-53	-71.1	-75.4	-33.3	0.83	0.16	0.49	0.06	0.03	0.01	11	2.1	1.9	3.4	4.9	ND	0.086	1.0	0.09	0.39	0.15	0.94	ND	2.0	1.5	2.0	0.99	ND
EW7-PM27A	-6.6	222.5	-99	-306.2	NS	NS	2.02	2.95	0.31	0.02	NS	NS	26	22	4.2	5.9	NS	NS	0.15	0.21	1.1	1.4	NS	NS	ND	ND	3.6	4.3	NS	NS
EW7-PM28A	-28.2	-211.3	-53	-335.5	-58.1	-104.7	0.12	0.40	0.35	0.03	1.78	0.01	16	3.9	0.15	ND	0.077	ND	0.53	2.4	3.0	0.9	1.0	4.7	ND	3.9	5.6	4.4	3.1	9.5
EW7-PM29A	-20.7	-137.6	-62	-287.5	-97.7	-93.7	0.35	0.61	0.37	0.01	0.01	0.01	12	0.13	0.06	ND	0.10	ND	0.12	0.19	0.35	1.1	1.3	1.7	ND	2.4	5.3	2.7	2.6	3.1
Shallow-Intermediate Wells																														
EW7-PM21B	-121.5	-160.7	-122	-84.2	NS	NS	0.16	0.25	0.39	0.07	NS	NS	2.5	0.18	ND	ND	NS	NS	1.5	0.68	1.5	1.7	NS	NS	1.4	2.3	4.6	2.8	NS	NS
EW7-PM22B	-36.6	-33.1	-123	-106.7	NS	NS	0.20	0.32	0.34	0.06	NS	NS	1.9	ND	ND	ND	NS	NS	1.3	4.4	1.0	2.8	NS	NS	1.2	21	6.4	5.7	NS	NS
EW7-PM23B	-51.6	-20.1	-91	-135.4	NS	NS	0.18	0.52	0.40	0.00	NS	NS	4.4	ND	0.032	ND	NS	NS	1.2	1.5	2.4	0.09	NS	NS	1.6	7.4	8.0	6.5	NS	NS
EW7-PM24B	-92.2	-321.0	-135	-109.0	NS	NS	0.30	0.67	0.34	0.02	NS	NS	11	0.053	ND	ND	NS	NS	1.3	0.27	1.70	0.28	NS	NS	ND	5.0	8.2	6.7	NS	NS
EW7-PM25B	4.6	-330.7	-79	-123.3	-99.8	-120.1	0.15	0.34	0.42	0.00	0.64	0.01	1.7	ND	0.053	ND	0.09	ND	1.5	3.1	3.1	100	3.5	2.5	1.5	1.0	6.8	5.1	8.5	ND
EW7-PM26B	-108.3	-318.6	-82	97.2	-104.6	-140.4	0.28	1.07	0.41	0.03	0.01	0.01	7.5	ND	0.055	ND	0.10	ND	0.57	1.3	1.8	1.8	1.5	1.7	0.7	11	7.2	4.5	3.9	ND
EW7-PM27B	-86.3	-297.6	-107	-112.1	-135.3	-100.5	0.24	0.50	0.36	0.05	0.01	0.01	8.3	0.056	0.16	ND	ND	ND	1.1	1.8	1.8	4.8	6.5	3.9	1.1	3.9	5.7	10	8.2	7.5
EW7-PM28B	-12.2	-240.9	-141	-125.4	NS	NS	0.23	0.29	0.29	0.05	NS	NS	2.7	0.031	0.035	ND	NS	NS	1.0	9.9	5.8	4.9	NS	NS	5.2	12	9.2	7.4	NS	NS
EW7-PM29B	-55.6	-300.9	-105	-119.1	-119.7	-125.6	0.20	0.54	0.29	0.02	0.02	0.01	2.5	0.037	0.049	ND	0.09	ND	2.4	0.33	1.6	3.1	7.9	4.0	2.4	8.1	7.2	5.1	6.7	3.4
Load Line 1																														
G0094	NS	NS	-28.0	NS	-12.1	-62.6	NS	NS	0.64	NS	0.03	0.02	NS	NS	1.00	NS	11	ND	NS	NS	6.1	NS	3.6	4.2	NS	NS	6.90	NS	3.3	2.5
G0096	NS	NS	65.0	NS	-102.0	-138.6	NS	NS	0.61	NS	0.03	0.02	NS	NS	25	NS	14	6.8	NS	NS	0.19	NS	2.9	4.3	NS	NS	ND	NS	5.0	6.1
Load Line 2																														
G0111	NS	NS	14.0	NS	-198.4	-63.8	NS	NS	0.86	NS	0.22	0.04	NS	NS	14	NS	7.8	6.5	NS	NS	0.39	NS	0.58	0.33	NS	NS	ND	NS	1.3	1.9
G0111 G0121	NS NS	NS NS	-80.0	NS	-198.4	-03.6	NS	NS NS	0.50	NS	0.22	0.04	NS	NS	0.40	NS	ND	0.054	NS NS	NS NS	3.7	NS	31	24	NS NS	NS	4.4	NS	77	44
G0121 G0122	NS NS	NS	-61.0	NS	-127.9	-341.4	NS	NS	0.30	NS	0.04	0.08	NS	NS	0.40	NS	0.021	0.68	NS NS	NS	1.9	NS	4.8	3.3	NS NS	NS	3.0	NS	10	5.6
G0122 G0123	NS NS	NS NS	45.0	NS	-126.2	-128.6	NS	NS	0.30	NS	0.03	0.02	NS	NS	0.82	NS	0.021	ND	NS NS	NS NS	0.24	NS	0.86	1.9	NS NS	NS	0.84	NS	13	3.5
Decant Station	140	110	15.0	110	120.2	120.0	140	110	0.51	110	0.03	0.03	110	110	0.51	110	0.02	1112	110	110	U.2-T	110	0.00	1./	110	110	0.04	110	13	3.3
	NC	NC	(0.0	NIC	270.2	225.7	NC	NC	0.42	NC	0.02	0.01	NC	NIC	2.0	NC	NID	0.22	NC	NC	0.073	NC	0.000	2.5	NC	NC	NID	NC	NID	ND
G0102	NS	NS	-60.0	NS	-279.2	-335.7	NS	NS	0.43	NS	0.03	0.01	NS	NS	3.9	NS	ND	0.32	NS	NS	0.072	NS	0.088	3.5	NS	NS	ND	NS	ND	ND

 $\mu g/L$ = micrograms per liter

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

mS/cm = milliSiemens per centimeter

mV = millivolts

ND = nondetect

NS = no sample/measurement collected

NS* = specific conductance not measured due to instrument error

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

TKN = total Kjeldahl nitrogen

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Performance Monitroing			DOC	(mg/L)					CO ₂ ((mg/L)					Methar	e (μg/L)					Alkalini	ity (mg/L))]	Ferrous I	ron (mg/I	٦)	
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21
Shallow Wells																														
G0022	NS	NS	3.0	NS	3.0	3.2	NS	NS	182	NS	156	147	NS	NS	ND	NS	22	6100	NS	NS	330	NS	350	330	NS	NS	0.26	NS	0.11	0.35
PZ017R	3.5	4.5	5.1	5.4	6.8	4.2	62	116	84	120	196	124	140	520	1800	7800	120	6500	140	260	190	270	440	280	ND	0.04	0.42	ND	1.25	0.27
PZ018	3.3	3.3	4.0	3.9	7.9	11	89	32	43	44	142	160	240	ND	ND	60	8600	7900	200	73	96	100	320	360	ND	0.02	0.42	ND	2.62	6.30
EW7-PM21A	3.7	7.6	11	6.3	23	7.1	142	173	173	156	204	196	340	320	4700	9400	15000	16000	320	390	390	350	460	440	0.99	2.62	5.73	3.14	2.67	8.67
EW7-PM22A	3.5	84	68	18	NS	NS	147	227	209	209	NS	NS	800	2700	13000	12000	NS	NS	330	510	470	470	NS	NS	2.89	3.06	>15	8.76	NS	NS
EW7-PM23A	3.6	3.8	12	22	NS	NS	147	147	187	213	NS	NS	420	460	8400	13000	NS	NS	330	330	420	480	NS	NS	2.73	0.90	10.28	5.80	NS	NS
EW7-PM24A	3.8	14	20	16	17	15	151	178	213	200	276	302	380	760	9000	12000	13000	12000	340	400	480	450	620	680	2.62	3.30	>15	5.96	2.10	3.10
EW7-PM25A	4.4	100	130	23	35	39	142	182	231	271	280	329	590	1600	5000	17000	17000	14000	320	410	520	610	630	740	1.56	7.68	3.30	5.78	6.52	2.72
EW7-PM26A	3.9	27	9.6	9.3	7.7	6.2	147	196	222	178	218	200	1600	1300	2600	7400	13000	8800	330	440	500	400	490	450	2.89	2.83	4.52	5.88	5.92	7.56
EW7-PM27A	4.2	13	42	15	NS	NS	124	164	196	200	NS	NS	610	170	6400	7900	NS	NS	280	370	440	450	NS	NS	2.89	2.48	6.60	5.30	NS	NS
EW7-PM28A	4.8	29	46	72	28	30	164	187	209	240	244	298	1600	3300	15000	14000	ND	15000	370	420	470	540	550	670	3.30	4.42	7.05	2.64	5.00	1.87
EW7-PM29A	3.1	93	38	12	12	9.3	102	160	196	156	187	200	450	1900	22000	12000	16000	10000	230	360	440	350	420	450	3.30	11.28	2.64	7.50	6.12	8.70
Shallow-Intermediate Wells																														
EW7-PM21B	3.2	43	63	8.1	NS	NS	133	160	182	142	NS	NS	770	1300	6700	3800	NS	NS	300	360	410	320	NS	NS	2.89	>15	>15	5.34	NS	NS
EW7-PM22B	3.3	480	96	33	NS	NS	133	142	218	173	NS	NS	690	1500	15000	10000	NS	NS	300	320	490	390	NS	NS	2.89	>15	>15	6.90	NS	NS
EW7-PM23B	3.2	270	66	37	NS	NS	138	196	253	253	NS	NS	620	3300	21000	18000	NS	NS	310	440	570	570	NS	NS	2.89	>15	>15	2.50	NS	NS
EW7-PM24B	3.8	140	150	34	NS	NS	147	178	222	213	NS	NS	1300	1100	14000	12000	NS	NS	330	400	500	480	NS	NS	3.30	9.56	>15	7.17	NS	NS
EW7-PM25B	4.8	69	72	18	35	20	182	271	342	236	249	253	3900	1600	18000	21000	19000	15000	410	610	770	530	560	570	0.72	2.12	4.28	3.15	6.48	9.15
EW7-PM26B	4.7	490	220	23	39	22	173	196	231	213	191	280	2900	3700	19000	14000	11000	13000	390	440	520	480	430	630	2.78	>15	>15	2.02	7.32	2.69
EW7-PM27B	5.1	120	47	44	47	15	173	222	218	236	253	231	1700	3400	16000	11000	16000	14000	390	500	490	530	570	520	2.89	6.20	4.32	6.78	6.54	6.42
EW7-PM28B	6.5	25	23	16	NS	NS	200	311	329	227	NS	NS	3500	2200	16000	19000	NS	NS	450	700	740	510	NS	NS	3.30	11.28	5.48	2.89	NS	NS
EW7-PM29B	3.7	280	64	14	21	12	156	244	213	187	200	204	750	3100	9600	18000	16000	12000	350	550	480	420	450	460	3.30	12.08	6.51	7.05	2.73	9.27
Load Line 1																														
G0094	NS	NS	5.8	NS	5.5	6.5	NS	NS	129	NS	169	151	NS	NS	19000	NS	12000	13000	NS	NS	290	NS	380	340	NS	NS	12.20	NS	1.67	4.98
G0096	NS	NS	4.4	NS	120	46	NS	NS	124	NS	200	218	NS	NS	5100	NS	2200	5900	NS	NS	280	NS	450	490	NS	NS	1.26	NS	3.22	1.09
Load Line 2																														
G0111	NS	NS	7.9	NS	9.5	8.2	NS	NS	320	NS	351	404	NS	NS	3800	NS	6400	3400	NS	NS	720	NS	790	910	NS	NS	0.38	NS	2.24	1.79
G0121	NS	NS	8.0	NS	69	650	NS	NS	222	NS	356	293	NS	NS	10000	NS	5200	10000	NS	NS	500	NS	800	660	NS	NS	8.08	NS	3.09	2.88
G0121 G0122	NS	NS	7.0	NS	150	32	NS	NS	258	NS	622	489	NS	NS	8500	NS	14000	11000	NS	NS	580	NS	1400	1100	NS	NS	7.80	NS	2.64	2.79
G0122 G0123	NS	NS	5.6	NS	580	9.4	NS	NS	231	NS	360	338	NS	NS	15000	NS	12000	18000	NS	NS	520	NS	810	760	NS	NS	0.88	NS	6.54	5.12
Decant Station																					220									
G0102	NS	NS	3.9	NS	22	88	NS	NS	191	NS	293	342	NS	NS	1.8	NS	57	120	NS	NS	430	NS	660	770	NS	NS	2.95	NS	2.20	1.86
U0102	11/2	140	3.7	1119	44	00	110	1110	171	1419	493	J ≒ ∠	1112	110	1.0	110	31	120	110	110	730	110	000	770	CNI	110	4.93	110	2.20	1.00

 $\mu g/L = micrograms per liter$

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

mS/cm = milliSiemens per centimeter

mV = millivolts

ND = nondetect

NS = no sample/measurement collected

NS* = specific conductance not measured due to instrument error

ORP = oxidation/reduction potential

OU = Operable Unit

PM = performance monitoring

PZ = piezometer

TKN = total Kjeldahl nitrogen

TABLE 5-4
SUMMARY OF WATER QUALITY PARAMETERS, PERFORMANCE MONITORING LOCATIONS
OU1 SUBSURFACE INJECTION
OU1 REBOUND STUDY LETTER REPORT - QUARTER 6

Performance Monitroing			Sulfate	(mg/L)					Sulfide	e (mg/L)					р	Н				C	onductar	nce (mS/c	m)	
Well Number	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21	Oct-19	Feb-20	Jun-20	Oct-20	Mar-21	Jun-21
Shallow Wells							_												·					
G0022	NS	NS	NS	NS	120	130	NS	NS	0.80	NS	ND	0.80	NS	NS	7.08	NS	6.87	6.68	NS	NS	0.862	NS	0.850	0.940
PZ017R	74	83	62	64	53	81	ND	NA	ND	1.6	ND	ND	6.34	6.16	6.90	6.07	6.38	6.17	0.652	0.797	0.788	0.840	0.902	0.910
PZ018	100	62	67	65	49	53	ND	NA	ND	ND	ND	ND	6.57	5.52	6.46	5.99	6.28	5.96	0.664	0.520	0.590	0.550	0.713	0.870
EW7-PM21A	84	61	49	78	72	96	ND	ND	ND	ND	ND	ND	7.66	6.12	6.38	6.65	6.35	6.31	0.724	0.700	0.920	0.886	0.925	1.130
EW7-PM22A	85	22	30	13	NS	NS	ND	0.80	ND	ND	NS	NS	7.05	6.11	6.16	6.46	NS	NS	0.673	0.817	0.932	1.004	NS	NS
EW7-PM23A	90	91	44	21	NS	NS	ND	ND	ND	ND	NS	NS	8.21	6.53	6.54	6.50	NS	NS	0.740	0.705	0.949	1.223	NS	NS
EW7-PM24A	84	57	40	32	16	2.3	ND	0.80	ND	ND	0.80	0.80	7.56	6.33	6.44	6.49	6.52	6.38	0.903	0.716	1.070	0.908	1.071	1.270
EW7-PM25A	87	39	38	ND	2.4	1.7	ND	0.80	0.80	ND	0.80	ND	7.23	5.87	6.21	6.26	6.32	6.23	0.794	0.814	1.230	1.503	1.243	1.550
EW7-PM26A	73	20	36	54	48	100	ND	ND	ND	ND	ND	ND	7.69	6.18	6.54	6.58	6.56	6.36	0.684	0.674	1.050	0.818	0.925	1.170
EW7-PM27A	120	83	47	37	NS	NS	ND	ND	ND	ND	NS	NS	7.01	6.35	6.07	6.37	NS	NS	0.771	0.753	1.010	1.019	NS	NS
EW7-PM28A	80	53	28	ND	2.5	ND	ND	ND	ND	ND	0.80	ND	7.45	6.11	6.23	6.29	6.34	6.35	0.797	0.731	1.110	1.222	0.106	1.460
EW7-PM29A	97	7.9	7.1	24	5.0	6.3	ND	ND	ND	0.80	0.80	ND	7.29	5.71	6.25	6.40	6.52	6.33	0.600	0.623	0.955	0.818	0.817	0.930
Shallow-Intermediate Wells																								
EW7-PM21B	150	29	70	93	NS	NS	ND	ND	ND	ND	NS	NS	9.46	6.15	6.29	6.67	NS	NS	0.697	0.646	0.952	0.553	NS	NS
EW7-PM22B	160	45	14	11	NS	NS	ND	ND	ND	ND	NS	NS	7.64	5.32	6.15	6.49	NS	NS	0.734	0.933	1.090	NS*	NS	NS
EW7-PM23B	150	4.0	1.1	ND	NS	NS	ND	ND	ND	ND	NS	NS	7.98	5.72	6.14	6.30	NS	NS	0.750	0.870	1.270	1.356	NS	NS
EW7-PM24B	110	43	6.0	5.9	NS	NS	ND	ND	0.80	0.80	NS	NS	8.84	5.80	6.13	6.35	NS	NS	0.707	0.786	1.160	1.095	NS	NS
EW7-PM25B	110	4.0	ND	ND	ND	9.4	ND	ND	ND	ND	ND	ND	7.11	6.38	6.46	6.43	6.42	6.38	0.791	0.971	1.530	1.464	0.746	1.210
EW7-PM26B	79	29	6.8	ND	46	13	ND	ND	ND	ND	ND	ND	9.22	5.28	6.06	6.49	6.46	6.38	0.792	1.091	1.280	0.867	0.820	1.320
EW7-PM27B	90	16	37	2.1	ND	3.1	ND	0.80	ND	ND	ND	ND	8.70	5.80	6.41	6.33	6.29	6.32	0.798	0.897	1.180	1.192	0.974	1.130
EW7-PM28B	71	3.4	ND	13	NS	NS	ND	ND	0.80	ND	NS	NS	7.09	6.44	6.74	6.58	NS	NS	0.802	1.028	1.460	NS*	NS	NS
EW7-PM29B	140	ND	ND	8.0	ND	1.8	ND	0.80	ND	0.80	0.80	ND	8.07	5.66	6.32	6.50	6.49	6.57	0.769	1.099	1.11	0.964	0.953	1.010
Load Line 1																								
G0094	NS	NS	59	NS	82	89	NS	NS	ND	NS	ND	0.80	NS	NS	6.04	NS	6.30	6.13	NS	NS	0.791	NS	0.887	1.080
G0096	NS	NS	85	NS	120	72	NS	NS	ND	NS	ND	0.80	NS	NS	6.72	NS	6.19	6.29	NS	NS	1.040	NS	1.138	1.230
Load Line 2																								
G0111	NS	NS	370	NS	320	200	NS	NS	ND	NS	ND	1.6	NS	NS	7.06	NS	6.69	6.38	NS	NS	1.620	NS	1.762	2.130
G0121	NS	NS	500	NS	110	45	NS	NS	ND	NS	4.8	4.8	NS	NS	6.86	NS	5.02	5.59	NS	NS	1.770	NS	3.539	2.330
G0122	NS	NS	700	NS	45	360	NS	NS	ND	NS	1.6	4.8	NS	NS	7.01	NS	6.48	6.69	NS	NS	2.340	NS	2.339	2.440
G0123	NS	NS	490	NS	5.6	230	NS	NS	ND	NS	0.80	ND	NS	NS	6.85	NS	6.00	6.40	NS	NS	1.860	NS	1.673	1.880
Decant Station																								
G0102	NS	NS	1100	NS	870	740	NS	NS	ND	NS	2.4	4.8	NS	NS	7.00	NS	6.68	6.70	NS	NS	2.740	NS	2.271	2.530

 $\mu g/L = micrograms per liter$

 CO_2 = carbon dioxide

DO = dissolved oxygen

DOC = dissolved organic carbon

EW = extraction well

mg/L = milligrams per liter

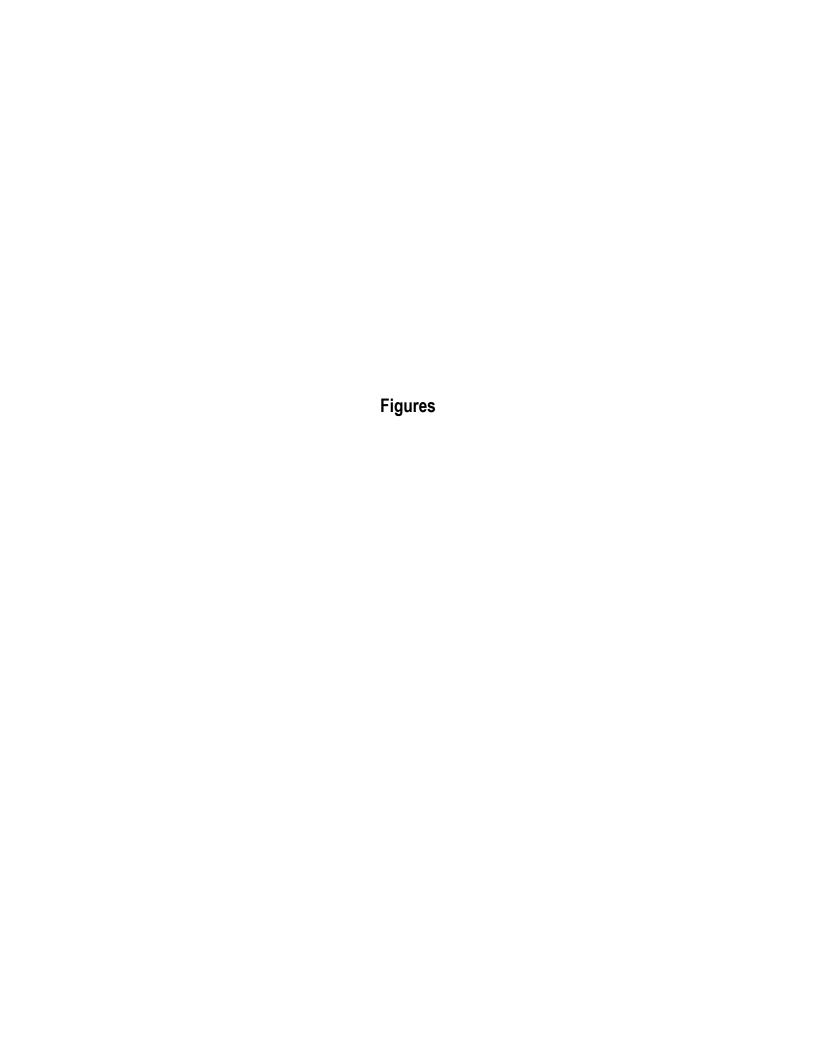
mS/cm = milliSiemens per centimeter

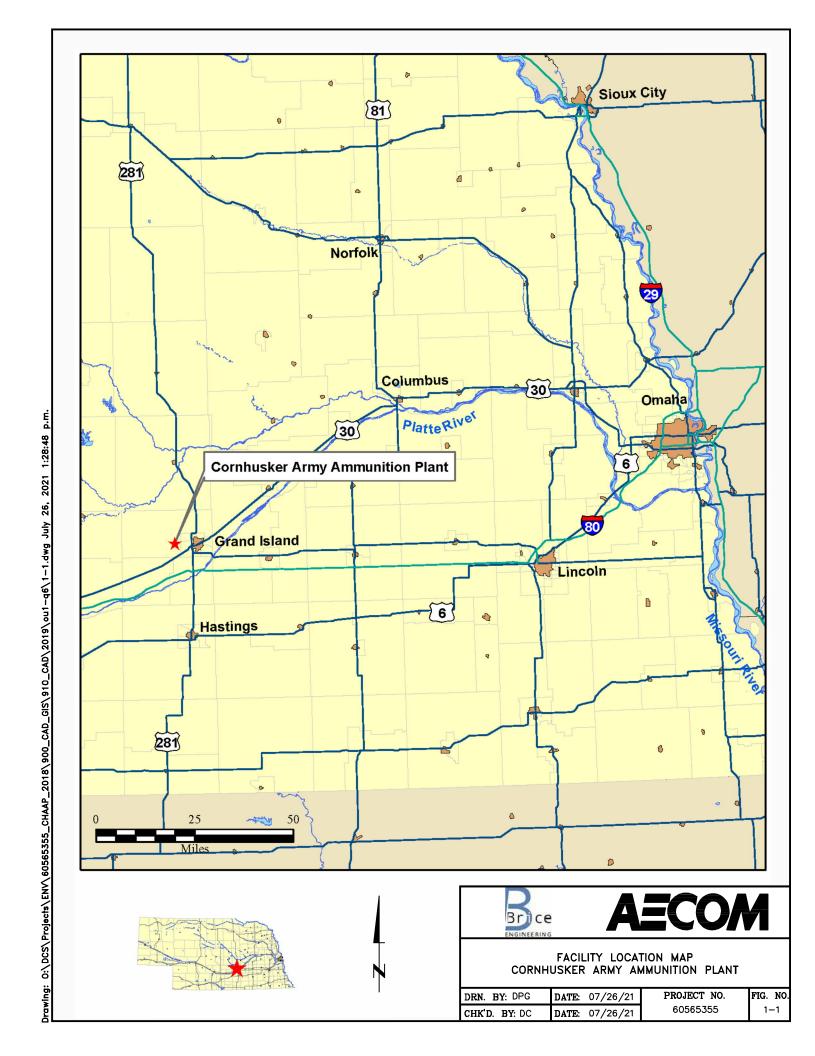
mV = millivolts

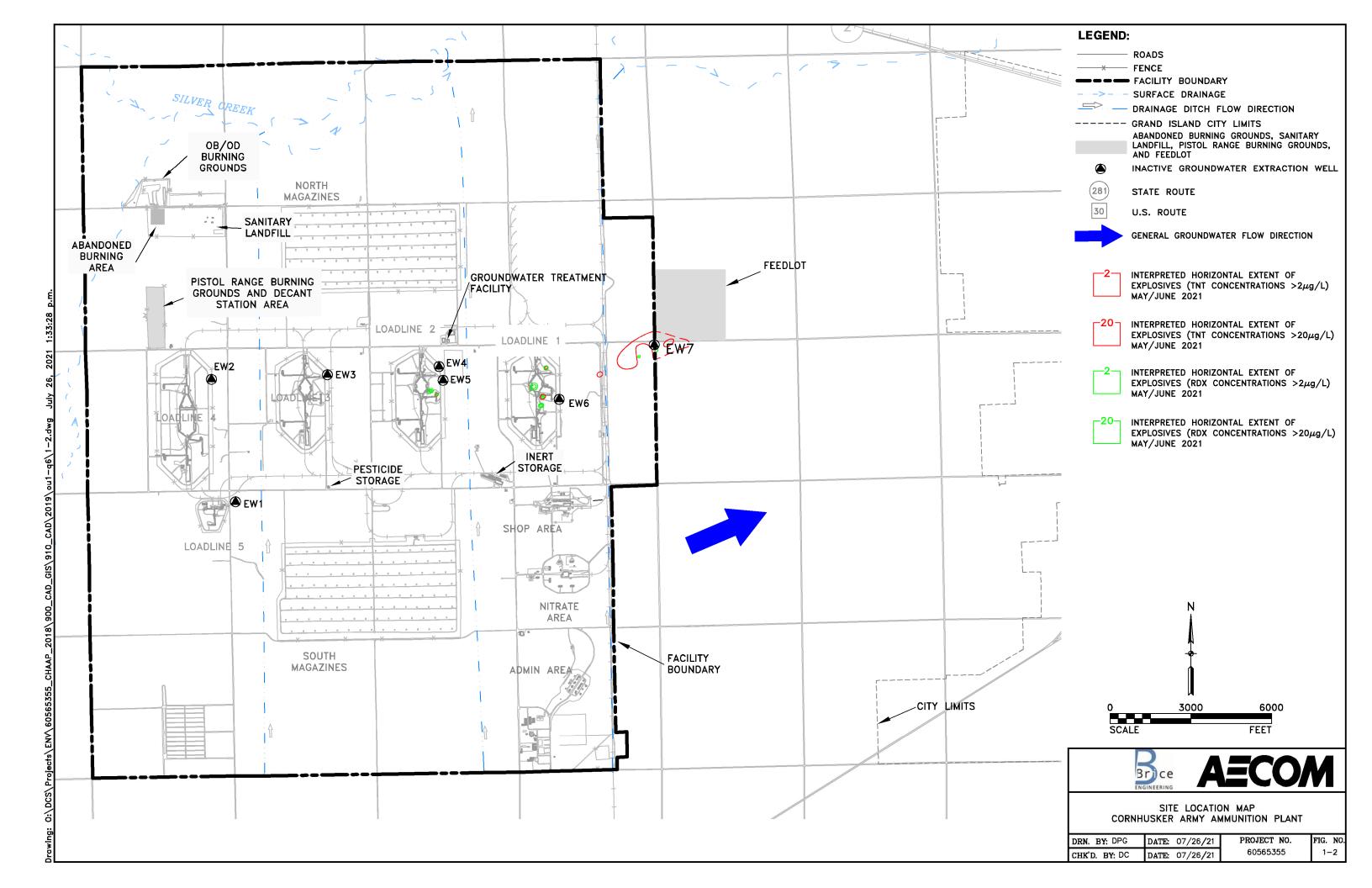
ND = nondetect

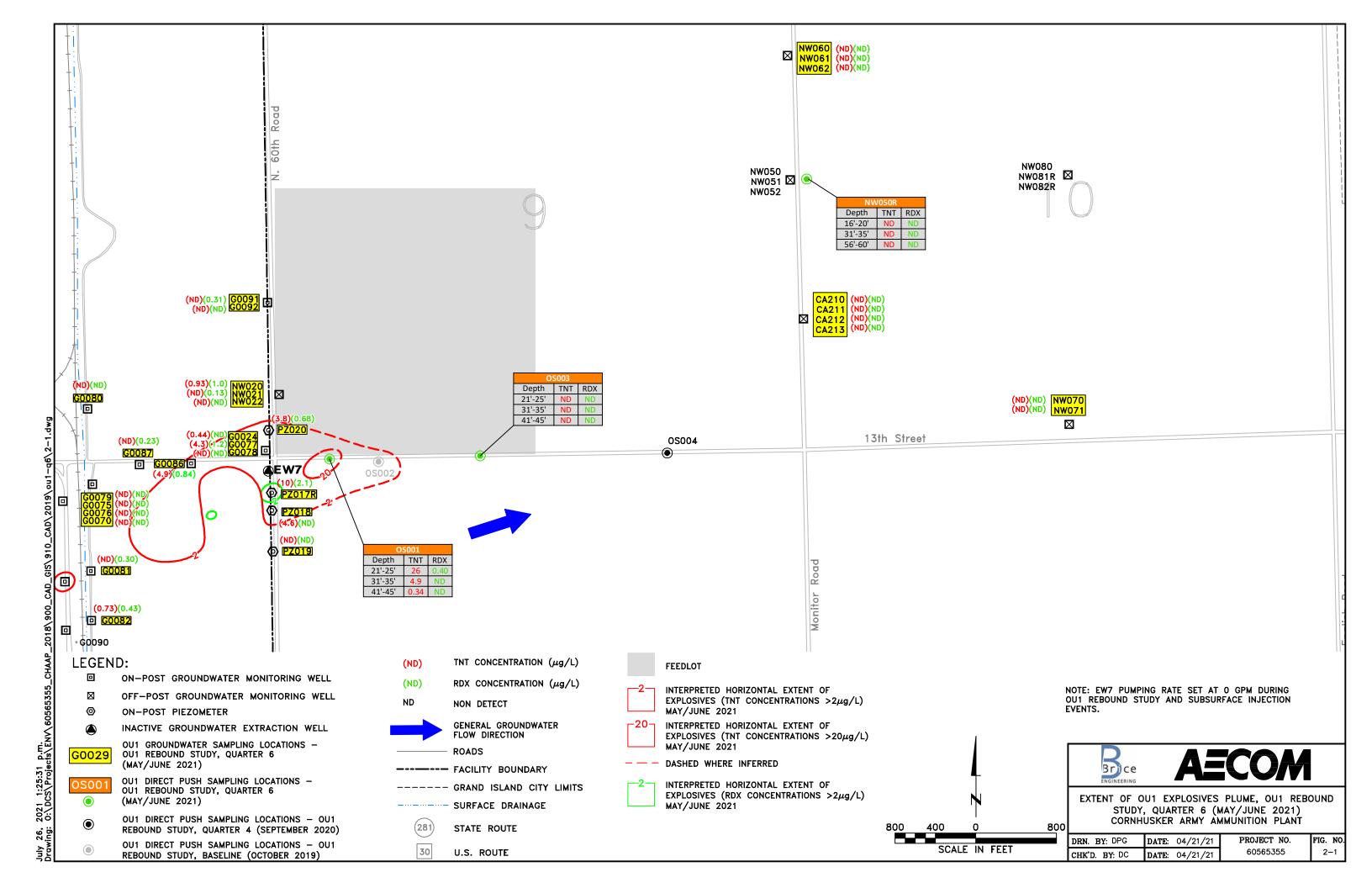
NS = no sample/measurement collected

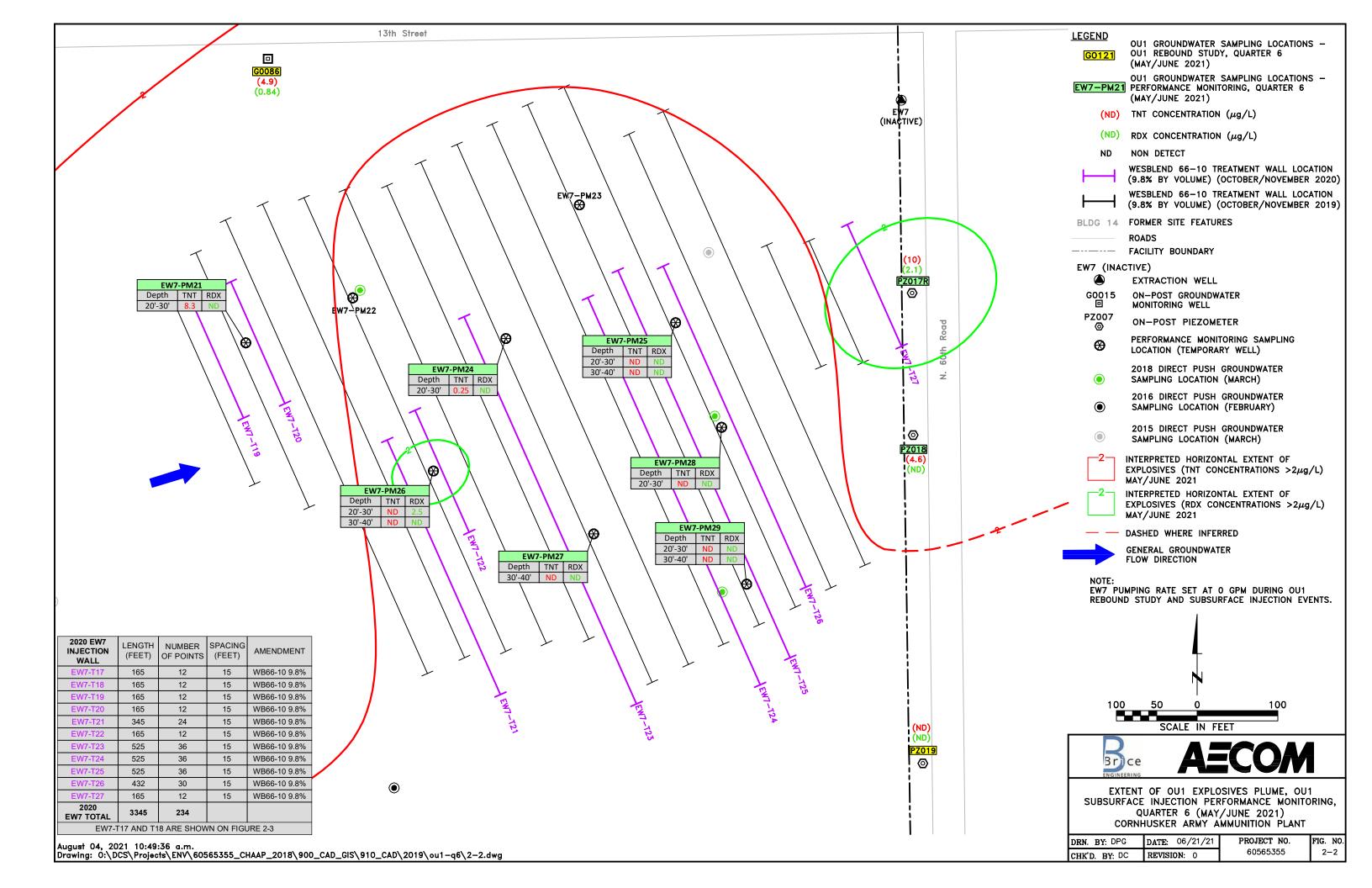
NS* = specific conductance not measured due to instrument error

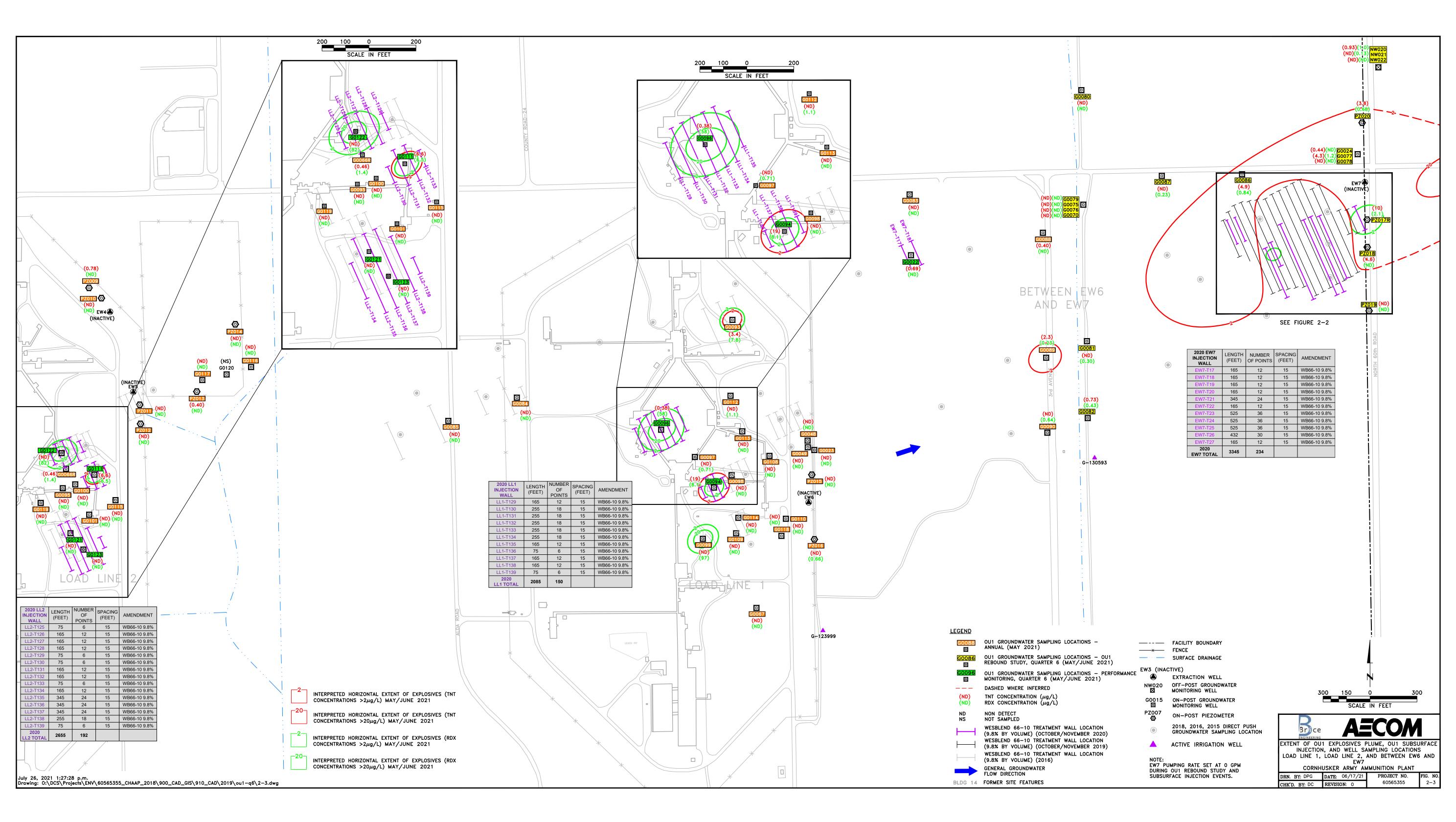

ORP = oxidation/reduction potential

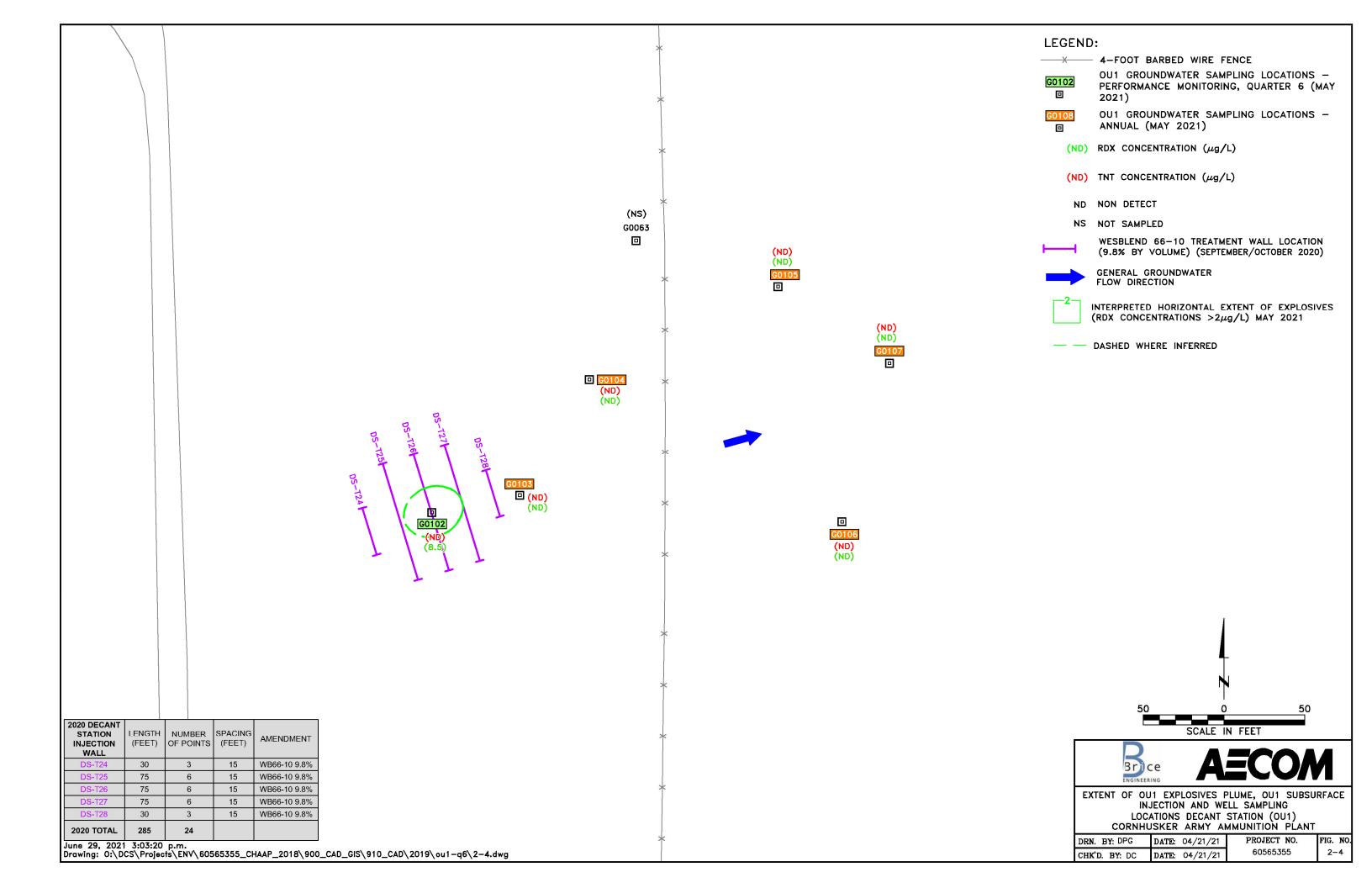

OU = Operable Unit

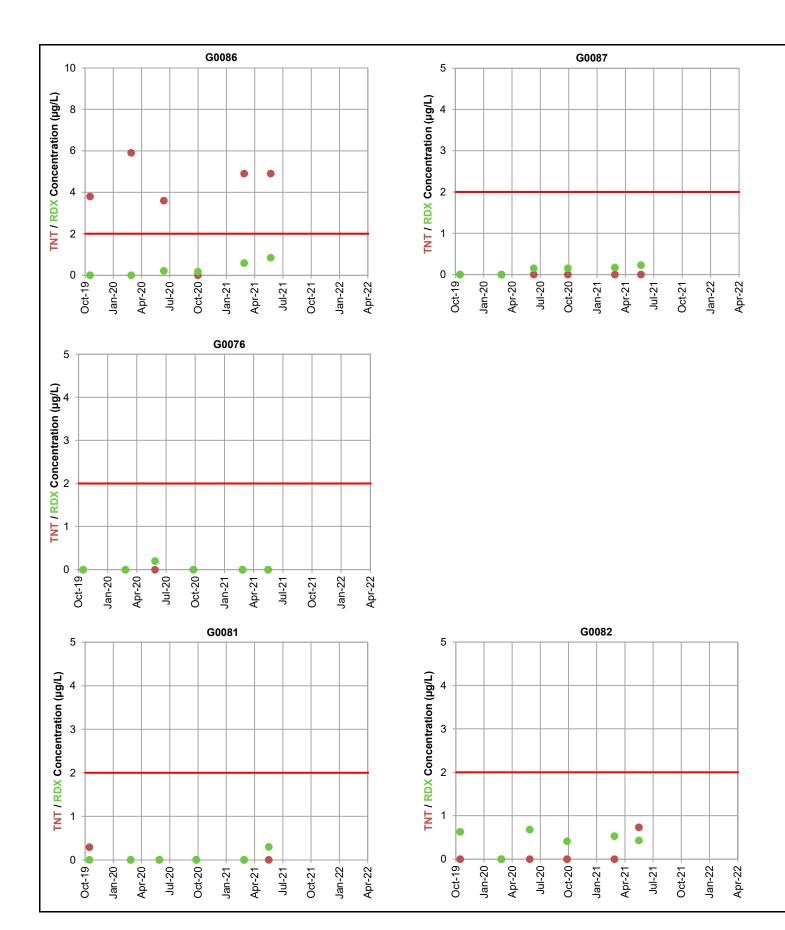

PM = performance monitoring


PZ = piezometer


TKN = total Kjeldahl nitrogen







Nonparametric Trend Analysis for TNT and RDX (OU1 Rebound Study)

		Non-	Total	Detection	Min	Max	Mean	Median	MK	
Well	Detects	detects	Samples	Frequency	(µg/L)	(μg/L)	(µg/L)	(µg/L)	Result	Trend
G0086	5/4	1/2	6/6	83% / 67%	ND / ND	5.9 / 0.84	3.9 / 0.30	4.4 / 0.19	0 / 11	SII
G0087	0/4	6 / 2	6/6	ND / 67%	ND / ND	ND / 0.23	ND / 0.12	ND / 0.15	-9 / 13	ND / I
G0076	0/1	6 / 5	6/6	ND / 17%	ND / ND	ND / 0.20	ND / 0.03	ND / ND	-9 / -5	ND / S
G0081	1/1	5 / 5	6/6	17% / 17%	ND / ND	0.29 / 0.30	0.05 / 0.05	ND / ND	-12 / 0	D / NT
G0082	1/5	5 / 1	6/6	17% / 83%	ND / ND	0.73 / 0.68	0.12 / 0.45	ND / 0.48	-1 / -1	NT / S

Notes:

Trend analysis performed using Mann-Kendall test at 0.05 significance level. Only wells with detections are shown.

μg/L = micrograms per liter MK = Mann-Kendall OU = Operable Unit = Health Advisory Level (HAL) (1994) TNT / RDX

TNT = 2,4,6-trinitrotoluene RDX = hexahydro-1,3,5-trinitro-1,3,5-triazine

Mann-Kendall Analysis for TNT and RDX
Upgradient Wells (OU1)
Cornhusker Army Ammunition Plant

Drawn By:	Date:
DC	4/30/2021
Checked By:	Project No.:
JO	60565355

Figure 4-2

Appendix A
Well Drilling Licenses

Public Health Licensure Unit Certification of Licensure

This certificate serves as primary source verification of licensure in the State of Nebraska as of the close of the business day before 2/12/2021.

Name: Corey S Anderson

Type: WD-PIC Number: 39516

Status:

Issued: 01/02/2011 **Expiration:** 12/31/2022

Education: None on record at this time

Disciplinary/Non-Disciplinary Information:

No disciplinary/non-disciplinary actions taken against this license.

If you have questions about this information, please contact the Licensure Unit at (402) 471-2115 or DHHS.LicensureUnit@nebraska.gov.

Public Health Licensure Unit Certification of Licensure

This certificate serves as primary source verification of licensure in the State of Nebraska as of the close of the business day before 4/6/2021.

Name: Jesse V Kalvig

Type: Well Drilling Contractor

Number: 19210 Status: Active

Issued: 09/19/2000 **Expiration:** 12/31/2022

Education: None on record at this time

Disciplinary/Non-Disciplinary Information:

No disciplinary/non-disciplinary actions taken against this license.

If you have questions about this information, please contact the Licensure Unit at (402) 471-2115 or DHHS.LicensureUnit@nebraska.gov.

Appendix B
OU1 Rebound Study and Performance Monitoring Completed Field Forms

WATER SAMPLE COLLECTION FIELD SHEET

PROJECT NAME CHAAP OUI	Deheund Studer Diese	ot Doorb CW/Compan	Deint PROJECTNO	COMCEDER
		***	Point) PROJECT NO.	60565355
SAMPLE NO. NWO5	0 R- DP06-	-20	SAMPLE DEPTH.	1 Jo # 20
DATE/TIME COLLECTED SAMPLE METHOD	6 - / - 21 G Peristaltic Pump w/ T	0 1320	PERSONNEL	BE Jo
SAMPLE METHOD	renstatue rump wi 1	Luomg		κ_D
SAMPLE MEDIA:	Groundwater	<i>~</i>		~ <i>D</i>
SAMPLE QA SPLIT:	YES	(NO)	SPLIT SAMPLE NO.	N
SAMPLE QC DUPLICATE:	YES	(NO) D	UPLICATE SAMPLE NO.	ΝA
MS/MSD REQUESTED	YES	NO	MS/MSD SAMPLE NO.	
SAMPLE CONTAINERS, PRES	ERVATIVES, ANALY	'SIS		
	**	_		
Sample Container 2 - 500mL Amber		<u>Preservative</u> 6°C		Analysis Requested
2 - SOURL AIRDE				Explosives + MNX (8330A)
	_			
				
70		<i>J</i> 0		70
WELL PURGING DATA	····		Leaves and the second s	
Date	50 Bp 6-1	1-21	PID Measurements	
Time Started	1230		Background	ND
Time Completed	1320	<u></u>	Breathing Zone	Λ/ Ď
Purge Volume (gal)	3		Well Head	N b
Sample Turbidity	- 9-D	<u>t</u> 9 71	Purge Water	ND
Depth to Water (ft bgs)	5 75		i dige water	I V
Deput to water (it bgs)	<u> </u>			
GENERAL COMMENTS				

WATER SAMPLE COLLECTION FIELD SHEET

PROJECT NAME CHAAP OU1	Rebound Study- Dire	ect Push GW (Scree	n Point) PROJE	CT NO.	60565355
SAMPLE NO. NWO5	OR-DP06		SAMPLE I	DEPTH	35`
DATE/TIME COLLECTED SAMPLE METHOD	6-1-21 (Peristaltic Pump w/	0 1405 Tubing	PERS	ONNEL_	BE
SAMPLE MEDIA:	Groundwater		to the facility of the second		KD
SAMPLE QA SPLIT:	YES	(NO)	SPLIT SAMP	LE NO.	NA
SAMPLE QC DUPLICATE:	YES	NO	OUPLICATE SAMP		NA
MS/MSD REQUESTED	YES	NO	MS/MSD SAMP	LE NO	ŇÁ
SAMPLE CONTAINERS, PRESE	RVATIVES, ANALY	YSIS			
Sample Container 2 - 500mL Amber	<u>Preservative</u> 6°C				Analysis Requested Explosives + MNX (8330A)
				_	Zapasarios i mitra (ossori)
				_	
		70			$-\mathcal{F}\Omega$
~ 0		<u> </u>			
WELL PURGING DATA			***************************************	***************************************	
Date	6-1-2		PID Measu	rements	
Time Started	1350		Back	ground	ND
Time Completed	1405		Breathir	ng Zone	ND
Purge Volume (gal)	3		We	ll Head	ND
Sample Turbidity	63.8	<u> </u>	Purg	e Water	N D
Depth to Water (ft bgs)	6,07	7			
GENERAL COMMENTS	·····		······································		

PROJECT NAME CHAAP OUL	Rebound Study- D	irect Push GW (Sc	reen Point) PROJECT NO.	60565355
SAMPLE NO. NW 05	OR-DP	06-60	SAMPLE DEPTH.	60`
DATE/TIME COLLECTED SAMPLE METHOD	6-1-21 Peristaltic Pump	(a) 150 w/Tubing	D PERSONNEL	β⊨
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	(S)(S)(S)	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	N _A
SAMPLE CONTAINERS, PRESE	RVATIVES, ANA	ALYSIS		
Sample Container 2 - 500mL Amber	-	Preserva 6°C	tive	Analysis Requested Explosives + MNX (8330A)
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	6-1-2 144 150 3 71 7.0	<i>S O</i> . 3	<u>PID Measurements</u> Background Breathing Zone Well Head Purge Water	N D N D N D
GENERAL COMMENTS		***************************************		
			and the state of t	

PROJECT NAME CHAAP OUI	Rebound Study- Direct Push GW (Sc	creen Point) PROJECT NO.	60565355
SAMPLE NO. OSOO	1-DP06-25	SAMPLE DEPTH.	25
DATE/TIME COLLECTED SAMPLE METHOD	6-2-21 @ 1145 Peristaltic Pump w/ Tubing	PERSONNEL	BE JO
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	N A 05501-DP06-2. N A
SAMPLE CONTAINERS, PRESI	ERVATIVES, ANALYSIS		
Sample Container 2 - 500mL Amber	Preserval 6°C	tive	Analysis Requested Explosives + MNX (8330A)
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	6-2-21 1130 1145 3 53.1 5.80	PID Measurements Background Breathing Zone Well Head Purge Water	ND ND ND ND
GENERAL COMMENTS			

PROJECT NAME CHAAP OUT	Rebound Study- Dir	ect Push GW (Sc	reen Point)	PROJECT NO.	60565355
SAMPLE NO. OSOO	1 - DP06	35	- S <i>i</i>	AMPLE DEPTH.	3.5
DATE/TIME COLLECTED SAMPLE METHOD	6-2-21		<u>20</u>	PERSONNEL_	BE
SAMPLE METHOD	Peristaltic Pump w/	Tubing		_	<u> </u>
SAMPLE MEDIA:	Groundwater				N D
SAMPLE QA SPLIT:	YES	(NO)		T SAMPLE NO	<u>N, A</u>
SAMPLE QC DUPLICATE:	YES	(NO)		E SAMPLE NO	N,A
MS/MSD REQUESTED	YES	(NO)	MS/MS	D SAMPLE NO	N A
SAMPLE CONTAINERS, PRESE	RVATIVES, ANAL	YSIS			
Sample Container	·	Preservat	ive		Analysis Requested
2 - 500mL Amber		6°C	· 		Explosives + MNX (8330A)
					
20		— J o			- Jr
	_			***	
WELL PURGING DATA					
Date	6-2-	2	DI	D Measurements	
Time Started	13 (1	5	<u> </u>		ND
Time Completed	122	<u> </u>		Background _ Breathing Zone	N D
Purge Volume (gal)	100	<u> </u>		Well Head	
Sample Turbidity		<u>r Ct</u>			7 V
•	<u> </u>	0.0		Purge Water_	
Depth to Water (ft bgs)	7 6.	. 08			
GENERAL COMMENTS					

PROJECT NAME CHAAP OUI	Rebound Study- Di	irect Push GW (Sc	reen Point)	PROJECT NO.	60565355
SAMPLE NO. 05001	- DP06 -	. 45	S	- AMPLE DEPTH	45
DATE/TIME COLLECTED SAMPLE METHOD	$\frac{6-2-21}{\text{Peristaltic Pump v}}$	1 @ 130 w/Tubing	5	PERSONNEL_	BE Jo
SAMPLE MEDIA: SAMPLE QA SPLIT; SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	(Z)	DUPLICA	IT SAMPLE NO IE SAMPLE NO SD SAMPLE NO	NA NA NA NA
SAMPLE CONTAINERS, PRESE	ERVATIVES, ANA	LYSIS			
Sample Container 2 - 500mL Amber		Preserva 6°C	tive	• – • –	Analysis Requested Explosives + MNX (8330A)
WELL PURGING DATA					
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs)	6-2-2 1355 1305 3 20.9		<u>P</u>	ID Measurements Background _ Breathing Zone _ Well Head _ Purge Water _	N D N D N D N D
GENERAL COMMENTS				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	West and the State of the State

PROJECT NAME CHAAP OUI	Rebound Study- I	Direct Push GW (Sc	reen Point)	PROJECT NO.	60565355
SAMPLE NO. OSOO	1-DP06	- 35	SA	AMPLE DEPTH.	25
DATE/TIME COLLECTED SAMPLE METHOD	6-2-2 Peristaltic Pump		0	PERSONNEL	76 BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	NO NO NO	DUPLICAT	IT SAMPLE NO. E SAMPLE NO. D SAMPLE NO.	N A N A
SAMPLE CONTAINERS, PRESE	RVATIVES, AN	ALYSIS			
Sample Container 2 - 500mL Amber	- - - -	Preservat 6°C J0	ive	- - - - -	Analysis Requested Explosives + MNX (8330A)
WELL PURGING DATA					
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs) GENERAL COMMENTS	6-2- 081 083 12. 4.	2 5 5 7 25	PI	D Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
 .					A A A A A A A A A A A A A A A A A A A

PROJECT NAME CHAAP OUL I	Rebound Study- D	irect Push GW (Screen	PROJECT NO.	60565355
SAMPLE NO. <u>(J S O O</u>	3-DP06		SAMPLE DEPTH.	35
DATE/TIME COLLECTED SAMPLE METHOD	$\frac{6-2-2}{\text{Peristaltic Pump v}}$		PERSONNEL_	70 BE
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	(2) (2) (4) (4)	SPLIT SAMPLE NO UPLICATE SAMPLE NO MS/MSD SAMPLE NO	N A N A N A
SAMPLE CONTAINERS, PRESE	RVATIVES, ANA	LYSIS		
Sample Container 2 - 500mL Amber	 	Preservative 6°C		Analysis Requested Explosives + MNX (8330A)
WELL PURGING DATA	· · · · · · · · · · · · · · · · · · ·			***************************************
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs) GENERAL COMMENTS	(-2- -093 -09, 3 -1,55 -4.8	21 0935 2	PID Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
GENERAL COMMINITIES				
Process Address of the Contract of the Contrac				

PROJECT NAME CHAAP OUI	Rebound Study- D	irect Push GW (Screen Point)	PROJECT NO.	60565355
SAMPLE NO. OSOO	3- PD06	-45	S	AMPLE DEPTH.	45
DATE/TIME COLLECTED SAMPLE METHOD	Peristaltic Pump		040	PERSONNEL	J 0 β ₄ Ε
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES YES YES	NO NO	DUPLICAT	IT SAMPLE NO TE SAMPLE NO SD SAMPLE NO	NA NA OSO 03 - DP06 - 45
SAMPLE CONTAINERS, PRESE	RVATIVES, ANA	ALYSIS			
Sample Container 2 - 500mL Amber	 	Preserv 6%		 	Analysis Requested Explosives + MNX (8330A)
WELL PURGING DATA					
Date Time Started Time Completed Purge Volume (gal) Sample Turbidity Depth to Water (ft bgs) GENERAL COMMENTS	6-d- 102 104 3 81	2) 0 0	<u>P1</u>	D Measurements Background Breathing Zone Well Head Purge Water	N D N D N D N D
GENERAL COMMENTS		· · · · · · · · · · · · · · · · · · ·			

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO.		CA21	0-21A		WELL NO.		C/	A210	
DATE/TIME O		5- (9. PRO-A	- 2\ /C		PERSONNEL	J R	_ О Н		
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.	N	N A ' A		
SAMPLE CO	NTAINERS, P	RESERVATI	VES, ANALYS						
Sample Contai	ner		<u>Preservative</u>		Analysis Requ	<u>ested</u>			
2 - 500 mL An			6°C		Explosives + N				
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL HE	····		6°C, H ₂ SO ₄			NH ₃ (350.1), NO)	
1 - 250 mL HE			6°C	.011		Alkalinity (2320	JB)		
1 - 250 mL HI 1 - 250 mL An			6°C, ZnOAc/Na	аОН	Sulfide (9034) DOC (9060A)				
WELL PURG			· · · · · · · · · · · · · · · · · · ·		DOC (9000A)				
Date Time Started Time Complete PID Measurem Background Breathing Z Well Head Purge Water	one	<u>0</u> 6	19-2\ 820 900 W D W D W D W D		Depth to W Water (Well Casing Volume of Wa Casing Vo	epth (ft BTOC) 'ater (ft BTOC) Column Length Volume (per ft) tter in Well (L) olumes to Purge um to Purge (L) ctual Purge (L)		16.85 7.80 2.47 19,27 NA 20 20	
Time	SUREMENTS Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0825 0830 0835 0840 0845 0855 0855	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	6,46 6,50 6,51 6,52 6,54 6,64 6,66	12.97 13.27 13.26 13.39 14.17 14.12 14.14 14.29	1.528 1.569 1.573 1.590 1.612 1.614 1.619	0.16 0.12 0.11 0.10 0.10 0.10 0.08 0.06	219.8 212.0 210.2 206.5 202.5 195.3 192.7	0.55 1.38 2.00 4.71 11.31 17.03 14.14 16.39	9.06 9.07 9.07 9.07 9.06 9.06 9.06	0,5 0,5 0,5 0,5 0,5 0,5 0,5
				j	0				
FIELD EQUI Water Level Pr Water Quality		Model Heron	ON 500 w/ flow thro	ough cell		nst Calibrated Le		librated Weekly	
Field Paramete Pump Placeme	O. 5 mg er Probe Unit # ers Measured in	66970			Historic (7-year average l	Ow and high /	Q5 or 2020 / Ave	rin Rold)
Well Diameter	<u> </u>	<u>//1\</u>			ORP	61.3	210.0	177.6	136.9
Screen Interval					DO	0.17	1.99	0.21	0.66
					PH	5.83	6.75	0.00	6.44
					Cond.	0.708	1.560	1.545	1.268

SITE NAME		СН	AAP		PROJECT NO.		6056	55355	
SAMPLE NO.		CA21	1-21A		_ WELL NO.			211	
DATE/TIME COI SAMPLE METHO		5-19 PRO-A	-2/	NOOSN	_ PERSONNEL		フo - RH		
SAMPLE MEDIA SAMPLE QA SPI SAMPLE QC DU MS/MSD REQUE	LIT: IPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	Γ SAMPLE NO. E SAMPLE NO. D SAMPLE NO.		N A N A N A		
SAMPLE CONT Sample Container		PRESERVATI	VES, ANALYS Preservative	IS	Analysis Requ	actad			- Annahita da A
2 - 500 mL Amber			6°C		Explosives + N				
3 - 40 mL VOA	1		6°C, HCI						
1 - 500 mL HDPE			6°C, H ₂ SO ₄		Methane (RSK	. 173) NH ₃ (350.1), NO) (NIC) (252.2)		····
1 - 250 mL HDPE			6°C						
						Alkalinity (2320	JB)		
1 - 250 mL HDPE			6°C, ZnOAc/Na	aOH	Sulfide (9034)				
1 - 250 mL Amber			6°C		DOC (9060A)				
Date Time Started Time Completed PID Measurement Background Breathing Zone Well Head Purge Water	_		19-21 9130 010 ND ND ND ND		Depth to W Water (Well Casing V Volume of Wa Casing Vo Minimu	epth (ft BTOC) Tater (ft BTOC) Column Length Volume (per ft) ter in Well (L) dumes to Purge im to Purge (L) ctual Purge (L)		43.10 9.14 33.96 2.47 83.88 MA 2.0 2.0	L
FIELD MEASUR	PEMENTS	***************************************							
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)		(NTU)	Depth to Water (ft BTOC)	(L/min)
(0.05)	2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	6.34 6.39 6.31 6.31 6.33 6.33 6.33	12.92 12.89 12.86 12.86 12.82 12.85 12.85	0.812 0.812 0.813 0.811 0.811 0.809 0.809	0.71 0.69 0.69 0.69 0.69 0.69	137.6 142, 1 145.3 146.4 146.9 147.5 147.8	21,79 12,86 16,29 18,26 21,19 36,78 40,68	9.16 9.16 9.17 9.17 9.16 9.15 9.15	0,5 0,5 0,5 0,5 0,5 0,5
FIELD EQUIPM Water Level Probe Water Quality Met	e	Model Heron	500 w/ flow thro	ough cell		nst Calibrated Lalibration Verifi		ibrated Weekly	
GENERAL COM Ferrous Iron = O Multi-Parameter P Field Parameters N Pump Placement I	. 02 mg Probe Unit # Measured in		7704 Cell						
).5 L	/min			Historic (7-year average l	ow and high / ()5 or 2020 / Ave	in Bold)
Well Diameter = 4	"				ORP	33.6	188.2	162.3	127.9
Screen Interval = 3	32.8 - 42.8				DO	0.10	0.93	0.75	10.60
					PH	6.45	6.72	6.72	6.57
					Cond.	0.662	1.110	1.026	0.873

SITE NAME		СН	AAP		PROJECT NO.		605/	55355	
,									
SAMPLE NO.			2-21A	11 0 0	WELL NO.		CA	.212	
DATE/TIME C				1105	PERSONNEL		<u> </u>		
SAMPLE MET	THOD	PRO-A	CTIVE SS MO	NSOON	-		<u> </u>		
SAMPLE MEI	DIA:	Groundwater		_			A / A		
SAMPLE QA		YES	NO	4	ΓSAMPLE NO.		NA.		
SAMPLE QC I		YES	NO		E SAMPLE NO.		N A		
MS/MSD REQ		YES	NO		SAMPLE NO.		VД	·	
	•	PRESERVATIV	· ·	SIS					
Sample Contain 2 - 500 mL Am			Preservative 6°C		Analysis Reque				
3 - 40 mL VOA			6°C, HCl		Explosives + M Methane (RSK				
1 - 500 mL HD	··-···		6°C, H ₂ SO ₄		TKN (351.2), N		D ₂ /NO ₃ (353.2)		
1 - 250 mL HD	PE		6°C		SO ₄ (9056A), A				
1 - 250 mL HD	PE		6°C, ZnOAc/N	laOH	Sulfide (9034)				
1 - 250 mL Am	iber		6°C		DOC (9060A)				
WELL PURG	ING DATA								
Data			5-19-0	2 (epth (ft BTOC)		67.12	
Date Time Started			1025	` `		ater (ft BTOC) Column Length		58.02	
Time Complete	ed		1105			Volume (per ft)		20.08	
PID Measureme		-		***************************************	Volume of Wa			143.3	T
Background			N,D		Casing Vo	lumes to Purge		N A	
Breathing Zo	one		N.B.			m to Purge (L)		<u> </u>	
Well Head Purge Water			N D		_ A	ctual Purge (L)			
			NV						
FIELD MEAS		<u>-</u>							
Time	Amount	pН	Temperature	•		Redox (ORP)	-	Depth to Water	Purge Rate
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
1036	2.5	6.98	14.24	0.566	0.12	101.1	127.16	9.10	1.5
1035	5.0	6.81	14,22	0.559	0.11	111.3	155.83	9.16	0.5
1046	7.5	6.75	14.51	0.550	0.09	114,5	197.75	9.10	0.5
1045	<u>10.6</u>	6.71	14.51	0.548	0.07	117.3	246,60	9.10	0,5
1050	19.2	6.69	14.54	0.553	0.05	118.9	263,96	4.10	0.5
1055	<u>15.0</u>	6.68	14.74	0.509	0.05	121.3	472.11	9,10	0.5
1100	<u> 17.5</u>	6.67	14.64	0.564	0.06	133.3	465.30	ا وَا. إِ	2.0
1105	20,0	6,65	14. //	0.555	0.05	<u>124,8</u>	470,29	9.10	0.5
				アクニ					
EIDI D HOUT	DA SEINIUL A NIEN	CALLIND ANY							
FIELD EQUII	PMENT AND	Model Model	·N		Calibration				
Water Level Pro	obe	Heron			Checked Again	st Calibrated L	ength		
Water Quality I	Meter	Aqua TROLL 5	i00 w/ flow thre	ough cell	Twice Daily Ca			ibrated Weekly	
GENERAL CO	OMMENTS	***************************************					***************************************		
Ferrous Iron =		ı/L							
Multi-Paramete	r Probe Unit #	SN 66	9704						
		Flow-Through (Cell						
Pump Placemen		_, <u>~</u> ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
Pump Rate = (/ M.A						05 or 2020 / Ave	
Screen Interval					ORP DO	22.3 0.05	167.4 0.89	0.05	0.39
Coron mich val	- 5110 - 0110				PH	6.64	7.05	6.97	6.85
					Cond.	0.496	0.732	0.621	0.616

		V11	AAP		PROJECT NO.		6050	65355	
SAMPLE NO.			13-21A		WELL NO.			213	
DATE/TIME C SAMPLE MET		5-19- PRO-A	λί @ ₹ CTIVE SS MO	NSOON.	30 PERSONNEL -		JO RH		
SAMPLE MED	DIA:	Groundwater					. / .		
SAMPLE QA S	SPLIT:	YES	NO] SPLIT	SAMPLE NO.		NA		
SAMPLE QC D	DUPLICATE:	YES	NO	DUPLICATE	E SAMPLE NO.		N Á		
MS/MSD REQ	UESTED	YES	NO	MS/MSE	SAMPLE NO.		NA		
SAMPLE CON	NTAINERS, I	PRESERVATI	VES, ANALYS	_					
Sample Contain			Preservative		Analysis Requ	ested			
2 - 500 mL Am	ber		6°C		Explosives + N	MNX (8330A)			
3 - 40 mL VOA	\		6°C, HCl		Methane (RSk				
1 - 500 mL HD	PE		6°C, H ₂ SO ₄			NH ₃ (350.1), NO	O ₂ /NO ₃ (353,2)		
I - 250 mL HD	PE		6°C			Alkalinity (2320			
1 - 250 mL HD	PE		6°C, ZnOAc/N	IaOH	Sulfide (9034)	·····			
1 - 250 mL Am	ber		6°C		DOC (9060A)		***************************************		
WELL PURG	ING DATA								
Data		5-	19-2	\	Well D	epth (ft BTOC)		91.34	
Date Time Started				1		ater (ft BTOC)		9.78	
Time Started	ď		1230			Column Length Volume (per ft)		81,56 2,47	
PID Measureme			1470			ter in Well (L)		201.4.	
Background	<u> </u>		ND			lumes to Purge		<u> </u>	<i></i>
Breathing Zo	ne		N D			ım to Purge (L)		2.0	
Well Head			ND			ctual Purge (L)		22.5	
Purge Water			N D		_				
FIELD MEAS	LIDINAENING							***************************************	
) 1115 , 1155	Purged (L) 2.5 5.()	8,34	(Celsius)	(mS/cm) 0.444 444.68	Oxygen (mg/L	103. a	(NTU) 6 3 1,00		(Ľm
1200 1205 1210 1215 1220	7.5 10.0 12.5 15.0 17.5	7.27 7.34 7.37 7.42 7.47	15.52 15.52 15.61 15.96 16.49	0.435 0.435 0.435 0.435 0.411	0.21	142.7 131.9 126.8 124.9 116.8	930,00 807,00 319,05 33,44 34,78 31,63	9.78 9.78 9.78 9.78 9.78	0, 5 0, 5 0, 5 0, 5 0, 5
1205	12.5	7.27 7.34 7.37 7.42	15.52 15.61 15.46	0,435 0,426 0.411	0.20 0.31 0.31	131.9 126.8 124.9 116.8	807.00 319.05 33.44 34.78	9.78 9.78	0,5
1205 1210 1215 1220	13.5 15.0 17.5	7.27 7.34 7.37 7.42 7.47	15.52 15.61 15.61 15.96 16.49 16.35	0,435 0,426 0.411 0.382 0.370	0.20 0.21 0.31 0.29 0.31 0.32	131.9 126.8 124.9 116.8 109.2 108.3	807.00 319.05 33.44 34.78 31.63	9.78 9.78 9.78 9.78 9.77	0,5
1205 1210 1215 1220 1225 1230	12.5 15.0 17.5 20.0 22.5 PMENT AND	7.27 7.34 7.37 7.42 7.47 7.45 7.44 CALIBRATIO Model Heron	15.52 15.61 15.96 16.49 16.35 16.59	0,435 0,446 0.411 0.382 0.370 0.366	0,20 0,31 0,31 0,32 0,33 0,33	131.9 126.8 124.9 116.8 109.2 108.3	807.00 319.05 33.44 34.78 31.63 19.95 19.22	9.78 9.78 9.78 9.79 9.77 9.77	0.5
FIELD EQUIP Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen	PMENT AND Debe Meter DMMENTS O. G. ms r Probe Unit # s Measured in tt Depth =	7.27 7.34 7.37 7.42 7.47 7.45 7.45 7.44 CALIBRATIO Model Heron Aqua TROLL SN 66 Flow-Through 34 ft	15.52 15.52 15.61 15.61 15.96 16.35 16.35 16.59	0,435 0,446 0.411 0.382 0.370 0.366	Calibration Checked Again Twice Daily C	131.9 126.8 124.9 116.8 109.2 106.5	807.00 319.05 33.44 24.78 21.63 19.95 19.22	9.78 9.78 9.78 9.77 9.77 9.77	0.5 0.5 0.5 0.5
FIELD EQUIP Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen Pump Rate = (PMENT AND DEPTH STREET	7.27 7.34 7.37 7.42 7.47 7.45 7.44 CALIBRATIO Model Heron Aqua TROLL SN 66 Flow-Through	15.52 15.52 15.61 15.61 15.96 16.35 16.35 16.59	0,435 0,446 0.411 0.382 0.370 0.366	Calibration Checked Again Twice Daily C	131.9 126.8 124.9 116.8 109.2 108.3 106.5	807.00 319.05 33.44 24.78 21.63 19.95 19.22	9.78 9.78 9.78 9.77 9.77 9.77	0, 5 0, 5 0, 5 0, 5 0, 5 0, 5
FIELD EQUIP Water Level Pro Water Quality M GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen Pump Rate = (Well Diameter =	PMENT AND Obe Meter OMMENTS O G ms r Probe Unit # s Measured in the Depth = O S L / = 4"	7.27 7.34 7.37 7.42 7.47 7.45 7.45 7.44 CALIBRATIO Model Heron Aqua TROLL SN 66 Flow-Through 34 ft	15.52 15.52 15.61 15.61 15.96 16.35 16.35 16.59	0,435 0,446 0.411 0.382 0.370 0.366	Calibration Checked Again Twice Daily C	131.9 126.8 124.9 116.8 109.2 106.5 Inst Calibrated Lealibration Verification Veri	807.00 319.05 33.44 24.78 21.63 19.95 19.22 ength ication also Cal	9.78 9.78 9.78 9.77 9.77 9.77 9.77	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
FIELD EQUIP Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Pump Placemen Pump Rate = (PMENT AND Obe Meter OMMENTS O G ms r Probe Unit # s Measured in the Depth = O S L = 4"	7.27 7.34 7.37 7.42 7.47 7.45 7.45 7.44 CALIBRATIO Model Heron Aqua TROLL SN 66 Flow-Through 34 ft	15.52 15.52 15.61 15.61 15.96 16.35 16.35 16.59	0,435 0,446 0.411 0.382 0.370 0.366	Calibration Checked Again Twice Daily C	131.9 126.8 124.9 116.8 109.2 108.3 106.5	807.00 319.05 33.44 24.78 21.63 19.95 19.22	9.78 9.78 9.78 9.77 9.77 9.77	0.5 0.5 0.5 0.5 0.5

SITE NAME		СН	AAP		PROJECT NO		605	65355	
SAMPLE NO.		NW02	20-21A		WELL NO		NV	V020	
DATE/TIME (COLLECTED	5-25	~21 P	0845	PERSONNEL	6	C		
SAMPLE ME			CTIVE SS MOI	NSOON			5		
SAMPLE ME	DIA:	Groundwater					17.		
SAMPLE QA		YES	NO	SPLIT	SAMPLE NO		NA		
SAMPLE QC	DUPLICATE:	YES	NO	DUPLICATE	SAMPLE NO.		NW0:	23-21A	
MS/MSD REC	QUESTED:	YES	NO	MS/MSD	SAMPLE NO.		NA		
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALYS	IS					
Sample Contai	ner		<u>Preservative</u>		Analysis Requ	<u>rested</u>			
2 - 500 mL An	nber		6°C		Explosives + N	MNX (8330A)			
3 - 40 mL VO	A		6°C, HCl		Methane (RSF	(175)			
1 - 500 mL HI	PE		6°C, H ₂ S0 ₄		TKN (351.2),	NH ₃ (350.1), NO	O ₂ /NO ₃ (353.2)		
1 - 250 mL HE	PE		6°C			Alkalinity (2320)B)		
1 - 250 mL HE			6°C, ZnOAc/N	aOH	Sulfide (9034)				
1 - 250 mL An			6°C		DOC (9060A)				
WELL PURG	ING DATA	_			Well D	epth (ft BTOC)		29,92	
Date		5-	5895 25-51			/ater (ft BTOC)		-5333	13,34
Time Started			5805	·		Column Length		70 16	.56
Time Complete	ed		7845		Well Casing	Volume (per ft)		3.47	
PID Measurem			17			ater in Well (L)		40	0.40
Background			<u>ID</u>			olumes to Purge		N	
Breathing Z	one		/ <u>D</u>			um to Purge (L)		<u> </u>	
Well Head			<u> </u>		Α	ctual Purge (L)	·	70	
Purge Water			V D						
FIELD MEAS									
Time	Amount Purged (L)	pН	Temperature (Celsius)		Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0810	25	6,69	14.64	1.656	7.02	231.0	0.05	13 27	0.5
0815	5.00	6.996.7	1 2.63	1.643 5	7 0069	8220.0	0.33	13.36	1,-
0820	7.5	6,74	12.87	1.640	6.94	218,3	0.5	13:36	
oras	10.00			1.636	6.86	208.9	0.60	3.37	
0830	12.5	C 79	13 10	1.633	6.83	206.7	0.27	12.36	
0835	15.0	6.82	12,95	1.632	6.80	202.0	0.43	13.36	
0840	17.5	6.83	10,23	1634	6.76	GXPI	0.23	3.37	
0845	20.0	6.85	12.86	1.633	6.69	193.0	0.09	13.37	4
			20						
EIELD FOILL	MENT AND	CALIBRATIO	N			}			
TIELD EQUI	INICINI AIND	Model	IN		Calibration				
Water Level Pro	obe	Heron				nst Calibrated Le	ength		
Water Quality N	Meter	Aqua TROLL 5	00 w/ flow thro			alibration Verifi		ibrated Weekly	
GENERAL CO	OMMENTS								
Ferrous Iron =	().()D mg	r/L			Viced	a La	Matte	meter	for
Multi-Paramete				1	4.6.6	V road la	<u>,</u> (C.	7.1	
		Flow-Through (-2. PINIT	1		meter	
Pump Placemer		2 <i>0,</i> ft							
Pump Rate =	0.5	L/min				7-year average lo		05 or 2020 / Avg	in Bold)
Well Diameter					ORP	41.1	153.0	138.9	117.7
Screen Interval	= 15-25				DO	2.72	6.30	5.54	4.81
					PH Cond	6.19	6.90	6.90	6.55
					Cond.	0.802	1.510	1.504	1.176

SITE NAME	СНААР			PROJECT NO.	O. <u>60565355</u>			
SAMPLE NO.	NW02	1-21A		WELL NO.		N'	W021	
DATE/TIME COLLECTED	5-25-		7955	PERSONNEL		JO		
SAMPLE METHOD		CTIVE SS MO	NSOON	<u></u>		<u> </u>		
SAMPLE OA SPLIT	Groundwater	NO	7 601 1	C A MOLENIO		1/4		
SAMPLE QA SPLIT: SAMPLE QC DUPLICATE:	YES YES	NO NO		r sample no. E sample no.		<i>Ŋ, /</i> } —		
MS/MSD REQUESTED	YES	NO		SAMPLE NO. SAMPLE NO.		7/7		
	L			7 SAMILE NO.		<u> </u>		
SAMPLE CONTAINERS, I Sample Container		/ES, ANALYS <u>Preservative</u>	SIS	Analysis Requ	antad			
		6°C						
2 - 500 mL Amber 3 - 40 mL VOA		6°C, HCI		Explosives + N				
1 - 500 mL HDPE		6°C, H2S0₄		Methane (RSK	NH ₃ (350.1), NO	NIO (252.2	`	
1 - 250 mL HDPE		6°C		· · · · · · · · · · · · · · · · · · ·	Alkalinity (232))	
1 - 250 mL HDPE			InOU			(סנ		
1 - 250 mL Amber	· · · · · · · · · · · · · · · · · · ·	6°C, ZnOAc/N 6°C	(aUI)	Sulfide (9034) DOC (9060A)				
WELL PURGING DATA				DOC (3000A)				
VATORITO MIRER	~		ı	Well D	epth (ft BTOC)		45.75	
Date		-25-31	<u> </u>	Depth to W	ater (ft BTOC)		13.61	
Time Started		0915			Column Length		3219	
Time Completed		7425			Volume (per ft)		2,47	
PID Measurements		N D		Volume of Wa	iter in Well (L)		79,36	1
Background Breathing Zone		47			olumes to Purge im to Purge (L)		4	
Well Head		(d)			ctual Purge (L)		34	
Purge Water		78			ctuar runge (L)		<u> </u>	
FIELD MEASUREMENTS Time Amount		Tammamatura	Conductivity	Dissolved	Daday (ODD)	Translations	Danish to Water	D D.4.
Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
666								
□ () Y \(\delta \) \(\lambda \) \(\delta \) \(\de	7.14	12.35	1,063	2.34	183.7	() (°9	13.63	05
0920 2.5	7.14 7.14	12.35	1.063	2.34	183.7	0.35	13,63	0.5
0925 5.0	·	12.35 12.27 12.52	1.063 1.064 1.077	2.34 2.33 1.84	172.8	0.59	13.60	0.5
0925 5.0	7.14 7.04	12,45	1.064	2.33	172.8	0.5 9 0.25 0.33 0.47	13.60	0,5
0935 5.0 0930 7.5 0935 10.0 0940 12.5	7.14		1.064	2.33 1.84 1.41 1.19	172.8	0.59	13.60 13.60 13.60	0,5
0935 5.0 0936 2.5 0935 10.0 0940 12.5 0945 15.0	7.14 7.09 7.06 7.05 7.03	12.45 12.69 12.79	1.064	2.33 1.84 1.19	172,8 159,8 158.7 159,3 161,5	0.59 0.25 0.47 0.28 1.01	13.60 13.60 13.60 13.61	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0	7.14 7.09 7.06 7.05 7.03	12.69 12.69 12.01	1.064	2.33 1.84 (.41 1:19 0.95 0.73	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
0935 5.0 0936 2.5 0935 10.0 0940 12.5 0945 15.0	7.14 7.09 7.06 7.05 7.03	12.45 12.69 12.79	1.064	2,33 1,84 1,19 0,95	172,8 159,8 158.7 159,3 161,5	1.01	13.60 13.60 13.60 13.61	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0	7.14 7.09 7.06 7.05 7.03	12.69 12.69 12.01	1.064	2.33 1.84 (.41 1:19 0.95 0.73	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0	7.14 7.09 7.06 7.05 7.03	12.69 12.69 12.01	1.064	2.33 1.84 (.41 1:19 0.95 0.73	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0	7.14 7.09 7.06 7.05 7.03	12.69 12.69 12.01	1.064	2.33 1.84 (.41 1:19 0.95 0.73	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0 6950 17.5 6955 20.0	7.14 7.09 7.06 7.05 7.03 7.02 7.02	12.69 12.69 12.79 13.01 13.20	1.064	2.33 1.84 (.41 1:19 0.95 0.73	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
6925 5.0 6936 2.5 6935 16.0 6946 12.5 6945 15.0	7.14 7.09 7.06 7.03 7.03 7.02 7.02	12.69 12.69 12.79 13.01 13.20	1.064	2.33 1.84 (41 1:19 0.95 0.73 0.67	172,8 159,8 158,7 159,3 161,5 155,2	0.47	13.60 13.60 13.60 13.61 13.62	0.5
6925 5.0 6936 2.5 6935 16.0 6940 12.5 6945 15.0 6956 17.5 6955 20.0	7.14 7.09 7.06 7.03 7.03 7.02 7.02 CALIBRATION	12.69 12.69 12.79 13.01 13.20	1.064	2.33 .84 .41 .19 0.95 0.73 0.67	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	0.47	13.60 13.60 13.60 13.61 13.62	0.5
G 9 2 5 5.0 O 9 3 6 2.5 O 9 4 7 10.0 O 9 4 7 15.0 O 9 5 7 15.0 O 9 5 7 10.0 FIELD EQUIPMENT AND	7. 14 7. 09 7. 06 7. 03 7. 03 7. 03 7. 02 7. 02 CALIBRATIO	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 .84 .41 .19 0.95 0.73 0.67 Calibration Checked Again	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	1.0(0.47 0.00	13.60 13.60 13.60 13.61 13.62 13.62	0.5
G 9 2 5 5.0 O 9 3 0 2.5 O 9 4 0 12.5 O 9 4 5 15.0 O 9 5 0 17.5 O 9 5 0 17.5 O 9 5 0 20.0 FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	7.14 7.09 7.06 7.03 7.03 7.02 7.02 CALIBRATION	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 .84 .41 .19 0.95 0.73 0.67 Calibration Checked Again	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	1.0(0.47 0.00	13.60 13.60 13.60 13.61 13.62	0.5
G 9 2 5	7. 14 7. 09 7. 06 7. 05 7. 03 7. 02 7. 02 7. 02 Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 .84 .41 .19 0.95 0.73 0.67 Calibration Checked Again	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength	13.60 13.60 13.60 13.61 13.62 13.62 13.62	
G Q S S O O Q Q O O Q Q O Q Q O Q S O Q S O Q S O Q S O Q S O Q S O Q S O Q S O D O	7. 14 7. 09 7. 06 7. 05 7. 03 7. 03 7. 02 7. 02 7. 02 Model Heron Aqua TROLL 5	12, 69 12, 69 13, 79 13, 01 13, 20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 1.84 (.41 1.19 0.95 0.73 0.67 Calibration Checked Again Twice Daily Ca	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength	13.60 13.60 13.60 13.61 13.62 13.62 13.62	neter
G Q S S S O O Q Q O O Q Q O O Q Q O O Q S O O Q S O O Q S O O Q S O O S O O O S O O Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = O O O mg Multi-Parameter Probe Unit #	7. 14 7. 09 7. 06 7. 03 7. 03 7. 02 7. 02 7. 02 7. 02 Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 .84 .41 .19 0.95 0.73 0.67 Calibration Checked Again	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength	13.60 13.60 13.60 13.61 13.62 13.62 13.62	
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 0.02 mg Multi-Parameter Probe Unit # Field Parameters Measured in	7. 14 7. 09 7. 06 7. 03 7. 03 7. 02 7. 02 7. 02 7. 02 Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 1.84 (.41 1.19 0.95 0.73 0.67 Calibration Checked Again Twice Daily Ca	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength	13.60 13.60 13.60 13.61 13.62 13.62 13.62	
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 0.02 mg Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 3	7. 14 7. 09 7. 06 7. 03 7. 03 2. 03 2. 03 7. 03 7. 03 7. 03 7. 03 8. 7. 03 8. 7. 03 9. CALIBRATION Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 1.84 (.41 1.19 0.95 0.73 0.67 Calibration Checked Again Twice Daily Ca	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength cation also Ca	13.60 13.60 13.60 13.61 13.62 13.62 13.62	neter
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 0.02 mg Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 30 Pump Rate = 0.5	7. 14 7. 09 7. 06 7. 03 7. 03 7. 02 7. 02 7. 02 7. 02 Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 1.84 1.19 0.95 0.73 0.67 Calibration Checked Again Twice Daily Ca	173.8 159.8 158.7 159.3 161.5 \55.2 \48.3 148.3	ength cation also Ca	13.60 13.60 13.60 13.61 13.62 13.62 13.62 13.62 13.62	neter in Bold)
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = 0.02 mg Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 3	7. 14 7. 09 7. 06 7. 03 7. 03 2. 03 2. 03 7. 03 7. 03 7. 03 7. 03 8. 7. 03 8. 7. 03 9. CALIBRATION Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	2.33 1.84 (.41 1.19 0.95 0.73 0.67 Calibration Checked Again Twice Daily Ca	175.8 159.8 158.7 159.3 161.5 \55.2 \48.3	ength cation also Ca	13.60 13.60 13.60 13.61 13.62 13.62 13.62	neter
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter GENERAL COMMENTS Ferrous Iron = Q. Q mg Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 3 Pump Rate = Q. 5 Well Diameter = 4"	7. 14 7. 09 7. 06 7. 03 7. 03 2. 03 2. 03 7. 03 7. 03 7. 03 7. 03 8. 7. 03 8. 7. 03 9. CALIBRATION Model Heron Aqua TROLL 5	12.69 12.69 13.79 13.01 13.20	1.064 1.077 1.084 1.088 1.084 1.084	Calibration Checked Again Twice Daily Ca	173.8 159.8 159.3 161.5 \55.2 \48.3 148.3 USE d	ength cation also Ca T Laft Dw and high/ 150.0	13.60 13.60 13.60 13.61 13.62 13.62 13.62 13.62 13.62 13.62 13.62 13.62	in Bold) 78.9

SITE NAME	СНААР	PROJECT NO.		605	65355		
SAMPLE NO.	NW022-21A		WELL NO.		NV	V022	
DATE/TIME COLLECTED SAMPLE METHOD	5-25-2(@PRO-ACTIVE SS MO) [120 NSOON	_PERSONNEL		Jo GC		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	DUPLICATE	SAMPLE NO. ESAMPLE NO. SAMPLE NO.		N A N A N A		
	PRESERVATIVES, ANALYS	SIS		_			
Sample Container	<u>Preservative</u>		Analysis Requ				
2 - 500 mL Amber	6°C		Explosives + N				
3 - 40 mL VOA	6°C, HCl		Methane (RSK				
1 - 500 mL HDPE	6°C, H ₂ S0 ₄			NH ₃ (350.1), NC)	
1 - 250 mL HDPE	6°C			Alkalinity (2320	iB)		
1 - 250 mL HDPE	6°C, ZnOAc/N	аОН	Sulfide (9034)				
I - 250 mL Amber WELL PURGING DATA	6°C		DOC (9060A)				
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water FIELD MEASUREMENTS Time Amount Purged (L) 1045 2.5 1050 5.6 1055 7.5 1100 10.0 1115 17.5 1120 20.0	5-25-21 1040 1120 ND ND ND ND ND ND ND ND ND ND	Conductivity	Depth to W Water C Well Casing V Volume of Wa Casing Vo Minimu A Dissolved Oxygen (mg/L) O 1 0 5 O 0 5 O 0 1 1 O 0 0 1 O 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 1 O 0 0 0 0 0 1 O 0 0 0 0 0 1 O 0 0 0 0 0 1 O 0 0 0 0 0 1 O 0 0 0 0 0 0 1 O 0 0 0 0 0 0 1 O 0 0 0 0 0 0 1 O 0 0 0 0 0 0 1 O 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0 0 0 0 0 0 0 0 1 O 0 0 0 0 0	repth (ft BTOC) Yater (ft BTOC) Yater (ft BTOC) Column Length Volume (per ft) ter in Well (L) Humes to Purge In to Purge (L) Ctual Purge (L) Redox (ORP) (mV) -3.6 -3.6 -3.6 -3.7 -3.7	Turbidity (NTU) O O O O O O	66.60 13.52 53.08 2.97 131.1 NA 20 20 Depth to Water (ft BTOC) 13.52 13.52 13.52 13.51 13.51	Purge Rate (L/min)
	TO)					
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	CALIBRATION Model Heron Aqua TROLL 500 w/ flow three	ough cell		st Calibrated Le		ibrated Weekly	
GENERAL COMMENTS Ferrous Iron = 0.92 m Multi-Parameter Probe Unit # Field Parameters Measured ir	# 6 43 305 1 Flow-Through Cell		Used turbidit	a La -y read	Motte	meter	Fer
Pump Placement Depth =			¥**. *	· · · · · · · · · · · · · · · · · · ·	341	25 - 2000 1 :	7. Th. 1 e\
Pump Rate = 0.5 Well Diameter = 4"	-/min				···)5 or 2020 / Avg	
Screen Interval = 59 - 64			ORP DO	-34.9 0.05	207.7 1.15	-19.9 0.08	51.1 0.37
DOLUGII IIIGI VAI - J7 - U4			PH	6.77	7.14	6.97	6.96
			Cond.	0.964	1.390	1.257	1.169

SITE NAME		СНААР			PROJECT NO. 60565355				
SAMPLE NO	•	NW0	60-21A		WELL NO. NW060				
DATE/TIME SAMPLE ME	COLLECTED THOD	5-19-2 PRO-A	21 / 0 ·	9 <i>40</i> nsoon	_PERSONNEL	RE,	KM		
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REG	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATI	ΓSAMPLE NO. ESAMPLE NO. DSAMPLE NO.	·	1 <u>A</u>		
	NTAINERS, I	PRESERVATI	VES, ANALYS	SIS					
Sample Conta			Preservative		Analysis Requ				
2 - 500 mL Ar			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL HI			6°C, H ₂ SO ₄				O ₂ /NO ₃ (353.2)		
1 - 250 mL HI			6°C, ZnOAc/NaOH			Alkalinity (232	0B)		
1 - 250 mL HI 1 - 250 mL Ar			6°C, ZnOAc/N	laOH	Sulfide (9034) DOC (9060A)				
WELL PURC			0.0	***************************************	DOC (9060A)				
Date Time Started Time Complet		09	-19-2 00 40	1/	Depth to W	Pepth (ft BTOC) Vater (ft BTOC) Column Length		20.15 1,05	
PID Measuren			70			Volume (per ft) ater in Well (L)		<u> 4 </u>	
Background			B6			olumes to Purge		-48 1A	
Breathing Z	one		BG			um to Purge (L)			
Well Head			136			Actual Purge (L)			
Purge Water	r	l	36						
EIELD MEA	SUREMENTS					*****			
Time	Amount Purged (L)	pH	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP)) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (Homin) m//min (L)
0905	2.5	5.86	14.26	.112	11,08	338	,57	11.06	500
0910	5.0	11 15, 46 b.	114112684	4.107	10.95	255.3	0,76	11,06	11
0915	7.5	6,14	15.04	1107	10.95	236.7	0,85	11	/1
0920	10	6.15	15,08	106	10,94	226,7	0,92	il	1}
0925	12.5	6.14	15.20	105	10.93	221,2	12.86	и	1}
0930	15	6.14	15.21	1105	10.91	218.3	0.95	(1	0
0935	17,5	6.13	15,28	105	10.90	2-16-3	1000	11	1)
0940	20	6.12	15.34	,105	10.89	214-5	0,90	11	/1
~							-		
			A						
			M						
			/						
EIELD EOU	DMENIT AND	CALIDDATIC) NT		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
FIELD EQUIPMENT AND CALIBRATION Model Water Level Probe Water Quality Meter Aqua TROLL 500 w/ flow through cell						nst Calibrated L alibration Verif	ength ication also Cal	ibrated Weekly	
GENERAL C	OMMENTS			······					
Ferrous Iron =		/L .							
Multi-Paramete	er Probe Unit #	1 25							
	rs Measured in		Cell						
	nt Depth = 15								
	500 ml	min Ky					low and high / C)5 or 2020 / Av	g in Bold)
Well Diameter					ORP	29.2	196.7	196.7	136.8
Screen Interval	al = 10.0 - 20.0				DO	9.26	10.75	10.23	10.21
					PH	5.82	6.56	6.56	6.15
					Cond.	0.065	0.203	0.203	0.124

SITE NAME		СНААР			PROJECT NO.	60565355			
SAMPLE NO		NW0	61-21A		WELL NO.		NV	V061	
DATE/TIME (21 / <i>[] ()</i> CTIVE SS MO	·	_ PERSONNEL _	BE	, Alk	KM	
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REG	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	T SAMPLE NO. E SAMPLE NO. O SAMPLE NO.		VA VA VT		
SAMPLE CO	NTAINERS, F	RESERVATI	VES, ANALYS	SIS				······································	***************************************
Sample Conta	iner		Preservative		Analysis Requ	<u>ested</u>			
2 - 500 mL Ar	nber		6°C		Explosives + N	/NX (8330A)			
3 - 40 mL VO			6℃, HCI		Methane (RSK	175)			
1 - 500 mL HI			6°C, H ₂ S0 ₄		TKN (351.2), I	NH ₃ (350.1), N	O ₂ /NO ₃ (353.2)		
1 - 250 mL HI			6°C		SO ₄ (9056A),	Alkalinity (232	OB)		
1 - 250 mL HI			6°C, ZnOAc/N	аОН	Sulfide (9034)				
1 - 250 mL Ar			6°C	***************************************	DOC (9060A)				
WELL PURG	ING DATA								
Date Time Started		5-	-19-21 15		Depth to W	epth (ft BTOC) ater (ft BTOC) Column Length		44.90 10.75 34.15	
Time Complet			00		_	Volume (per ft)		47	
PID Measurem Background			NO		Volume of Wa			<u>, 35</u>	
Breathing Z			ND			lumes to Purge im to Purge (L)		********	
Well Head			VD		-	ctual Purge (L)			
Purge Water	<u> -</u>	·	N ()						
Time	SUREMENTS Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (Dmin) m//m/n KD
1020	2.5	6.75	17,74	0.94	0.44	251.9	2,67	10.79	500
1025	5.0	6,73	19.19	0.94	0.54	246.7	8.42	10.79	11
1030	7,5	6.73	420.46	6.93 M	0.53M	2244.5	18,47	11	l i
1035	10	6.743	201.424		0,4959		67.63	ון	<i>*</i>)
1040	12,5	6.74	19.92	0,92	0 :49	242.3	114,79	10	
1045	15	6.75	20,24	0.94	0.42	241.8	62.34	11	11
1050	17.5	6,76	20,22	0.93	0.33	243.9	101.65	11) (
1055	20	6.78	20.63	0.93	0.30	244.5	102,45	(١/
1100	22.50	6,79	20.49	0.92	0.29	243,4	105,42	<u>l l</u>	
							-		
				MA					
W. W						·····			
Water Level Pr Water Quality	obe	<u>Model</u> Heron	ON 500 w/ flow thro	ough cell	Calibration Checked Again Twice Daily Ca		ength lication also Cali	ibrated Weekly	
	,03 mg er Probe Unit #	1 Kb	Call						
	rs Measured in nt Depth = 4;		Cell						
Pump Rate =					Historia /	Lugge assessed	low and high / C	15 or 2020 / 4	a in Bold
Well Diameter		1/min	<u> </u>		ORP	-year average i	196.8	35.3 35.3	g in Bold) 109.9
Screen Interval					DO	0.03	0.68	0.03	0.30
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			PH	6.59	7.13	7.13	6.95
					Cond.	0.308	1.070	0.941	0.759

SITE NAME		СНААР			PROJECT NO. 60565355				
SAMPLE NO	•	NW0	62-21A		WELL NO	•	NV	V062	
DATE/TIME	COLLECTED	5-19	-21/i	210	DEDSONNEI	RE	in	•	
SAMPLE ME			CTIVE SS MO		PEKSONNEI	12.6	1200		
SAMPLE ME	DIA.	Groundwater	•						
SAMPLE QA		YES	NO	l spir	T SAMPLE NO		1/2	1-	
	DUPLICATE:	YES	NO	-4	E SAMPLE NO		n/ A	<u></u>	
MS/MSD REG		YES	NO		O SAMPLE NO		NW062-21	A MS/MSD	
SAMPLE CO	NTAINERS, I	PRESERVATI	VES. ANALYS	as					
Sample Conta			Preservative	.15	Analysis Requ	iested			
2 - 500 mL Ar	nber		6°C			MNX (8330A)			
3 - 40 mL VO	A		6°C, HCl		Methane (RSI				
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), N	O ₂ /NO ₃ (353.2)		
1 - 250 mL HI	OPE		6°C			Alkalinity (232			
1 - 250 mL HI	OPE		6°C, ZnOAc/N	aOH	Sulfide (9034)	-			
1 - 250 mL Ar	nber		6°C		DOC (9060A)				
WELL PURC		***************************************							
			1- 21			epth (ft BTOC)		63.45	
Date		2-1	9-21			Vater (ft BTOC)	***************************************	10,89	
Time Started		1/	30			Column Length		52.56	
Time Complet PID Measuren			10			Volume (per ft)		-47	
Background		,	1D			ater in Well (L) olumes to Purge		9. B A	
Breathing Z			טי			um to Purge (L)			
Well Head	one		70			ann to Furge (L) Actual Purge (L)			
Purge Water	r		7))			retuar r urge (E)			
					****			W.M	(
FIELD MEAS	SUREMENTS								
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	- (1 (min) and
1135	2.5	6.98	16,97	,864	0.29	-32.8	3,69	10,90	900
1140	5.0	7.00	17.10	,843	0,27	-43,9	3,52	1)	500
115045	7.5	7.62	17.14	,848	0.26	-54.1	1.64	1)	()
1150	10	7.05	18,00	2 453	0.23	-53.1	1.87	11	17
1155	12.5	7,05	18.22	.848	0.23	-54.4	0.63	1 L	11
6200	15	7.05	18.02	,849	0.23	-56:2	2.23	11	11
1205	17.5	7.04	17,84	,954	0.22	-56,6	1.48	()	17
1210	20	7.04	17.69	, 853	0,21	-56.9	2.25	11	()
FIELD EOUI	PMENT AND	CALIBRATIO	N		*	<u> </u>			
		Model			Calibration				
Water Level Pa	robe	Heron				nst Calibrated L	ength		
Water Quality	Meter	Aqua TROLL	500 w/ flow thro	ough cell		alibration Verif		ibrated Weekly	
	0.0000000000000000000000000000000000000					***************************************			
GENERAL C			LA	Motte	20201	rurb me	eter -	colib s	-19-21
	0,94 mg								
	er Probe Unit #	Flow-Through	Cell						
	ent Depth = 6		CUII						
	500 n		KŇ		Historic (7-year average	low and high / (05 or 2020 / Av	g in Bold)
Well Diameter			·~ <u>~</u>		ORP	-100.6	38.6	-100.6	-41.4
		DO	0.05	0.65	0.05	0.29			
					PH	6.71	8.11	7.41	7.32

GENERAL INFORMATION

KD

SITE NAME		СНААР			PROJECT NO. 60565355					
SAMPLE NO.		NW0	70-21A		WELL NO.		NV	V070		
DATE/TIME (COLLECTED	5-19	-21/1	400	PERSONNEI	AE,	KM			
SAMPLE ME			CTIVE SS MO			· <u> </u>				•
SAMPLE ME	DIA:	Groundwater								•
SAMPLE QA		YES	NO	SPLIT	Γ SAMPLE NO.	NA.	 -			
SAMPLE QC		YES	NO	-	E SAMPLE NO.	F				,
MS/MSD REC	QUESTED	YES	NO	1	SAMPLE NO.					•
SAMPLE CO	NTAINEDS E	PRESERVATI	UTC ANALVO	ere e			<u> </u>			
Sample Contai		RESERVAII	Preservative	10	Analysis Requ	ested				
2 - 500 mL An			6°C		Explosives + N					
3 - 40 mL VO	A		6°C, HCl		Methane (RSk					
I - 500 mL HI	OPE		6°C, H ₂ SO ₄		·		O ₂ /NO ₃ (353.2)			
1 - 250 mL HI	PE		6°C			Alkalinity (232				•
1 - 250 mL HI	PE		6°C, ZnOAc/N	laOH	Sulfide (9034)					
1 - 250 mL An	nber		6°C		DOC (9060A)					
WELL PURG	ING DATA					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				ł
			19-21			epth (ft BTOC)		20.91		
Date			•			ater (ft BTOC)		8.01		
Time Started Time Complete	ad	132	00			Column Length		12.9		
PID Measurem			00			Volume (per ft) iter in Well (L)	2	,47		
Background			ND			olumes to Purge	·	1.86		
Breathing Z			VI)			ım to Purge (L)				
Well Head			ひが			ctual Purge (L)				
Purge Water	-		ソク		-				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
FIELD MEAS	OTIDIPATENTE									
Time	Amount	рН	Temperature	Conductivity	Dissolved	Paday (OPP)	Tookidin	Danth to Water	D D	
Time	Purged (L)	pΠ	(Celsius)	(mS/cm)	Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/mln) M/min	ĽΛ
1325	2,5	6,89	14,55	,280	0.40	148.5	2,63	8.01	500	ر ن
1330	5.0	6.91	15,14	,280	0,37	140.2	2.04	11	11	
1335	7.5	6.93	16.19	.281	0.39	137.0	1,83	11	(1	
1340 p	10	6.92	13.08	.278	0,17	134.0	2.10) t	tı	
13545	12.5	6.91	15.11	,280	0.17	132.6	2,04	1/	4	
1350	15	6.91	15,54	,279	0.18	133.7	2,77	11		
1355	17.5	6,90	15.84	,280	0.20	133. 2	1,91	11))	
1400	20	6,88	15.65	,279	0.19	137,0	2,09	(1	/1	
							-			
				A						
FIELD EQUI	PMENT AND	CALIBRATIC	N		······································	·		1		
		Model			Calibration					
Water Level Pr		Heron				nst Calibrated L				
Water Quality	Meter	Aqua TROLL:	500 w/ flow thro	ough cell	Twice Daily C	alibration Verif	ication also Cal	ibrated Weekly		
GENERAL C	OMMENTS			·						
Ferrous Iron =		:/L								
Multi-Paramete										
Field Paramete		Flow-Through	Cell							
Pump Placeme		6 ft								
Pump Rate =		1/min k	2)5 or 2020 / Avg	in Bold)	
Well Diameter		/ 3.	<u> </u>		ORP	-307.4	163.2	163.2	16.6	
Screen Interval	= 10.6 - 20.6				DO	0.07	1.59	0.07	0.51	
					PH Cond.	6.51 0.096	7.25 0.926	7,24 0.926	0,462	
						×			~	

GENERAL INFORMATION

P

SITE NAME		CHAAP PROJECT NO.			60565355					
SAMPLE NO.		NW0	71-21A		WELL NO.			V071		
DATE/TIME O		5-19-3 PRO-A	2	55 NSOON	_PERSONNEL	BES	KM			
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	T SAMPLE NO. E SAMPLE NO. D SAMPLE NO.	N	- 4 4			
SAMPLE CO	NTAINERS, F	PRESERVATI	VES, ANALYS	IS						-
Sample Contai			Preservative		Analysis Requ	ested				
2 - 500 mL An	nber		6°C		Explosives + N					
3 - 40 mL VO	Ą		6°C, HC1		Methane (RSk					-
1 - 500 mL HE	PE		6°C, H ₂ SO ₄			NH ₃ (350.1), NO	D ₂ /NO ₃ (353.2)			-
1 - 250 mL HE	PE		6°C			Alkalinity (2320				
1 - 250 mL HE	PE		6°C, ZnOAc/N	aOH	Sulfide (9034)					
1 - 250 mL An	nber		6°C		DOC (9060A)					-
WELL PURG	ING DATA					***************************************				=
Date		5-	19-21			epth (ft BTOC) ater (ft BTOC)		60.43 7. & Z		
Time Started		7.0	715		_	Column Length		2.61		
Time Complete	ed	1	415-		Well Casing	Volume (per ft)		47		···
PID Measurem					ື Volume of Wa	ter in Well (L)		29,9		
Background			VD			lumes to Purge		14		_
Breathing Z	one		ν <u>ρ</u>			ım to Purge (L)		0		_
Well Head			VD		_ A	ctual Purge (L)		ー <i>ひ</i>		_
Purge Water	•		<u>^()</u>							
Time	SUREMENTS Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (Umin) M/Min	
1420	2.5	6.38	15.06	0.64	1.90	170.9	2.35	7.82	500	<<> <
1425	5.0	6.29	14.39	0,64	1.84	177,4	4.40	11	11	
1430	7,5	10.30	14,56	0.64	1,84	175,6	1.96	((1/	1
14 35	10	6,32	14,80	12 64	1.84	170.5	2.56	11	11	
1440	12.5	6.35	14.56	12,64	1.82	166.6	2.40	71	11	
1445	15	6.34	14,19	0.64	1.82	164,9	2,12	11	1)	
1450	17.5	6.36	14.35	0.64	1,81	164.5	2.13	tt	11	
1455	20	6.35	14.33	0.64	1.80	165.3	3,03	(1	11	
		1								
		M	_							
										-
Water Level Pr	obe	<u>Model</u> Heron	ON 500 w/ flow thro	ough cell		nst Calibrated La alibration Verifi		ibrated Weekly		======================================
GENERAL C	ОММЕКІТС		· mott =	2020 T	/h a: -			()		•
Ferrous Iron = Multi-Paramete	0,08 mg		· Moll e	2020 1	ulb net	er - C4	lib da	ily		-
Field Paramete		Flow-Through	Cell							•
Pump Placeme			~ - · · ·							-
Pump Rate =	500 m				Historic (7-year average l	ow and high / (05 or 2020 / Av	g in Bold)	-
Well Diameter			₹		ORP	-151.2	158.1	107.8	66.5	-
Screen Interval	= 55.2 - 60.2				DO	0.46	3.43	1.94	2.20	-
					PH	6.32	6.62	6.61	6.45	
					Cond.	0.519	0.745	0.686	0.625	

SITE NAME		СН	IAAP		PROJECT NO.	·····	605	65355	
SAMPLE NO			24-21A		WELL NO.			0024	
DATE/TIME COLI			-2\ <u>@</u>		PERSONNEL		<u> </u>	MARINA	
SAMPLE MEDIA:	_	Groundwater			-				
SAMPLE QA SPLI		YES	NO	SPLIT	SAMPLE NO.		NA		
SAMPLE QC DUP		YES	NO	4	SAMPLE NO.		N/A		
MS/MSD REQUES	STED	YES	NO	MS/MSD	SAMPLE NO.		ŇĀ		
SAMPLE CONTA	INERS, P	RESERVATI	VES, ANALYS	SIS					
Sample Container	•		<u>Preservative</u>		Analysis Requ	<u>ested</u>			
2 - 500 mL Amber			6°C		Explosives + N	MNX (8330A)			
3 - 40 mL VOA	***************************************		6°C, HCl		Methane (RSK				
1 - 500 mL HDPE			6°C, H ₂ SO ₄			NH ₃ (350.1), NO)	
1 - 250 mL HDPE	·		6°C			Alkalinity (2320	(B)		
1 - 250 mL HDPE			6°C, ZnOAc/N	IaOH	Sulfide (9034) DOC (9060A)				
1 - 250 mL Amber	70.4		6-0		DOC (9060A)		***************************************		
WELL PURGING	DATA				Wall D	onth (ft DTOC)		22.10	
Date		5	-26-2	1		epth (ft BTOC) ater (ft BTOC)		33.28	
Time Started			175 A	<u> </u>		Column Length		10.5	
Time Completed			0750 0830		_	Volume (per ft)		43,87	
PID Measurements						ter in Well (L)		55,90	
Background			ND			lumes to Purge		NA	
Breathing Zone			NĎ			ım to Purge (L)		<u>a</u> 6	
Well Head			ND			ctual Purge (L)		aŏ	
Purge Water			ND		_			***	·
	Amount irged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0755	1.5	6.51	11.38	0.617	5.16	243.1	0.00	10.85	0.5
(7800) 5	() (6.51	11.46	0.617	5.16	242.8	Ď, 00	10.85	7
0805	<i>1,5</i>	6.58	11.76	0.615	5.12	234.a	0.00	10,90	
0810 11	0,0	6.62	11.85	0.615	5.12	232, 1	0.00	10.90	
0815 V.	2,5	6.67	11.94	0.614	5.09	230.0	0.00	10.90	
0820 1	5.0	6.70	12.09	0.614	5.09	226.3	0.00	10.90	
0825	7. <i>5</i>	6.73	12,20	0.614	5.07	223,0	6.00	10.40	
0830 a	10.0	6.74	12.24	0.613	5,07	221.4	0.00	10.90	$\sqrt{}$
		_							
			<u> </u>						
			丁0						
			<u> </u>						
FIELD EQUIPME	NT AND	CALIBRATIC	ON						
		<u>Model</u>			<u>Calibration</u>				
Water Level Probe		Heron				st Calibrated Lo		w	
Water Quality Meter	r .	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily Ca	alibration Verifi	cation also Cal	librated Weekly	
GENERAL COMN	ATNTS.							772.	
Ferrous Iron = 0.		ng/L							
Multi-Parameter Pro			5				W		
Field Parameters Me									
Pump Placement De									
*******	.5	/min		· · · · · · · · · · · · · · · · · · ·	Historic (7-year average le	ow and high / 2	2020 or O5 / Avg	in Bold)
Well Diameter = 4"		<u> </u>			ORP	22.5	175.4	175.4	112.5
Screen Interval = 16	-31		*****		DO	4.88	8.09	5.31	6.04
					PH	6.19	6.71	6.64	6.52
-				***************************************	Cond.	0.226	1.170	0.654	0.734

SITE NAME	СНААР	PROJECT NO.	PROJECT NO. 60565355				
SAMPLE NO.	G0070-21A			G0070			
DATE/TIME COLLECTED SAMPLE METHOD	5-20-21 (a	1250 PERSONNEL	Jø RH	30070			
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. MS/MSD SAMPLE NO.	N	A A DIA MS/MSD			
SAMPLE CONTAINERS, I Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 1 - 500 mL HDPE 1 - 250 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber WELL PURGING DATA	PRESERVATIVES, ANALY Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc, 6°C	Analysis Requ Explosives + M Methane (RSK TKN (351.2), SO ₄ (9056A),	MNX (8330A) . 175) NH ₃ (350.1), NO ₂ /NO ₃ (353. Alkalinity (2320B)	2)			
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water	5-20-2 1210 1250 ND ND ND ND	Depth to W Water 6 Well Casing V Volume of Wa Casing Vo	epth (ft BTOC) 'ater (ft BTOC) Column Length Volume (per ft) tter in Well (L) Jumes to Purge Im to Purge (L) ctual Purge (L)	82.65 13.99 61.66 2.47 169.59 NA 20 20			
FIELD MEASUREMENTS Time Amount Purged (L) 1215	pH Temperature (Celsius) 6, 97 14, 11 7, 12 14, 16 6, 7, 14 14, 24 7, 17 14, 56 7, 14 14, 20 7, 12 14, 30 7, 04 14, 32	(mS/cm) Oxygen (mg/L) 0.453 7.10 0.452 6.21	Redox (MTU) [25.8 0.06 [44.9 0.04 [46.4 0.05 [60.9 0.04 [166.7 0.02 [75.7 0.00 [76.3 0.00	Depth to Water (ft BTOC) 13.99			
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	CALIBRATION Model Heron Aqua TROLL 500 w/ flow th		ist Calibrated Length Ilibration Verification also C	alibrated Weekly			
Multi-Parameter Probe Unit # Field Parameters Measured in	Flow-Through Cell 7. 5 ft	Wet Historic					
Well Diameter = 4" Screen Interval = 75-80	min	ORP DO PH Cond.	16.5 120.0 0.42 3.29 6.78 7.12 0.354 0.511	84.2 80.2 1.80 1.54 7.02 6.96 0.427 0.430			

SITE NAME	СНААР		PROJECT NO.	60565355			
SAMPLE NO.	G0075-21A		WELL NO.		G0075		
DATE/TIME COLLECTE SAMPLE METHOD	D 5-20-21 @ PRO-ACTIVE SS MC	1000 ONSOON	_PERSONNEL		す の	ł	
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICAT MS/MSD REQUESTED	Groundwater YES NO E: YES NO YES NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.		N A N A	1	
	S, PRESERVATIVES, ANALY	SIS			***************************************		
Sample Container	Preservative		Analysis Reque				
2 - 500 mL Amber 3 - 40 mL VOA	6°C		Explosives + M				
1 - 500 mL HDPE	6°C, HCl 6°C, H₂SO₄		Methane (RSK TKN (351.2), N		NO (252.2)	`	
1 - 250 mL HDPE	6°C		SO ₄ (9056A), A			<i>)</i>	
1 - 250 mL HDPE	6°C, ZnOAc/l	VaOH	Sulfide (9034)		<i>D</i> ,		
1 - 250 mL Amber	6°C	14011	DOC (9060A)				
WELL PURGING DATA	<u> </u>			***************************************			
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water	5-20-2 0920 1000 ND ND ND ND	1	Depth to Water C Water C Well Casing V Volume of Wat Casing Vol Minimu	pth (ft BTOC) ater (ft BTOC) Column Length /olume (per ft) ter in Well (L) tumes to Purge m to Purge (L) ctual Purge (L)		2 4 <i>7</i>	
FIELD MEASUREMEN							_
Time Amount Purged (I	(Celsius) 6.91 12.61 6.78 12.65 6.73 12.68 6.70 12.53 6.69 12.62 6.68 12.57 6.68 12.57	Conductivity (mS/cm) 0.902 0.901 0.900 0.901 0.900 0.900	Dissolved Oxygen (mg/L) 0.08 0.04 0.01 0.01 0.01 0.01	Redox (mV) 137.4 136.4 139.1 139.2 146.3 142.3 143.1 143.9	Turbidity (NTU) 0.0 137.4 0.0 0.0 0.0 0.0 0.0 0.0	Depth to Water (ft BTOC) 13,98	Purge Rate (L/min) O. S O. 5
FIELD EQUIPMENT AF	Model		Calibration				
Water Level Probe Water Quality Meter	Heron Aqua TROLL 500 w/ flow the	ough cell	Checked Again: Twice Daily Ca			librated Weekly	
GENERAL COMMENTS							
Ferrous Iron = 0, 0	mg/L						
Multi-Parameter Probe Uni Field Parameters Measured							
Pump Placement Depth =	1 ft ft						· · · · · · · · · · · · · · · · · · ·
Pump Rate = 0.5 L	-/,-V		Historia (7	-vear average to	w and high /	2020 or Q5 / Avg	in Rold)
Well Diameter = 4"	/min		ORP	-year average ic 36.8	257.3	88.2	125.5
Screen Interval = 25-35			DO	0.03	6.86	2.09	1.81
			PH	6.44	6.98	6.98	6.67
			Cond.	0.650	0.995	0.809	0.836

SITE NAME		СНААР			_PROJECT NO	•	60565355			
SAMPLE NO.		G001	76-21A		WELL NO		G	0076		
DATE/TIME (COLLECTED	5-20.	-21 @	1110			TO			
SAMPLE MET	THOD		CTIVE SS MO	NSOON			RH	· · · · · · · · · · · · · · · · · · ·		
SAMPLE MEI	DIA:	Groundwater	·							
SAMPLE QA		YES	NO		T SAMPLE NO.		ŊĄ			
SAMPLE QC I MS/MSD REQ		YES YES	NO NO		E SAMPLE NO. D SAMPLE NO.		N A			
				4	D SAMPLE NO.		<u> </u>			
SAMPLE COI Sample Contain		PRESERVATI	VES, ANALYS Preservative	SIS	Analysis Requ	ageto d				
2 - 500 mL Am			6°C		Explosives + 1					
3 - 40 mL VOA			6°C, HCI		Methane (RSF	(175)				
1 - 500 mL HD			6°C, H ₂ S0 ₄			NH ₃ (350.1), N		.)		
1 - 250 mL HD			6°C			Alkalinity (232	0B)			
1 - 250 mL HD 1 - 250 mL Am			6°C, ZnOAc/N	laOH	Sulfide (9034) DOC (9060A)				·	
WELL PURG			0.0		DOC (9000A)	***************************************				
·······································		_	24 2		Well D	epth (ft BTOC)		65.20		
Date			<u>- 30- 2</u>	1	Depth to W	/ater (ft BTOC)		13.72		
Time Started	1		030	·		Column Length		51,48		
Time Complete PID Measurement			1110			Volume (per ft) ater in Well (L)		127.16		
Background			N D			olumes to Purge		1 27.16 V A		
Breathing Zo		***************************************	N D			um to Purge (L)		20		
Well Head			ЙB			ctual Purge (L)		20		
Purge Water			N ()							
FIELD MEAS	HIDEMENTS				-		·········	···········		
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV) - 21.1	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)	
1035	٦.5	6.68	13.09	1,273	0.06	17737	12.28	3,72	0.5	
1040	5.0	6.68	13.11	1.272	0.04	- 19.0	5.90	13.72	0.5	
1045	7.5	6.68	13.23	1.270	0.02	-16.7	4.16	13.72	0.5	
10,50	<u> </u>	6.68	13.22	1.269	0.01	-20.a	3.79	13.73	0.5	
1055	12.5	6.65	13.37	1.267	0.01	-15.0	0,98	13.72	0.5	
1100	<u> 15.0</u>	6.65	13.38	1.266	0.02	-13.7	0.24	13.72	0.5	
	17.5	6.65	13.42	1.366	0.03	-9.7	0.19	13.73	0.5	
1110	20.0	6.65	13.45	1.264	0.01	-10.4	0.18	13.74	0.5	
			() (
FIELD EQUIL	PMENT AND	CALIRRATIO)N							
11222 2001	I I ALLI I I I I I	Model	211		Calibration					
Water Level Pro	obe	Heron				nst Calibrated L	ength			
Water Quality N	Meter	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily C	alibration Verif	ication also Ca	ilibrated Weekly		
GENERAL CO	OMMENTS									
Ferrous Iron =	~ !! ^	ng/L			Used	a la	Matte	turbids	meter	
Multi-Paramete	r Probe Unit#	SN 669	704		For	tur bid +	read	, 1 7 14) 169		
Field Parameter		Flow-Through	Cell					·		
Pump Placemer		q ft								
	0.5 L	/min						2020 or Q5 / Av		
Well Diameter :					ORP	-49.0	83.2	-49.0	8.3	
Screen Interval	= 34-04				DO PH	0.05	1.91	0.05	0.66	
			·		Cond.	6.59 0.870	6.93 1.260	6.81 1,135	1.078	
					Cond.	0.070	1.200	1,133	1.0/0	

SITE NAME	СНААР	PROJECT NO.		605	65355		
SAMPLE NO.	G0077-21A		WELL NO.		G	0077	
DATE/TIME COLLECTED SAMPLE METHOD	5-26-21 @ PRO-ACTIVE SS MO	0930 INSOON	PERSONNEL_		Jo GC		
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QC DUPLICATE: MS/MSD REQUESTED	Groundwater YES NO YES NO YES NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.		NA NA NA		
SAMPLE CONTAINERS, F	PRESERVATIVES, ANALYS	SIS	***************************************				
Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 1 - 500 mL HDPE	Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄		Analysis Reques Explosives + M Methane (RSK TKN (351.2), N	NX (8330A) 175)	/NO (252.2)		
1 - 250 mL HDPE 1 - 250 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber	6°C 6°C, ZnOAc/N 6°C	IaOH	SO ₄ (9056A), A Sulfide (9034) DOC (9060A)				
WELL PURGING DATA		····	DOC (9000A)				
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water	5-26-2 0850 0930 ND ND ND		Depth to Wa Water Co Well Casing V Volume of Wate Casing Volu Minimum			37.70 1.03 26,67 2.47 65.87 MA 20 20	
FIELD MEASUREMENTS	***************************************				***************************************		
Time Amount Purged (L)	pH Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0855 2.5 0900 5.0 0905 7.5 0910 10.0 0915 12.5 0920 15.0 0925 17.5 0930 20.0	6.74 12.30 6.80 12.45 6.83 12.54 6.84 12.59 6.85 12.57 6.86 12.82 6.87 12.77 6.87 12.79	0.661 0.695 0.752 0.791 0.825 0.850 0.872 0.881	5.61 5.11 4.00 3.33 2.69 2.21 1.81	191.3 184.7 178.0 174.7 173.1 172.4 167.3 165.7	0,49 0.00 1.00 0.00 0.00 0.66 0,01	08 08 08 08 08 08 08	0.5
FIELD EQUIPMENT AND Water Level Probe Water Quality Meter	CALIBRATION Model Heron Aqua TROLL 500 w/ flow three		Calibration Checked Agains Twice Daily Cal			ibrated Weekly	
Multi-Parameter Probe Unit # Field Parameters Measured in Pump Placement Depth = 3							
Pump Rate = () . 5	L/min					2020 or Q5 / Avg	
Well Diameter = 4" Screen Interval = 25-35			ORP DO PH Cond.	20.4 1.86 6.53 0.620	194.5 5.43 6.75	194.5 2.34 6.61 0.795	101.7 2.98 6.65

SITE NAME		CU	AAP		PROJECT NO		(0.5	65355	
					PROJECT NO.				
SAMPLE NO),		/8-21A	<i>></i>	WELL NO.			0078	
DATE/TIME SAMPLE ME	COLLECTED THOD	5-26 PRO-A	CTIVE SS MOI	1030 NSOON	PERSONNEL		JO GC		
SAMPLE ME	EDIA:	Groundwater							
SAMPLE QA		YES	NO		Γ SAMPLE NO.		NA		
MS/MSD RE	DUPLICATE:	YES YES	NO NO		E SAMPLE NO. SAMPLE NO.		N A		
				i	SAMPLE NO.		IV A		
	ONTAINERS, I	PRESERVATI		IS					
Sample Conta 2 - 500 mL A			Preservative 6°C		Analysis Reque Explosives + M				
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL H	DPE		6°C, H ₂ SO ₄		TKN (351.2), N		₂ /NO ₃ (353.2))	
1 - 250 mL H			6°C		SO ₄ (9056A), A	Alkalinity (2320	В)		
1 - 250 mL HI			6°C, ZnOAc/N	аОН	Sulfide (9034)				
1 - 250 mL A			6°C		DOC (9060A)				
WELL PURC	JING DATA	_			Well De	epth (ft BTOC)		62.80	
Date		5	-26-2			ater (ft BTOC)		11.02	
Time Started			0950			Column Length		51.78	
Time Complet			1030			olume (per ft)		2,47	
PID Measuren			W D			ter in Well (L)		127.90	
Background	Breathing Zone					lumes to Purge		<u> </u>	
Well Head VD					m to Purge (L) ctual Purge (L)		<u> </u>		
Purge Water ND				_ A	cuai Purge (L)				
- argo mate			_/ <u>v_/</u>		-				
	SUREMENTS								
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV) -13.4 5	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
0955	2.5	6.96	14 29	1.135	().22	-D.75	<u>2</u> 15 11	11.02	0,5
1000	5.0	6.95	14.36	1.135	0.17	-17.2	d: 60	11.02	1
1005	7.5	6.96	14.82	1.134	014	-20.2	().00	11.03	
1010	16.0	6.46	14.75	1.130	Ŏ. 12	~21.6	0.06	11.03	
1015	12.5	6.95	14.87	1.124	0.11	-22, 2	0.00	11.02	
1020	15.0	6,95	15.01	1,122	0.09	-21.7	().08	11.02	
1025	17.5	L 0, Z	14.94	1.120	().09	-21.4	0.00	11.02	,
1030	20.0	6.95	14.93	1. 18	Ŏ. <i>08</i>	-21,5	0,00	11,02	4
							<u></u>		
			70)					
FIELD EQUI	IPMENT AND		ON			******	***************************************		
Water Level P		Model			<u>Calibration</u>				
Water Level P		Heron Aqua TROLL	500 w/ flow thro	nigh cell	Checked Again Twice Daily Ca			librated Weekly	
			, 00 m 110m time	,451. 0011	Twice Daily Ca	moradon vertiti	ation also ca	ilbrated Weekly	
GENERAL C									
Ferrous Iron =	ter Probe Unit #	ng/L <i>ር</i> ሀ 3 የልና							
	ers Measured in		Cell						
	ent Depth = $\sqrt{5}$								
Pump Rate =	(), 5	L/min			Historic (7	-year average lo	w and high /	2020 or Q5 / Ave	in Bold)
Well Diameter	r == 4"				ORP	-21.2	68.0	-10.9	15.9
Screen Interva	l = 50-60				DO	0.09	0.45	0.10	0.23
					PH	6.78	7.10	6.78	6.89
					Cond.	0.878	1.280	0.957	1.062

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO	L	G007	9-21A		WELL NO.		G	0079	
DATE/TIME SAMPLE ME	COLLECTED		- <u>2\@</u> CTIVE SS MC		_PERSONNEL		プ o 人日		
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD RE	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	F SAMPLE NO. E SAMPLE NO. D SAMPLE NO.		NA NA NA		
SAMPLE CO	ONTAINERS, F	PRESERVATI	VES, ANALYS	SIS					
Sample Conta 2 - 500 mL Ar 3 - 40 mL VO 1 - 500 mL HI 1 - 250 mL HI 1 - 250 mL Ar	iner mber A DPE DPE DPE mber		Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/N 6°C			MNX (8330A) (175) NH ₃ (350.1), NO Alkalinity (2320)	
Date Time Started Time Complet PID Measuren Background Breathing Z Well Head Purge Wate	ted <u>ments</u> 1 Zone	0) 0 - 2 8 2 5 4 0 5 N D N D N D		Depth to W Water (Well Casing ' Volume of Wa Casing Vo	epth (ft BTOC) later (ft BTOC) Column Length Volume (per ft) ter in Well (L) dumes to Purge on to Purge (L) ctual Purge (L)		14.18 5.44 2.47 13.44	
FIELD MEA	SUREMENTS Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate (L/min)
0830 0835 0840 0845 0850 0855 0900	3,5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	6.28 6.41 6.45 6.46 6.48 6.50 6.51	12.22 12.10 12.14 12.05 12.33 12.21 12.15 12.23	0,642 0,649 0,658 0.661 0,665 0,667 0,669	0.46 0.48 0.62 0.64 0.75 0.75 0.75	131.2 122.7 119.1 120.0 120.3 114.5 120.3	0.00 0.00 0.00 0.00 0.00 0.00 0.00	14, 18 14, 19 14, 19 14, 19 14, 19 14, 20 14, 21	0.5 0.5 0.5 0.5 0.5 0.5 0.5
FIELD EQUI	PMENT AND		N						
Water Level P		Model Heron Aqua TROLL	500 w/ flow thr	ough cell	Calibration Checked Agair Twice Daily Ca	st Calibrated L alibration Verifi		liþrated Weekly	,
Field Paramete	0.03 n ter Probe Unit # ers Measured in	Flow-Through	9704 Cell		Swite twoid	(ed to	ter. ter.	g a L	aMotte
Pump Placeme	ent Depth = $\frac{1}{2}$	6 ft /min			Historic (7-year average I	ow and high /	2020 or O5 / As	vg in Bold)
Well Diameter	:= 4"	/ /MV			ORP	18.5	170.4	81.8	102.1
Screen Interva	l = 8-18				DO	1.03	7.99	2.51	4.40
					PH Cond.	5.73 0.174	6.67 0.706	6.67 0.575	6.27 0.418

SITE NAME		CH	AAP 50		PROJECT NO.		605	65355	
SAMPLE NO.		-G008	6-21A	G0U80-	WELL NO.		-6	₀₀₈₆ —	D080
DATE/TIME (SAMPLE ME		<u>5-20</u> PRO-A	- 21 (a) CTIVE SS MO	14 <i>50</i> nsoon	_ PERSONNEL _		JO RH	75	
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	F SAMPLE NO. E SAMPLE NO. O SAMPLE NO.		NA NA		
SAMPLE CO	NTAINERS, P	RESERVATI	VES, ANALYS	SIS	· · · · · · · · · · · · · · · · · · ·				
Sample Contai 2 - 500 mL An	ner nber		Preservative 6°C		Analysis Reque Explosives + M	1NX (8330A)			
3 - 40 mL VO			6°C, HCl 6°C, H ₂ S0 ₄		Methane (RSK TKN (351.2), N) ₂ /NO ₂ (353.2	<u> </u>	
1 - 250 mL HD			6°C		SO ₄ (9056A), A				
1 - 250 mL HE			6°C, ZnOAc/N	aOH	Sulfide (9034)				
1 - 250 mL An	***************************************		6°C	***************************************	DOC (9060A)				
Date Time Started Time Complete PID Measurem Background Breathing Ze Well Head Purge Water	ed ents one	14 14 N N	0-21 50 10 50		Depth to W Water C Well Casing V Volume of Wat Casing Vol Minimu	epth (ft BTOC) ater (ft BTOC) Column Length Volume (per ft) ter in Well (L) lumes to Purge m to Purge (L) ctual Purge (L)		40.30 12.49 27.81 0.62 17.24 NA 20 20	
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1415 1420 1425 (430 1435 1440 1445 1450	2.5 5.0 7.5 12.5 12.5 15.0 17.5 26.0	6,35 6.41 6.49 6.50 6.50 6.51 6.51	3.04 3.06 3.05 3.30 3.18 3.20 3.11 13.19	0,630 0,636 0.647 0.658 0.688 0.692 0.697	0.03 0.01 0.02 0.02 0.03 0.04	198. 192. 3 185. 6 171. 4 167. 2 168. 2 165. 8 170. \	1.33 0.00 0.00 0.00 0.00 0.00 0.00	2.51 2.52 2.52 2.52 2.53 2.51 3.52	0.5 0.5 0.5 0.5 0.5 0.5 0.5
FIELD EQUI	PMENT AND	CALIBRATIO	N						
Water Level Pr Water Quality	obe	Model Heron Aqua TROLL 5	500 w/ flow thro	ough cell	Calibration Checked Again Twice Daily Ca			librated Weekly	
Multi-Paramete	O.OO ner Probe Unit #	Flow-Through (6970 L	<u> </u>	me·	Ised a ter for	La M turbia	otte t dity rea	urbidity lings
Pump Placemer Pump Rate =	1. Septh = 3	Min			Historia (7	-vear average l	ow and bigh /	2020 or Q5 / Ave	in Rold)
Well Diameter	= 2"	ו ועיו			ORP THISIOTIC (7	12.2	193.8	70.7	103.8
Screen Interval	= 28-38				DO	0.05	1.14	0.06	0.42
					PH Cond.	6.43 0.585	7.03 0.923	6.92 0.808	6.80 0.764

SITE NAME	СНААР	PROJECT NO.	6	0565355
SAMPLE NO.	G0081-21A	WELL NO.		G0081
DATE/TIME COLLECTED	5-20-2	1/920 PERSONNEL	AE, K	M
SAMPLE METHOD	PRO-ACTIVE SS MO) , ,	
SAMPLE MEDIA:	Groundwater			
SAMPLE QA SPLIT:	YES NO	SPLIT SAMPLE NO.	NA	
SAMPLE QC DUPLICATE:	YES NO	DUPLICATE SAMPLE NO.	1	
MS/MSD REQUESTED	YES NO	MS/MSD SAMPLE NO.		
SAMPLE CONTAINERS, I	PRESERVATIVES, ANALY	SIS		
Sample Container	<u>Preservative</u>	Analysis Requ		
2 - 500 mL Amber 3 - 40 mL VOA	6°C 6°C, HCl	Explosives + N Methane (RSK	·····	
1 - 500 mL HDPE	6°C, H ₂ SO ₄		NH ₃ (350.1), NO ₂ /NO ₃ (353	.2)
1 - 250 mL HDPE	6℃	SO ₄ (9056A), a	Alkalinity (2320B)	
1 - 250 mL HDPE	6°C, ZnOAc/l			
1 - 250 mL Amber WELL PURGING DATA	6°C	DOC (9060A)		
WELLI ORGING DATA		Well De	epth (ft BTOC)	41.30
Date	5-20-21		ater (ft BTOC)	13,22
Time Started	<u>815</u>		Column Length	28.08
Time Completed PID Measurements	420		Volume (per ft) Marter in Well (L) Marter	7-47-0.62
Background	ND			1.3 1t.4 1A
Breathing Zone	NI		m to Purge (L)	
Well Head	NI)	A	ctual Purge (L) 32	5-
Purge Water	$N_{\mathcal{V}}$			
FIELD MEASUREMENTS				
Time Amount	pH Temperature	•	Redox Turbidity	,
Purged (L)	(Celsius)	(mS/cm) Oxygen (mg/L)	(mV) (NTU)	(ft BTOC) (L/min)
81520 2.5	6.27 16.3	0.84 0.37	242.5 3.10	13.22 500
825 5,0	6,29 16,85	0,84 0.41	\$6 236.3 5,58	11 11
830 7.5	6.35 16.88		225.3 4.08 218.1 4.11	<u> </u>
835 1D 840 12.5	6.36 16.96	0.82 0.42	251.4 3.89	11 11
845 15	6,35 17.26	0.82 0.43	308,2 3,29	ii ii
850 17.5	6.35 17.40	0.80 0.43	259.1 2.96	11 11
855 20	6.35 17.46	0.80 0.42	240.0 3.31	11 11
900 22.5	6.34 17.61	0,79 0,42	229.0 2.65	11 11
905 25	6.35 17.66	0,79 0,40	213,7 2.35	11 11
910 77.5	6,35 17.61	0,78 0,40	206.6 2.00	
920 32.5	34 6.38 17.54	0.78 0.39	204.1 2.03	
FIELD EQUIPMENT AND				***************************************
Water Level Probe	Model Heron	Calibration		
Water Quality Meter	Aqua TROLL 500 w/ flow the		st Calibrated Length dibration Verification also	Talibrated Weekly
		oughton throught of		
GENERAL COMMENTS Ferrous Iron = 0.04		tulb neter -	- Calib. da	ily
Multi-Parameter Probe Unit #	ng/L			
Field Parameters Measured in				
Pump Placement Depth = 3 (
Pump Rate = 500 m	I faicu		· · · · · · · · · · · · · · · · · · ·	/ 2020 or Q5 / Avg in Bold)
Well Diameter = 2" Screen Interval = 28-38		ORP DO	-25.1 174.2 0.05 1.63	-25.1 59.8 0.05 0.50
50150H HIGHTHI - 40-50		PH	6.00 6.51	0.05 0.50 6.51 6.25
		Cond.	0.550 1.020	0.891 0.772

GENERAL INFORMATION

SITE NAME		СН	AAP	·	PROJECT NO.		605	65355	
SAMPLE NO.		G008	2-21A		WELL NO.			0082	
DATE/TIME (SAMPLE ME		5-20-2 PRO-A	21 / 10 CTIVE SS MO	40 NSOON	PERSONNEL	P. I.	=, k ,	M	
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REC	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.	N	7		
SAMPLE CO	NTAINERS, P	RESERVATIV	VES, ANALYS	IS					
Sample Contai 2 - 500 mL An 3 - 40 mL VO 1 - 500 mL HI	nber A DPE		Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄			MNX (8330A) 175) NH ₃ (350.1), NO)	
1 - 250 mL HE			6°C			Alkalinity (232()B)		
1 - 250 mL HI			6°C, ZnOAc/N	аОН	Sulfide (9034)				
1 - 250 mL An	·····		6°C		DOC (9060A)				·
Date Time Started Time Complete PID Measurem Background Breathing Z Well Head Purge Water	ed n <u>ents</u> l one		-21 55 40 VD VD		Depth to W Water (Well Casing V Volume of Wa Casing Vo Minimu	epth (ft BTOC) Tater (ft BTOC) Column Length Volume (per ft) ter in Well (L) dumes to Purge um to Purge (L) ctual Purge (L)	Æ	41.01 13.92 27.08 2.06 16.8 NA 20 20 22.5	
FIELD MEAS Time	SUREMENTS Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (Limin) KA
1000	2.5	6:15	16.01	,877	0,28	47,9	3.91	13-92	500
1005	5,0	10.15	16.16	,872	0,25	56.2	5.20	17,14	11
1010	7.5	6.17	16.20	1868	0.22	65.2	4.61	11	/1
1015	10	6.20	14.17	.866	12.19	74.1	3.34	10	(1
1020	12.5	6.22	16.36	,865	0.17	82.3	2,70	C!	<i>ħ</i> 1
1025	15	6.22	16.45	,864	0,15	89.8	2.56	11	()
1030	17.5	6.23	16.52	,865	0.14	96.5	1.82	11	1/
1035	20	6.23	16.58	,860	0.13	102,5	1.76	11	11
1040	22.5	6.24	16,75	,860	0.13	105.6	1.61	il	11
`							<u> </u>		·
		A							
		M							
					l i				
Water Level Pr Water Quality	obe	CALIBRATIO <u>Model</u> Heron Aqua TROLL 5		ough cell		st Calibrated L alibration Verifi		librated Weekly	
GENERAL C	OMMENTS	LA	motte To	alb me	ter -	colib .	~ ail.		
Ferrous Iron =	_	ng/L			•	· · · · · · · · · · · · · · · · · ·	-""		
Multi-Paramete	er Probe Unit #				,				
	·····	Flow-Through (Cell						
Pump Placeme	nt Depth = 3,	6 ft							***************************************
Pump Rate =		limia			Historic (7	7-year average l	ow and high / 2	2020 or Q5 / Ave	in Bold)
Well Diameter	= 2"				ORP	-21.0	164.0	-21.0	59.2
Screen Interval	= 28-38				DO	0.06	1.40	0.13	0.39
					PH	6.21	6.62	6.62	6.37

Cond.

0.488

0.858

0.790

0.706

SITE NAME		СН	AAP		PROJECT NO. 60565355				
SAMPLE NO.		G008	6-21A		WELL NO.		G	0086	
DATE/TIME COLLI SAMPLE METHOD		PRO-A	5-21 CTIVE SS MO		@ 1405 PERSONNEL		Jo GC		
SAMPLE MEDIA: SAMPLE QA SPLIT SAMPLE QC DUPL MS/MSD REQUEST	ICATE:	Groundwater YES YES YES	NO NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.		NA NA		
					O/MIN DE NO.				
SAMPLE CONTAI Sample Container 2 - 500 mL Amber 3 - 40 mL VOA 1 - 500 mL HDPE 1 - 250 mL HDPE 1 - 250 mL Amber		RESERVATI	VES, ANALYS Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/N 6°C		Analysis Reque Explosives + M Methane (RSK TKN (351.2), 1 SO ₄ (9056A), 7 Sulfide (9034) DOC (9060A)	1NX (8330A) 175) NH ₃ (350.1), NO)	
Date Time Started Time Completed PID Measurements Background Breathing Zone Well Head Purge Water		5-25-21	1325 1405 NO NO NO NO		Depth to W Water (Well Casing V Volume of Wa Casing Vo Minimu	epth (ft BTOC) ater (ft BTOC) Column Length Volume (per ft) ter in Well (L) lumes to Purge m to Purge (L) ctual Purge (L)		40.30 11.9 8 28.32 0.62 17.56 NA 20	
	MENTS mount ged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1330 2 1335 5 1340 7 1345 (0 1350 12 1355 15 1460 17		6.35 6.54 6.57 6.57 6.62 6.66	14.08 14.03 14.13 14.37 14.37 14.42 14.36	0.989 0.985 0.981 0.980 0.978 0.974 0.971	0.14 0.13 0.12 0.12 0.13 0.13 0.13	196.1 194.7 192.1 192.1 188.8 186.4	0.00 0.00 0.06 0.06 0.21 0.38	10.93 10.93 10.93 10.93 10.93 10.93 10.93	0.5
Water Level Probe Water Quality Meter		<u>Model</u> Heron	ON 500 w/ flow thre	ough cell	Calibration Checked Again Twice Daily Ca			librated Weekly	
GENERAL COMM Ferrous Iron = (), (Multi-Parameter Prot Field Parameters Mea Pump Placement Dep Pump Rate = ().	$ \begin{array}{ccc} 0 & n \\ \text{oe Unit #} \\ \text{asured in 1} \\ \text{oth = } 3 \end{array} $				Historic (Lyon average	ow and high /	2020 or Q5 / Avg	in Pold
Well Diameter = 2"		-// <u>/</u> ///			ORP (7	12.2	193.8	70.7	103.8
Screen Interval = 28-	38				DO PH Cond.	0.05 6.43 0.585	1.14 7.03 0.923	0.06 6.92 0.808	0.42 6.80 0.764

SITE NAME		СНААР			PROJECT NO.		60565355			
SAMPLE NO		G0087-21A WELL NO. G0087		0087						
DATE/TIME (SAMPLE ME					PERSONNEL		TO GC			
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REC	SPLIT: DUPLICATE:	YES YES	NO NO	DUPLICATE	E SAMPLE NO.		NA NA NA			
SAMPLE CO	NTAINERS, P	RESERVATI	VES, ANALYS	SIS	***************************************					
Sample Contains 2 - 500 mL Ar 3 - 40 mL VO 1 - 500 mL HI 1 - 250 mL HI	nber A DPE		6°C 6°C, HCl 6°C, H ₂ SO ₄		Explosives + Methane (RSK TKN (351.2),	MNX (8330A) (175) NH ₃ (350.1), NC)		
1 - 250 mL HI				IaOH			16)			
1 - 250 mL Ar				14011						
WELL PURC	ING DATA		***************************************		***************************************					
Date Time Started Time Complet PID Measurem Background Breathing Z Well Head Purge Water	one	5.	ND ND ND		Depth to W Water (Well Casing Y Volume of Wa Casing Vo	Vater (ft BTOC) Column Length Volume (per ft) atter in Well (L) olumes to Purge am to Purge (L)		11.34 26.22 0.62 16.26 NA 20		
FIELD MEAS	SUREMENTS		***************************************							
Time	Amount Purged (L)	pН	•	•			•	Depth to Water (ft BTOC)	Purge Rate (L/min)	
1210 1215 1225 1235 1235 1245	2,5 5.0 7,5 10.0 12.5 15.0 17.5 20.0	6,50 6,51 6,52 6,55 6,56 6,59	3,72 3,41 3,79	0.788 0.782 0.781 0.781 0.778 0.778 0.778 0.774	0,27 0,27 0,26 0,26 0,25	98.4 103.0 105.8 110.4 111.5	0.00 0.00 0.22 0.06 0.00	11.30 11.30 11.30	0.5	
			70							
FIELD EQUI Water Level Pr Water Quality	obe	<u>Model</u> Heron		ough cell	Checked Again	****		librated Weekly		
GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Pump Placeme	O.OO n er Probe Unit # rs Measured in	64330) <i>5</i> Cell							
Pump Rate =	······································	Min				7-year average lo	ow and high /	202 <u>0 or Q5 / Avg</u>	in Bold)	
Well Diameter					ORP	14.3	164.9	100.1	90.5	
Screen Interval	= 25-35				DO PH	0.05	0.80	0.05	0.29	
					Cond.	6.44 0.551	7.03 0.851	6.82 0.731	6.75 0.710	

SITE NAME	СНА	AP		PROJECT NO.		605	65355	
SAMPLE NO.	G0091	-21A		WELL NO.		G	0091	
DATE/TIME COLLECTED	5-24-	210	1330	PERSONNEL		T (3	
SAMPLE METHOD		TIVE SS MO	NSOON			(2)	<u></u>	
SAMPLE MEDIA:	Groundwater						_	
SAMPLE QA SPLIT:	YES	NO		Γ SAMPLE NO.		<u> </u>	<u> </u>	
SAMPLE QC DUPLICATE: MS/MSD REQUESTED	YES YES	NO NO		E SAMPLE NO. D SAMPLE NO.			A A	
	E .						1	
SAMPLE CONTAINERS, I Sample Container		ES, ANALYS Preservative	is	Analysis Requ	ested			
2 - 500 mL Amber	6	§°C		Explosives + N	4NX (8330A)			
3 - 40 mL VOA 1 - 500 mL HDPE		°C, HCI		Methane (RSK				
1 - 250 mL HDPE		5°C, H₂S0₄ 5°C		TKN (351.2), 1 SO ₄ (9056A), 2)	
1 - 250 mL HDPE		o°C, ZnOAc/N	аОН	Sulfide (9034)				-,
I - 250 mL Amber	6	i,C		DOC (9060A)				
WELL PURGING DATA				Wall D.	(b (& DTOC)		21.05	
Date	5-	24-2	1	Depth to W	epth (ft BTOC) ater (ft BTOC)		31.85	
Time Started		1250	Į	Water (Column Length		20,33	
Time Completed		1330			Volume (per ft)		0.63	
PID Measurements Background		M/D		Volume of Wa	iter in Well (L) llumes to Purge		12,60	<u> </u>
Breathing Zone		ЙĎ					20	
Well Head		ND			ctual Purge (L)		20	
Purge Water		_N D	····					
FIELD MEASUREMENTS			***************************************					
Time Amount Purged (L)	рΗ	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1366 36	6.84	12.50	1 73 3	h Ca			11.65	
1255 2.5	7.6 2.70	13,29 13,59	1,232	4,85	75 (0,00	11.53	0.5
1305 7.5	6 87	13.66	1.21 d	4 74	78.3	0.68	11.52	
1310 10.0	6.89	13.63	1.215	4.78	79.9	0.60	11.52	
1315 13.5	6.91	13.56	1,210	4.80	85.2	0.00	11,5a	
1320 15.0	6.92	13.43	1.204	4.77	88.2	0.00	11.52	
1325 17.5	6.92	13.60	1.197	4.73	93,3	0.00	11.52	
1330 20.0	6.42	13,83	1.195	7.74	74,2	0.00	111.7 %	~

		70						
FIELD EQUIPMENT AND	CALIBRATION	J						***************************************
Water Level Probe	Model Heron			<u>Calibration</u>				
Water Quality Meter	Aqua TROLL 50	00 w/ flow thro	ough cell	Checked Again Twice Daily Ca			librated Weekly	
-								
GENERAL COMMENTS Ferrous Iron = 0.02 r	ma/I			Vs.	ed -	(~ M -	+400	+ 0 N F
Multi-Parameter Probe Unit #		5		turbidit		LINGS.	tte me	· C/ FOI
Field Parameters Measured in				1 (V' 4) 1	1	y ч I		
Pump Placement Depth = 2	.5 ft							
Pump Rate = 0.5 L Well Diameter = 2"	/min			Historic (* ORP	7-year average 27,4	low and high / : 196.8	2020 or Q5 / Avg	
Screen Interval = 20-30				DO	2.11	6.99	5.53	4.27
				PH	6.65	7.29	6.93	6.93
				Cond.	0.973	1.362	1.170	1.211

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO.		G009)2-21A		WELL NO.		G	0092	
DATE/TIME (5-24 PRO-4	} - 2 @ CTIVE SS MO		PERSONNEL				
SAMPLE ME		Groundwater		NSOON	_				
SAMPLE MEI		YES	NO	SPLT	Γ SAMPLE NO.		NA		
SAMPLE QC		YES	NO		E SAMPLE NO.		NA		
MS/MSD REC	QUESTED	YES	NO	MS/MSI	O SAMPLE NO.		_NA		
		PRESERVATI		SIS		_	***************************************		
Sample Contai 2 - 500 mL An			Preservative 6°C		Analysis Reque Explosives + M				
3 - 40 mL VO			6°C, HCI		Methane (RSK				
1 - 500 mL HE			6°C, H ₂ SO ₄		TKN (351.2), N		O ₂ /NO ₃ (353.2))	
1 - 250 mL HD	PE		6°C		SO ₄ (9056A), A				
1 - 250 mL HD			6°C, ZnOAc/N	laOH	Sulfide (9034)	***************************************			
1 - 250 mL An			6°C		DOC (9060A)				
WELL PURG	ING DATA								
Date		5.	74-71		Well De	epth (ft BTOC)		52.78	
Time Started			1360			ater (ft BTOC) Column Length		11.70	
Time Complete	ed		1330			/olumn Length		41.08	
PID Measurem			1730		Volume of Wat			25,47	
Background			ND			lumes to Purge		NA	
Breathing Zo			'N'D			m to Purge (L)		<u> </u>	
Well Head			VĎ		THE STATE OF THE S	ctual Purge (L)		30	
Purge Water			ND	·····	_	<u> </u>		~ ~ ~ ~ ~ ~ ~	

FIELD MEAS			_						
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1355	2.5	7.16	13.43	1.097	0.25	19.7	0.95	11.67	0.5
1400	5.0	7.17	13.30	1.096	0.18	18.3	0.05	11 66	i
1405	7.5	7.21	13.87	1.077	0.08	14 0	0.00	11. 58	
1410	10.0	7. 22	13.86	1.070	0.08	4.5	0.10	11.50	
1415	12.5	7. 23	14:17	.063	0.08	14.5	0.60	11.71	
1420	5.0	7.23	14.35	1.060	0.07	15.2	0.00	11, 70	
1425	17.5	7.23	14,67	1.050	0.07	15.7	7.27	1170	
1430	20.0	7 53	14.38	1.056	0.06	15.0	0.00	11.70	$\neg \downarrow$
11.70		1.00.2	11.70	11001	0.00	13.0	0.00	11.70	
			<u> </u>						
		<i>J</i> '							
FIELD EQUI	DMENT AND	CALIBDATIC	NAI						
riedo egon	I WENT AND	Model	,14		Calibration				
Water Level Pr	obe	Heron			Checked Again:	st Calibrated Le	ength		
Water Quality	Meter	Aqua TROLL :	500 w/ flow thre	ough cell				librated Weekly	
GENERAL CO		tī			17 c-	1	1 - 11 - 1-1		<u> </u>
Ferrous Iron =		ng/L <u> </u>	-		vseg	<u> </u>	- a M a L t	e mete	rtdr
Multi-Paramete					Turo/d	ity re	ading s	·	
Pump Placemen			UII						
Pump Rate =		L/MIN			Historic (7	-vear average b	ow and high /	2020 or Q5 / Avg	in Rold)
Well Diameter	= 2"	~/ <i>"\//\</i>			ORP THISIOTIC (7	14.7	122.9	43.8	72.8
Screen Interval					DO	0.04	0.74	0.04	0.30
					PH	7.06	7,54	7.28	7.26
					Cond.	0.940	1.297	1.297	1.210
								·	

SITE NAME		СН	AAP		PROJECT NO.		605	665355	
SAMPLE NO.		PZ01'	7R-21A		WELL NO.		PZ	017R	
DATE/TIME O		5-26 PRO-A	-21/08 CTIVE SS MO	75 45 NSOON	PERSONNEL				
SAMPLE MEI	DIA:	Groundwater	•						
SAMPLE QA		YES	NO	SPLI	Γ SAMPLE NO.		NI	9-	
SAMPLE QC I			NO		E SAMPLE NO.			21-21A (80c	少)
MS/MSD REQ	DUESTED	YES	NO	MS/MSI	O SAMPLE NO.		NA	.	
		PRESERVATI	VES, ANALYS	SIS		***************************************		***************************************	
Sample Contain 2 - 500 mL Am			Preservative		Analysis Reque				
3 - 40 mL VO			6°C 6°C, HCl		Explosives + M Methane (RSK				
1 - 500 mL HD		·······	6°C, H ₂ SO ₄	-	TKN (351.2), 1	NH ₃ (350.1), NO)	
I - 250 mL HD			6°C		SO ₄ (9056A), A		0B)		
1 - 250 mL HD 1 - 250 mL Am			6°C, ZnOAc/N	laOH	Sulfide (9034)				
WELL PURG			0-C		DOC (9060A)	· · · · · · · · · · · · · · · · · · ·			
WEELTONG	ING DATA				Well De	pth (ft. BTOC)		32.42	
Date		5	26-21 745			ater (ft. BTOC)		9.73	
Time Started		<u></u>	745			Column Length		22.69	
Time Complete PID Measurem		0	845			Volume (per ft)		0.62	
Background		,	UD		Volume of Wa	ter in Well (L) lumes to Purge		14.07 NA	
Breathing Zo			VI)			m to Purge (L)		20	
Well Head			N I)		mm .	ctual Purge (L)		30	
Purge Water			<u>ND</u>		•		•		
FIELD MEAS	UREMENTS						***************************************		·····
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (14min): KD m/mm
0750	2.5	6.30	11.57	0.88	0.11	201.8	1.49	9,74	500
0755	5.0	10.06	11.56	0.90	0.07	210.7	0,90	9,74	11
0800	7.5	6.01	11.61	0.90	0.06	207.3	1.22	11	ŧ l
0805	<u> 1D</u>	6,04	11.65	0.91	6.05	200.8	1,08	11	17
0810	12,5	6.12	11.68	090	0.04	190.5	0.81	tl	(1
0815	17.5	6:14	11.82	0:91	0.04	1809	0.76	11	
0825	20	6.19	11.94	0.91	12.04	174,3	0,61	()	11
N2 2/2	22.5	6.19	12.11	0.91	0.04	161,9	0,54	(1	11
0835	250	6.19	11,90	0:91	0.03	155,2	0.54	11	()
0940	27,5	6:18	12.10	0.91	0.03	149.4	0,57	11	61
08 45	<u> 30</u>	10,17	12.16	0.91	0.03	144,5	0188	l l	(1
FIELD FOUN	DATES IT A SITS	CALIDDATIC	NAT.			······································			
FIELD EQUI	MENT AND	Model	JN		Calibration				
Water Level Pro	obe	Heron			Checked Again	st Calibrated L	ength		
Water Quality I	Meter		500 w/ flow thre		Twice Daily Ca	llibration Verifi		librated Weekly	
GENERAL CO	AMMENTS.	LA MOTTO	= Turb	netar-	ya DA (
Ferrous Iron = 2		mg/L			•				
Multi-Paramete	-								
		Flow-Through	Cell						
Pump Placemer									
Pump Rate = 2 Well Diameter =		/min						2020 or Q5 / Avg	
Screen Interval					ORP DO	6.8 0.01	202.6 5.92	6.8 0.01	3.16
					PH	6.07	6.90	6.38	6.36
					Cond.	0.628	0.902	0.902	0.775

SITE NAME		СНА	AAP		PROJECT NO.		605	65355	
SAMPLE NO).	PZ018	3-21A		WELL NO.		P	Z018	
DATE/TIME	COLLECTED	5-2 <i>5</i> -	210	1525	PERSONNEL	\mathcal{J}_{ℓ}			
SAMPLE ME	ETHOD		CTIVE SS MC			フ(2		
SAMPLE ME	EDIA:	Groundwater							
SAMPLE QA		YES	NO		T SAMPLE NO.	\mathcal{N}	4		
-	DUPLICATE:	YES	NO	4	E SAMPLE NO.	N A	7		
MS/MSD RE	QUESTED	YES	NO	MS/MSI	O SAMPLE NO.	<i>N A</i>			
		PRESERVATIV	-	SIS			· · · · · · · · · · · · · · · · · · ·		
Sample Conta 2 - 500 mL A			<u>Preservative</u> 6°C		Analysis Reque Explosives + N				
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL H		······	6°C, H ₂ SO ₄		TKN (351.2), 1		D ₂ /NO ₂ (353.2))	
1 - 250 mL H	DPE		6°C		SO ₄ (9056A),				
1 - 250 mL HI	DPE		6°C, ZnOAc/N	laOH	Sulfide (9034)				
1 - 250 mL A	mber		6°C		DOC (9060A)				
WELL PURC	GING DATA				•				
Date		5-	25-21		Well De	pth (ft. BTOC)		31.90	
Date Time Started			<u>~// - ペ </u>			ater (ft. BTOC)		11.24	
Time Complet	tad		7 7 7 5 7 5			Column Length Volume (per ft)		30.66	
PID Measuren			242			ter in Well (L)		150. Pa	
Background		M	D			lumes to Purge		14,01	
Breathing Z		/ <u>\</u>	К —			m to Purge (L)		a D	
Well Head		Ň	Ъ			ctual Purge (L)		20	
Purge Wate	r	- / <u>·</u>	7)					<u> </u>	
					-	***************************************			
	SUREMENTS	**	.		D: 1 1				
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity		Redox	Turbidity	Depth to Water	Purge Rate
	ruigeu (L)		(Ceisius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
1450	2,5	5 80	14.25	0.854	(1)	469	0.00	11.23	0.5
1455	5.0	5.81	14.36	0.858	10.18	42.5	0.45	1134	
1500	7.3	5.85	14.27	N 072	0.04	3ેરે.ેર્ડ	0.00	11/35	
1505	10.0	5 88	14.23	0.868	0.07	<u> 28.3</u>	000	11.50	
1510	12.5	5.49	14.86	0.873	0.12	<u> వైగే. వ</u>	778	1.25	
1515	15.0	5 94	14.88	1 275	0.08	15.9	0.00		
1520	17.5	5'05	14 50	0.872	0.62	17 -	0,92	11.26	
1525	20.0	5 96	14.65	0.870	V.01	13.5	7'38	11.26	$\neg \downarrow \neg$
	40.0	21 10	1,402	<u>U.B.10</u>	V. O 1	1100	0.70	11046	
			20_						
EIELD EOLU	IDMARNITE AND	CALIBRATIO	NT						
rield EQUI	a ment and	Model	.3		Calibration				
Water Level P	robe	Heron			Checked Again	st Calibrated L	ength		
Water Quality		Aqua TROLL 5	00 w/ flow thr	ough cell				librated Weekly	
GENERAL C		a.			+1.	co 1	}	—— خاما	0100
Ferrous Iron =	6,3 r ter Probe Unit #	ng/L 64330	<u></u>			ca a	<u>La IV</u>	LOTTE W	eter
		Flow-Through C			for	TW biait	y ite	cangs	
Pump Placeme		flow-Inrough C	-CII						
Pump Rate =	() S	1./2 12			Historia C	I-vear average 1	ow and high /	2020 or Q5 / Avg	in Rold)
Well Diameter		-/ Mill			ORP	-9.9	187.6	-9.9	125.8
Screen Interva					DO	0.33	9.26	0.36	3.88
			***************************************		PH	5.52	6.57	6.28	6.23
					Cond.	0.520	0.822	0.713	0.637

GENERALI	INFORMATIO	14							
SITE NAME		СН	IAAP		PROJECT NO.		605	65355	
SAMPLE NO).	PZ01	19-21A		WELL NO.		PZ	Z019	
DATE/TIME	COLLECTED	5-24	-21 (a)	1550	PERSONNEL		て へ		
SAMPLE ME			CTIVE SS MC		_ FERSONNEL		7-0		
SAMPLE ME	STHOD	PRO-A	CIVE 35 MC	JNSOON			$\underline{}$		
SAMPLE ME	EDIA:	Groundwater	r						
SAMPLE QA	SPLIT:	YES	NO	S PLI	Γ SAMPLE NO.		ΛA		
SAMPLE OC	DUPLICATE:	YES	NO	DUPLICATI	E SAMPLE NO.		/\/\a`		
MS/MSD RE		YES	NO		O SAMPLE NO.		PZ019-21	A MS/MSD	
-					-				
SAMPLE CO	ONTAINERS, I	RESERVATI	VES, ANALY	SIS					
Sample Conta	ainer		<u>Preservative</u>		Analysis Reque	ested			
2 - 500 mL A	mber		6°C		Explosives + M	INX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSK				
1 - 500 mL H			6°C, H ₂ S0 ₄		TKN (351.2), N)	
1 - 250 mL H			6°C	***************************************	SO ₄ (9056A), A	Alkalinity (232)	0B)		
1 - 250 mL H			6°C, ZnOAc/ì	NaOH	Sulfide (9034)				
I - 250 mL A			6°C		DOC (9060A)	·····			
WELL PURG	GING DATA								
		5	י אי	1		oth (ft. BTOC)		32.23	
Date			<u>-23-2</u>	<u> </u>	·	ter (ft. BTOC)		15.37	
Time Started			13 15 V	1510		Column Length		16,86	
Time Complet			0 20			olume (per ft)		0.62	
PID Measurer			d N		Volume of Wat			10:45	
Background			<u>N. R</u>			umes to Purge		<u> </u>	
Breathing 2			ND			m to Purge (L)		30	
Well Head			ND		Ac	ctual Purge (L)		30	
Purge Wate	er .		עא						
FIELD MEA	SUREMENTS		·····	***************************************					
Time	Amount	рН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Depth to Water	Purge Rate
	Purged (L)		(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	(L/min)
1515			,	, ,	,, ,	` ,	(, , _ ,	(/	(,
15200	i 2,5	6.14	13 05	0.723	9.34	119.5	0.00	15.35	0.5
1520	5.0	6.15	13.75	0.721	9.06	126.0	0,00	15.38	1
1525	7.5	6.16	3 05	0.721	8.67	135.5	0.00	15.38	
1530	10.0	<u> </u>	13.44	0.718	8.51	140.4	0.00	15.37	
15 35	13.5	6.24 6.29	13.10	0.716	8,45	143.2	0.00	15.37	
1540	15.0	-	13,24	0.712	8.42	145.1			
1545	17.5	6.33		0,711	8.41		Q. Q.Q	15.37	
1550		6.39	13.37			145.6	<u>0.00</u>	15.37	$\overline{}$
1230	₹0. <i>0</i>	6,39	13.35	0.709	8.36	145.8	0.00	15.37	· v
		<u> </u>							
		1	(3						
			10						
	<u> </u>								
FIELD EQUI	IPMENT AND		ON						
		<u>Model</u>			Calibration				
Water Level P		Heron			Checked Agains				
Water Quality	Meter	Aqua TROLL	500 w/ flow thr	ough cell	Twice Daily Ca	libration Verif	ication also Ca	librated Weekly	·····
GENERAL C	COMMENTE					· · · · · · · · · · · · · · · · · · ·			
Ferrous Iron =					Um	1 - 1	MLLA	a maka	$\mathcal{L}_{\mathcal{L}_{\mathbf{r}}}$
	ter Probe Unit #	ng/L 64330	15		77,46	<u> </u>	-almol 1	e mete	<u>' 7 g f</u>
	ers Measured in	Flow Through	Cell		twoid	ity re	adings.		
Pump Placeme			Cell						
Pump Rate =	$\frac{\text{cnt Depth} = \infty}{2}$				Historia (7	Manu allows a - 1	our and high 1	1020 or OF / A	in Polat
Well Diameter		L/min			ORP	-year average i	287.2	2020 or Q5 / Ave 162.2	
Screen Interva					DO	6.44	10.83	7.35	134.6 8.67
SELECT IIICI YA	10-20)	0.44	10.03	1.55	0.07
		**			PH	5.02	6.40	632	616
					PH Cond.	5.92 0.377	6.49 0.663	6.32 0.663	6.16 0.533

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO.		PZ02	0-21A		WELL NO.		PZ	Z020	
DATE/TIME O		5-26 PRO-A	-21 @ CTIVE SS MO		_ PERSONNEL	J. J. G. (
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	SAMPLE NO. SAMPLE NO. SAMPLE NO.		N A N A N A		
SAMPLE CO	NTAINERS, P	RESERVATI	VES, ANALYS	TS			W****		
Sample Contai 2 - 500 mL An 3 - 40 mL VO, 1 - 500 mL HE 1 - 250 mL HE 1 - 250 mL HE	ner Aber DPE DPE	KESEKVATI	Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/N			MNX (8330A) (175) NH ₃ (350.1), NO Alkalinity (2320)	
1 - 250 mL An			6°C		DOC (9060A)				
Date Time Started Time Complete PID Measurem Background Breathing Z Well Head Purge Water	ed e <u>ents</u> one	5-	-26-21 1100 1140 ND ND ND		Depth to Water G Water G Well Casing Yolume of Wa Casing Vo Minimu	epth (ft. BTOC) ater (ft. BTOC) Column Length Volume (per ft) ater in Well (L) olumes to Purge um to Purge (L) actual Purge (L)		32.33 18.33 0.62 11.36 NA 20 20	4.00
Time	Amount Purged (L)	рН 6.71	Temperature (Celsius)		Dissolved Oxygen (mg/L)		Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1105 1110 1115 1120 1125 1130 1135	2,5 5.0 7,5 10,0 12.5 15.0 17.5 20.0	6.73 6.73 6.79 6.82 6.85 6.88 6.89	12.68 12.68 12.74 12.66 12.64 12.76 12.76	1.006 1.005 0.999 1.002 1.000 1.000 1.007	3.10 3.08 2.93 2.86 2.83 2.79 2.77 2.77	57. 9 69.1 77.2 80. 7 83. 7 88. 1 89. 4 92. 8	0.00 0.00 0.60 0.00 0.00 0.00	13,91 13,93 13,93 13,93 13,93 13,93 13,93	0.5
			0 0						
Water Level Pr Water Quality GENERAL C Ferrous Iron =	obe Meter OMMENTS	Model Heron Aqua TROLL	500 w/ flow thro	ough cell		nst Calibrated Lalibration Verifi		librated Weekly	
Multi-Paramete Field Paramete									
Pump Placeme		a 11							
Pump Rate = Well Diameter	0.5	L/min						2020 or Q5 / Avg	
Screen Interval					ORP DO	1.73	166.3 7.07	2.65	105.6 3.70
					PH	6.54	6.87	6.87	6.73
					Cond.	0.796	1.350	0.916	1.054

Project: CHAAP OUI	RAO Per	formance I	Aonitoring (Well No:	EWT	-PM 2	14
Project No: 60565355 Develo, Method Peristaltic pur	mn and tub	ving.				•	Date: Samplers:	6-5	-21 V	<u> </u>
Develo, Method 1 chistanie pa	mp and tue	nng	WE	LL MEAS	UREME	NTS	Samplers.		<u> </u>	/
	***			,	11	<u></u>				
	Well	inside dias Screen l	neter (in): ength (ft):		•					
		well cash	g (ft bgs):	30						
		l water lev Casing Sti			<i>(</i>					
Flu	iid well ca			3.1	U					
		Weather o	onditions:							
DISCHARGE			SAMI	LING MI	EASUREN	<u>MENT</u>				
Time	1420	1425	1430	1435	1440		1450	1455	1500	
Water level (ft. bgs)	10.65	10.72	10.72	60.20	10.69	10.63	10.65	10.70	10,68	
Pump Placement Depth (ft bgs)	29	29	29	25	21	21	25	25	25	
Discharge (Liters)	5	10	15	20	25	30	35	40	45	
WATER QUALITY DATA										
pH	6.46	6.49	6.37	6.23	6.18	6.17	6.19	6.23	6.24	
Temperature (°C)	14.03	14.08	14.05	13.91	14.09	13.94	14.07	14.05	13.99	
Conductivity (mS/cm)	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1,14	1.14	
Dissolved Oxygen (mg/L)	6.05			0.02		0.02	0.01		0.01	
Redox (ORP) (mV)	1. 2			-23.5		-15.8	l*		35.8	12.8
Turbidity (NTUs) initial/end	U46,	25.1	25.12.2	12.2/5		15,821	1/3,90	19,2	15.6 K	
Color	Clear	Clar	den	clem	Class	Clear	Clear	Cleron	clear	
Odor	Nove	Done	you	Now	Nove	Now	None	pone	NOVE	
	45						ng volumes	removed:	14.5	7
Method of disposal of discharge	d water:			tank at G			is)			
				ALITY A	SSURAN	<u>CE</u>				
Water Level I Water Quality			Horiba	DLL 500 w.	/ flow thro	ugh call	<u>~</u>	Calibrated Calibrated		<u> </u>
Comments:			~~ MD		-	ue ter		Canbrated	· .	- U
15116	120	30-	10.61=	19.39 X	16 = 3,1,	D X 10	= 31.0	+ (3,79 X	(3)= 4	1237

Project: CHAAP OU	1 RAO Per	formance l	Monitoring				Well No:	EW7	- PM 2	44
Project No: 60565355		•				-	Date:	6-5	-21	
Develo. Method Peristaltic pu	mp and tut	oing					Samplers:	<u>K.E.</u>	, KD	
			WE	LL MEAS		<u>NTS</u>				
	Well		meter (in):		1"			100011		-
	Depth of		length (ft): ng (ft bgs):	30	5'					-
			el (ft bgs):							•
****			ick-up (ft):							-
ři.	uid well ca		ne (Liters): conditions:			, <u>, , , , , , , , , , , , , , , , , , ,</u>				•
		Weather C		PLING MI						-
DISCHARGE			SAWI	LING WI	EASURE	ALEIN I				
Time	1256	1255	1300	1305	1310	1315	1320	1325	1330	
	12,0							1703	1770	
Water level (ft. bgs)	11.82	11,89	11.86	11.86	11.87	11.88	11.89	11.87	11.85	
Pump Placement Depth (ft bgs)	29	29	29	25	21	21	25	25	2.5	
Discharge (Liters)	5	16	15	20	25	30	35	46	45	
WATER QUALITY DATA										
Н	6.67	6.67	6.57	6.47	6.39	6.35	6.34	6.34	6.35	
Temperature (°C)	14.75	14.69	14,74	14.53	14.54	14,74	14.71	14,92	[4.75	
Conductivity (mS/cm)	1.28	1.28	1.29	1.28	1.27	1.28	1.29	1.27	1,27	
Dissolved Oxygen (mg/L)	11	0.01	0.01	0.01	0.01	0.01	0.61	0.01	0.01	
Redox (ORP) (mV)		1	1	_79,0	_{-75.7}	-75.0	75.3	-75,7	76.5	
Turbidity (NTUs) initial/end	63,2/3	37.7	72.4	12.8	11.7	7.11 26	6.2404	5.06	5.11,40	
Color	Clarr	Cleny	CLEAV	Clear	dem	Cleria	Clery	Clear	aem	Ct Me
Odor	Nom	hove	pone	pore	Nanc	pone	Nove	None	pore	
Total discharge: 45						Casir	ng volumes	removed:	15.	4
Method of disposal of discharge	ed water:		IDW polly	/ tank at G	WTF (pend					
			<u>QI</u>	JALITY A	SSURAN	<u>CE</u>				
Water Level	Indicator:		Horiba					Calibrated	l:	~
Water Quality	•			DLL 500 w				Calibrated	l:	V
Comments:	1.	(2 " "	Co MO			neter		CALI		V
Comments: User N Sol W	oter	(30-11	.73)* X·1	0-2,9	L X 10	= 29.2	+ 63.7	4 × 3)	= 40,	57

Project: CHAAP OU	l RAO Per	formance l	Monitoring	<u> </u>		_	Well No:	EW7-	PM25	-A
Project No: 60565355						-	Date:	6-4 BE,	1-21	
Develo. Method Peristaltic pu	mp and tul	bing				•	Samplers:	BE,	JO, 12	-P
	Wall	inside dia			<u>SUREMEI</u>	<u>NTS</u>				
		Screen	length (ft):	10'						
		f well casii il water lev			>					
		Casing Sti			•					
Fl	uid well ca	sing volun	ne (Liters):	130-6	.55) }	(116=	3.74			
		Weather o	conditions:			05				
DISCHARGE			SAMI	PLING M	EASUREN	<u>AENT</u>				
Time	810	815	820	825	830	835	840	845	850	855
Water level (ft. bgs)	6.78	6.82	6.82	6.82	6.83	6.82	6.83	6.84	6,83	6.83
Pump Placement Depth (ft bgs)	29	29	29	35	31	31	31	35	35	35
Discharge (Liters)	5	10	15	20	25	30	35	40	45	50
WATER QUALITY DATA										
pH	6.21	6.11	6.16	6.21	6.22	6.23	6.24	6.24	6.24	6.24
Temperature (°C)	13.42	13.40	13.45	13.56	13.63	13.71	13.79	13.89	13.97	1397
Conductivity (mS/cm)	1,58	1.59	1.58	1.56	1.57	1.56	1.56	1.56	1.55	1.55
Dissolved Oxygen (mg/L)	0.05	0.05	0.04	0.02	0.03	0.02	0.01	0.01	0.01	0.01
Redox (ORP) (mV)	-106.3	-96.7	-96.9	-96.1	-97.0	-99.2	-100.1	-99.6	-99.3	-160.0
Turbidity (NTUs) initial/end	DR Wass	1445	45.0	43.2	43.2	30.4.3	20.1	20.14.9	14.4.10	8.16
Color	Cloudy	Uem	Clem	Clem	Clear	clear	Clear	Clem	Clear	clear
Odor	None	None	Nove	None	None	Nove	Non	Nove	None	None
Total discharge: 50						Casir	ng volumes	removed:	13.30	<u>-</u>
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ling analys	is)	•		
			<u>OU</u>	ALITY A	SSURAN	<u>CE</u>				
Water Level I	ndicator:		Horiba					Calibrated	:	$\sqrt{}$
Water Quality					/ flow thro			Calibrated		-V
Comments:		- (2.5			ush K		- /-	CA 1	- // ^	<u> </u>
			6,58)X. 1941 H		4 X 10	= 37.4	U + (3,1	19×8)	= 48,	+ + <u>L</u>
		5,500	'7" H	20						

Project: CHAAP OU	RAO Per	formance	Monitoring	;		•	Well No:	EW7-	PM2:	<u> </u>
Project No: 60565355 Develo. Method Peristaltic pu	mn and tul	-in-	•			•		6-4		
Develo. Method <u>renstance pu</u>	шр ана тис	omg				-	Samplers:	ME	30, K	<u>υ</u>
			<u>WE</u>	LL MEA	SUREME	<u>NTS</u>				
	Well		meter (in):		"					
	Denth of		length (ft): ag (ft bgs):							-
			el (ft bgs):		5-					-
			ick-up (ft):			··-				•
Fl	uid well ca		ne (Liters):			6 = 5.	33			•
		Weather of	conditions:	Clem	803					=
DISCHARGE			SAMI	PLING M	EASUREN	<u>AENT</u>				
					• _		T		<u> </u>	
Time	940	945	950	955	1005	1015	1025	1035	1045	1055
Water level (ft. bgs)	6,75	4.75	6.31	6.73	6.70	6.71	6.68	6.64	6.68	6.67
Pump Placement Depth (ft bgs)	39	39	39	35	31	3)	31	35	35	35
Discharge (Liters)	5	10	15	20	30	40	50	60	. 30	80
WATER QUALITY DATA					M					
рН	6.64	6.55	644	6.37	6.33	6.33	6.33	6.33	6,34	6.35
Temperature (°C)	14,49	14.52	14.50	14,58	14.66	14,93	15.12	15.13	15.30	15.39
Conductivity (mS/cm)	1.25	1.24	1.23	1,23	1.23	1.22	1.21	1.21	1.21	1.21
Dissolved Oxygen (mg/L)	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Redox (ORP) (mV)	-113.7	-112.0	-108.5	-106.3	-107.3	-109,0	-110.0	-111.8	-113.8	-115.9
Turbidity (NTUs) initial/end	42,0/3	2/17/41	8.41/2	6.62	5.99	5.52	4.19.04	4.04	3.74	3.85
Color	Char	cler	clear	Uck*	CIERY	Clear	clear	Clear	Clear	clexr
Odor	Now	Num	www	None	None	Non	None	None	None	pon
Total discharge: 70							ng volumes	removed:	13.13	3
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ling analys	is)			
			<u>OU</u>	JALITY A	SSURAN	<u>CE</u>				
Water Level 1	ndicator:		Horiba					Calibrated	[:	
Water Quality	Meters:				/ flow thro			Calibrated	l:	V
Comments:		(13.0) 6	65) · . 16		Vb me		12200	CAL	7 / 5 /	
			2 941		<u> </u>	/· // r	L 2177 X	<u> </u>	76.00	
			V							

Project: CHAAP OU	RAO Per	formance l	Monitoring			<u>.</u>	Well No:	EW7- 6-3 BE,	PM2	6 A
Project No: 60565355 Develo. Method Peristaltic pu	mp and tul	oing				-	Samplers:	<u> </u>	50.	/ <u>/</u> / D
			WE	LL MEAS	UREME	NTS				
Flı	Depth of Initia Top of	Screen I f well casin I water lev Casing Sti sing volum	meter (in): length (ft): ag (ft bgs): el (ft bgs): ick-up (ft): ne (Liters): conditions:	10 30 12. 2 (30-1	45 2,45) X	:,16 = : E	2,8			
<u>DISCHARGE</u>			SAMI	PLING MI	EASUREN	<u>MENT</u>				
Time	1525	1530	1535	1540	1545	1550	1555	1600		
Water level (ft. bgs)	11.30	11,29	11.29	11.25	11,27	11.29	11.28	12.28		
Pump Placement Depth (ft bgs)	39	39	39	35	31	31	35	35		
Discharge (Liters)	5	10	15	\$ 20	25	30	35	40		
WATER QUALITY DATA		, , , , , , , , , , , , , , , , , , , ,								
pН	6,69	6:59	6.46	6,35	6.34	6.33	6.34	6.34		
Temperature (°C)	13,73	13,63	13.18	13,45	13,77	13.69	13,39	13,25		
Conductivity (mS/cm)	1,18	1,14	1.18	1.18	1.18	1.18	1.17	1.18		
Dissolved Oxygen (mg/L)	0.04	0.03	0.02	0.02	0.02	0.02	0.02	0.01		
Redox (ORP) (mV)	-47,2	-30.5	-18.5			-11,7		-21.4		
Turbidity (NTUs) initial/end	1200	24.0	16.40	4.20 2	3.20	1.55	1.15 19	1.19	//	
Color			Clear	Clear	clear	Clerk	clear	clear		
Odor	None	Now	pane	Nonc	NONE	Nove	None	Nove		
Total discharge: 40 Method of disposal of discharge	d water:			tank at G		ling analys		removed:	14.3	
Water Level I Water Quality Comments:			Horiba Aqua TRO LA ma)LL 500 w. ッカム 7	flow thro	ugh cell	TS = 3	Calibrated: Calibrated: Calibrated: 4777		<u>V</u> _V

Projects CHAAD OUT	I DAO Don	formanca l	Manitarina				Eルヌ Well No:	-PM	26B	•
Project: <u>CHAAP OU</u> Project No: 60565355	I NAO FEI	TOTHIANCE I	MOIIIOIIIIE			•				
Develo. Method Peristaltic pu	mp and tul	oing				-	Samplers:	4E, 0	2 - C	D
			<u>W</u> E	LL MEAS	SUREME	<u>NTS</u>		<u>л. ш.) О</u>	10,10	<u>v</u>
	Well	inside dia	meter (in):		i "					
	*******		length (ft):		ク					
		f well casi	æg (ft bgs):	40	<u> </u>					
			el (ft bgs):		35					
Tal			ick-up (ft):		/ 		2.1			
ΓI	ilu well ca			(40-1 Cles		X , 16	= 4,	5 V		
		ri oddior (PLING MI						
<u>DISCHARGE</u>										
Time	1335	1340	1345	1350	1355	1405	1415	1425	1435	1445
Water level (ft. bgs)	11.45	11.54	1(,40	11.38	11.39	11.39	11.40	11,40	11.40	11.40
Pump Placement Depth (ft bgs)	34	39	39	35	31	31	31	35	35	35
Discharge (Liters)	5	10	15	20	25	35	45	55	65	75
WATER QUALITY DATA										
_II						سر . ی				
pH	6,09	1016	6,21	6.23	6,24	6:25	6,26	6.26	6,27	6,35
Temperature (°C)	1343	13.43	13.58	13.48	13,35	13.59	13.54	13.61	1341	B.43
Conductivity (mS/cm)	1.36	1.35	1.35	1.34	1,34	1.34	1.33	1.33	1.32	1.32
Dissolved Oxygen (mg/L)	0.03	0.02	0.02	0.01	0.01	0.01	0,01	0,01	0,05	0.01
Redox (ORP) (mV)	-117,9	-124,5		-129.5	-130.9	-131.1	-132.2	-132.2	-134.2	-137.7
Turbidity (NTUs) initial/end	61.2	38.9	41.5	25.6	11.0	21.6	18.5	4,79	8.79 12.	2,4
Color	Clem	clem	clear	clam	Cler	Uzar	CKM	dem	Clear	clear
Odor	Nore	Nord	None	None	None	None	Nove	Nac	porc	Nace
Total discharge: 75	4					Casir	g volumes	removed:	16,0	4
Method of disposal of discharge	d water:		IDW polly	/ tank at G	WTF (pend					
			οι	JALITY A	SSURAN	<u>CE</u>				
Water Level I	ndicator		Horiba			•		Calibrated		./
Water Quality				DLL 500 w.	/ flow thro	ugh cell		Calibrated	:	· ~
Comments:				otte To		ene ter		Calibia	reel .	v
		2.54/		,79×6=		4 + 45.	\$ E =	6830		
							15	68-54 K	۵	

Project: CHAAP OU	RAO Per	formance l	Monitoring			_	Well No:	EWT	- PMZ	7 B
Project No: 60565355 Develo. Method Peristaltic pu	mn and tul	nina .		——————————————————————————————————————		-	Date:	L-	. 2 ~ 2	
Develo, Method Feristanic pu	mp and tut	onig	¥ = 7 × =			-	Samplers:	ME	, 14 D	
			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>				
	Well		meter (in):		()					
	Depth of		length (ft): ug (ft bgs):		•					
			el (ft bgs):							
	Top of	Casing Sti	ick-up (ft):	21						
Flu	iid well ca		ne (Liters):		7			**		
		weather	conditions:			03				
DISCHARGE			SAMI	PLING M	<u>EASUREN</u>	<u>MENT</u>				
				1 .	N		<u> </u>			<u> </u>
Time	1050	1055	1100	1105	HO 110	1120	1130	1140	1150	1200
Water level (ft. bgs)	9.55	9.55	9.55	9.55	9.55	9.55	9.56	9.55	9.58	9.55
Pump Placement Depth (ft bgs)	39	39	39	35	31	3(31	35	35	35
Discharge (Liters)	5	10	15	20	25	35	45	5-5-	<i>45</i>	75
WATER QUALITY DATA										
pH	6.55	6.35	6.21	6.20	6.23	6.31	6.35	6.35	6.35	634
Temperature (°C)	19.93	13.96	13.99	14.02	14.(1	14.19	14.31	14,21	14.41	(4.47
Conductivity (mS/cm)	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1.13	1,13	1.13
Dissolved Oxygen (mg/L)	0.14	0.11	0.08	0.05	0,04	0.02	0.01	0.01	0.01	0,0(
Redox (ORP) (mV)	-98.4			-83.0	-86.1	-93,4	-97.1	.98,B	-49.6	,100.0
Turbidity (NTUs) initial/end	84.3	61.0/8	46.81	16.12.5	12.5	/ 4·	8.24	2.4	6.60/3	5.73
Color	clen	Clear	New	Clear	New	Clopy	Nem	Clear	clar	Clear
Odor	pore	NON	مسهمر	NOW	Done	None	سموبر	Nam	Nove	None
Total discharge: テラ	_					Casir	ng volumes	removed:	15.	4
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend	ling analys				
			QU	ALITY A	SSURAN	CE				
Water Level 1	ndicator:		Horiba			_ _		Calibrated	•	ν
Water Quality				DLL 500 w	/ flow thro	ugh cell		Calibrated		-
Commenter			LA MOI	4c Tu	ob M	eter		CAlib		V
2 gal t	IV"	<u>(40-9</u>	.55) X .	16=4,0	87 × 10	= 48.7	+ (3,7	9 × 6) =	71.4	4

Project: CHAAP OU	RAO Per	formance l	Monitoring	5		-	Well No:	EW7.	-PM2	8 A
Project No: 60565355 Develo. Method Peristaltic pu	mp and tul	ning				-	Date: Samplers:	6-5	-21	
Develo. Method Teristante pu	inp and tui	Jing	33/17	T DATE A	OF THE 12 A MED	- NITEC	Samplers.	ME,	KV	
			<u>WE</u>	LL MEAS	SUKEME	<u>N12</u>				
	Well	inside dia								
	Donth o	Screen f well casin	length (ft):							
		l well eash Il water lev			7					i
	Top of	Casing Sti	ick-up (ft):	2'						•
Flu	uid well ca	sing volun	ne (Liters):	3015-	4,97:	25.03	× .16 =			
		Weather of		Clea			9 80	3		
DISCHARCE			SAMI	PLING M	EASURE	MENT				
<u>DISCHARGE</u>			1	1		1	l .	2	ı u	۱,
Time	900	905	910	915	920	925	930	945	930	955
Water level (ft. bgs)	G GI	707	7.08	7.16	7.12	7.15	7.14	7.18	7,11	7.14
Pump Placement Depth (ft bgs)	29	29	29	25	2-1	21	21	25	25	25
Discharge (Liters)	10	15	20	25	30	35	40	45	50	55
WATER QUALITY DATA										
рН	6.17	6.17	6.23	6.24	6.32	6.34	6.35	6.35	6.35	6.35
Temperature (°C)	14.21	14.25	14.30	(4.38	14.47	14.44	14.69	14.66	14.64	14.72
Conductivity (mS/cm)	(.43	1.43	1.43	1.44	1.45	1.45	1.45	1.46	1.46	1.46
Dissolved Oxygen (mg/L)	0.04	0.02	0.02	0.02	0.62	0.02	0.01	0.01	6.01	0.01
Redox (ORP) (mV)	-98.8	-97.4	_100.0	1					104.9	104.7
Turbidity (NTUs) initial/end	44.5	24.1.4	34.4	53.4	4174.0	48.0	72.4	35,4	24.4	23.1
Color	Clear	New	Clear	(destard)	Clerr	Clouders	Cloud for	dem	Llet	dem
Odor	Nove	Non	Non	Now	NOW	Hone	None	None	None	None
Total discharge: 55						Casii	ng volumes	removed:	13.7	
Method of disposal of discharge	d water:		IDW polly	y tank at G	WTF (pend					
			<u> </u>	JALITY A	SSURAN	<u>CE</u>				
Water Level I	ndicator:		Horiba					Calibrated	:	V
Water Quality				DLL 500 w	/ flow thro	ugh cell		Calibrated		V
Comments:	0	/5	LAM			mete		-	- 1	v
ignl H	0	(30-4	.97). 2	16=4.	0 4 10	= 40 +	(3.79 X	5) = 5	1.37- 1	

Project: CHAAP OU	l RAO Per	formance l	Monitoring	5			Well No:		7 - PM	
Project No: 60565355						•	Date:	6- ME,	4-2	1
Develo. Method Peristaltic pu	mp and tul	oing				•	Samplers:	AE,	JO, 10	4 D
			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>				
	Well	inside dia	meter (in):	1 4	,					
		Screen.	length (ft):	10'						
			g (ft bgs):				-			-
			el (ft bgs): ick-up (ft):		0					-
Fli			ne (Liters):		3					<u>.</u>
			conditions:		r 80's					.
			<u>SAMI</u>	PLING M	EASUREN	<u> MENT</u>				
<u>DISCHARGE</u>		1	<u> </u>	T	i ···	<u> </u>	<u> </u>		T	T
Time	1145	1150	1155	12.00	1205	1210	1215	1220	1225	1230
Water level (ft. bgs)	7.35	7,35	7.37	7.37	7.38	7,39	7.40	3,41	7.39	7.40
Pump Placement Depth (ft bgs)	29	29	29	2.5	21	21	21	25	25	25
Discharge (Liters)	5	10	15	20	25	30	35	40	45	50
WATER QUALITY DATA										
рН	6.63	6.66	6.52	6.35	6.25	6.22	6.23	6.25	6.29	6.31
Temperature (°C)	14.63	14.86	14.78	14.90	14.90	14.98	14.92	14.92	14.99	15,01
Conductivity (mS/cm)	0,95	0.94	0.93	0.93	0,93	0.93	0.93	0.93	0.93	0.93
Dissolved Oxygen (mg/L)	0.03	0.01	0.01	0.01	0,01	0.01	0.01	0.01	0.01	0.01
Redox (ORP) (mV)	1 1	-114.5	-104.1	-95,7	-89.9	-88,0	-88.1	_89.4	-91,D	-92.4
Turbidity (NTUs) initial/end	84 12.0	62.0	40.0	23.1	17.4	22.3	/1	7.23	6.10.64	4.64
Color	clear	Clexy	Clerk	Clerr	Clear	clear	Jer	Clem	Clery	Cler
Odor	None	Nove	None	None	None	Nove	Num	None	None	Nove
Total discharge: 50						Casir	ng volumes	removed:	13.8	
Method of disposal of discharge	d water:		IDW polly	tank at G	WTF (pend					
			ου	JALITY A	SSURAN	<u>CE</u>				
Water Level I	ndicator:		Horiba					Calibrated	l;	ν
Water Quality	/ Meters:		Aqua TRO	DLL 500 w				Calibrated		<i></i>
Comments:		/2 A = 3	LA M.		Turb 1		1 7 7 5 11 1	CA!	2 4 3	ν
		130- +.	211.16.	: 2.00	x イノノ ニト w	100 5 4 (4. T 7 Y	5 J Ta 194-	ナーシブ	

Project: <u>CHAAP OU</u>	l RAO Per	formance l	Monitoring	5				EW7		<u> 29B</u>
Project No: 60565355						-	Date:		1-21	
Develo. Method Peristaltic pu	mp and tut	oing		······		_	Samplers:	BE, a	TO, KI	2
			<u>WE</u>	LL MEAS	SUREME	<u>NTS</u>				
	Well		meter (in):							
	· .		length (ft):							i
			ng (ft bgs): el (ft bgs):		7					
			ick-up (ft):							
Fl	uid well ca	sing volun	ne (Liters):	5.24	12632.	78 70.1	٤)		···········	
		Weather of	conditions:	Cloud	7 80	5				
			<u>SAMI</u>	PLING M	EASURE	<u>AENT</u>				
DISCHARGE	Г 									 1
Time	1315	1320	1325	1330	1340	1350	1400	1410	1420	1430
Water level (ft. bgs)	7.28	7.25	7.26	7.24	7.24	7.25	7.24	7.24	7.25	7.24
Pump Placement Depth (ft bgs)	39	39	35	31	31	31	35	35	35	35
Discharge (Liters)	5	10	15	20	30	40	50	60	70	80
WATER QUALITY DATA						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•	
¥.T.		1 .//		I						
Н	6.58	6.58	6.58	6.58	6.53	6.46	6.42	6.56	6.57	6.57
Femperature (°C)	18.48	17.94	17,94	19.23	19.27	17.93	17.78	17,85	17.85	17.92
Conductivity (mS/cm)	1.03	1.02	1.01	1.01	1.01	1.01	1,06	1.01	1.01	1.00
Dissolved Oxygen (mg/L)	0.03	0.01	0.01	001	0.01	0.01	0.01	0.01	0.01	0.01
Redox (ORP) (mV)	-[10.1	-112.7	114.8	-116-6	-(16.8	-113.5	-111.9	-122.3	-123.4	
Furbidity (NTUs) initial/end	56.3	22.0	21.54	8.54	6.69 16	5.16	5.54	5.43	5.94.52	4.49
Color	clerr	dem	Ver	Clerr	Clerr	Clear	Clear	clear	Clear	clear
Odor	None	Nove	Non	None	Now	Now	None	Nove	None	None
Fotal discharge: 80						Casiı	ng volumes	removed:	15.2	
Method of disposal of discharge	d water:		IDW polly	y tank at G	WTF (pend				. •	
			OL	JALITY A	SSURAN	CE				
Water Level 1	Indicator		Horiba			_		Calibrated		, ,
Water Quality				DLL 500 w	/ flow thro	ugh cell		Calibrated		<u> </u>
Comments:			LA Ma	tte tu	ub me	ter		cal		V
		40-7.2	2) . 16=	5,24 X	10 = 52	4 + ()	(39 X 6)	- 75	.14	

	CHAAI	OU1 RAO_P	erformance Mo	onitoring	PROJECT NO	·	60:	565355	
SAMPLE NO.	EW7-	PM21A	4-6-2	5	WELL NO	EWZ.	-PM21	A	
DATE/TIME C			altic Pump and		PERSONNEI	BE	, K D		
SAMPLE MED SAMPLE QA S SAMPLE QC I MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO (NO	DUPLICATI	T SAMPLE NO E SAMPLE NO D SAMPLE NO	· NA			
SAMPLE CO	NTAINERS, F	RESERVATI	VES, ANALYS	SIS				***************************************	***************************************
Sample Contain	<u>ner</u>		<u>Preservative</u>		Analysis Requ	<u>iested</u>			
2 - 500 mL Am	iber		6°C		Explosives +	MNX (8330A)			
3 - 40 mL VOA	· ·		6°C, HCl		Methane (RSI	K 175)			
1 - 500 mL HD	PE		6°C, H ₂ SO ₄		TKN (351.2),	NH ₃ (350.1), N	O ₂ /NO ₃ (353.2	2)	
1 - 250 mL HD	PE		6°C		SO ₄ (9056A),	Alkalinity (232	0B)		
1 - 250 mL HD	PE		6°C, ZnOAc/N	aOH	Sulfide (9034				
1 - 250 mL Am	ber		6°C		DOC (9060A)				
WELL PURG	ING DATA				······································	***************************************			
			_		We	II Depth (ft bgs)	30		
Date		6-	5-21			o Water (ft bgs)			
Time Started			00	-,		Column Length	19.3		
Time Complete	ed.		-15			Volume (per ft)		1	
PID Measureme						ater in Well (L)		7	
Background	<u> </u>		UD			olumes to Purge		-	
Breathing Zo	ne		UD			um to Purge (L)			
Well Head	,,,,,		ND			Actual Purge (L)		-	
Purge Water			·································		'	tcidal ruige (L)	<u></u>		
ruige water			N D						
FIELD MEAS Time	Amount		_						
	Purged (L)	рН	Temperature (Celsius)	(mS/cm)	Oxygen (mg/L		Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min)
1505	Purged (L)	6.28	(Celsius)	-	Oxygen (mg/L		(NTU)	(ft BTOC)	-(IJ/min) <
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L) (mV)	(NTU) 2.46 5.41	(ft BTOC) 10.70 1840.76	(Hinin) Ky
	Purged (L)	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -38.7	(NTU)	(ft BTOC)	(Umin) K m//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0	6.28	(Celsius)	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0 7.5	6.28	(Celsius) [4.00 [3.99 [3.85	(mS/cm)	Oxygen (mg/L	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
1510	Purged (L) 2.5 5.0 7.5	6.28 6.29 6.31	(Celsius) [4.00 [3.99 [3.85	(mS/cm)	Oxygen (mg/L O. 0 O. 0 O. 0	-38,7 -40,7	(NTU) 2.46 5.41	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	6.28 6.29 6.31	(Celsius) [4.00 [3.99 [3.85	(mS/cm)	Oxygen (mg/L	(mV) -38,7 -40,7 -42,4	(NTU) 2.46 5.41 4.05	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
FIELD EQUII	Purged (L) 2.5 5.0 7.5 PMENT AND	6.28 6.29 6.31	(Celsius) 14.00 13.99 13.85	(mS/cm) 1.14 1.14 1.13	Oxygen (mg/L	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) K/ M//min 500
FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	(Celsius) [4.00 [3.99 [3.85]	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(ft BTOC) 10.70 MB10.76	(L/min) K/ M//min 500
FIELD EQUII Water Level Pro	Purged (L) 2.5 5.0 7.5 PMENT AND Dobe Meter	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14.00 13.99 13.85	(mS/cm) 1.14 1.14 1.13	Oxygen (mg/L	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUII Water Level Pro Water Quality M	Purged (L) 2.5 5.0 7.5 PMENT AND Dibe Meter DMMENTS	CALIBRATION Model Heron Aqua TROLL CA Mot	(Celsius) [4.00 [3.99 [3.85]	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUII Water Level Prowater Quality N GENERAL CO Ferrous Iron =	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67	CALIBRATIO Model Heron Aqua TROLL	(Celsius) [4.00 [3.99 [3.85]	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUIPMENT Water Level Prowater Quality Mater Level Prowater Quality Material Prowater Level Prowa	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67 Tr Probe Unit #	CALIBRATION Model Heron Aqua TROLL CA Mot	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUIPMENT FIELD EQUIPMENT PROBLEM FOR THE WATER Quality Mater Quality Material Problem Field Parameter Field Fie	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67 Tr Probe Unit # Tr Measured in	CALIBRATION Model Heron Aqua TROLL LA Mot La Ing/L	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUIT Water Level Prowater Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Purged (L) 2.5 5.0 7.5 PMENT AND bbe Meter DMMENTS 8.67 r Probe Unit # rs Measured in fit bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL LA mot	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUII Water Level Prowater Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Pump Rate = 5	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67 Tr Probe Unit # 's Measured in fit bgs) = 2.5 5.00 m.1	CALIBRATIO Model Heron Aqua TROLL LA mot	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUIT Water Level Prowater Quality Note: GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Pump Rate = 5 Temp Well Diam	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67 or Probe Unit # 's Measured in fit bgs) = 2.5 5.00 m. [meter = [1]	CALIBRATIO Model Heron Aqua TROLL LA mot I Flow-Through	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500
FIELD EQUII Water Level Prowater Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Pump Rate = 5	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 8.67 or Probe Unit # 's Measured in fit bgs) = 2.5 5.00 m. [meter = [1]	CALIBRATIO Model Heron Aqua TROLL LA mot I Flow-Through	(Celsius) 14.00 13.99 13.85 100 100 100 100 100 100 100 1	(mS/cm) 1.14 1.14 1.13	Calibration Checked Agai Twice Daily C	nst Calibrated L	(NTU) 2.46 5.41 4.05	(N BTOC) 10.70 NG 10.63 10.68	(L/min) Ky 14/ /min 500

SITE NAME	СНААІ	OU1 RAO_P	erformance Me	onitoring	PROJECT NO		605	65355	
SAMPLE NO.	EWF	PM ?	24A-6	-25	WELL NO	EW7	- PM2	.4 A	
DATE/TIME O			21 / 134		PERSONNEI	BE	KD		
SAMPLE MEI		Groundwater			- F CAMPLE NO	, Nr			
SAMPLE QA		YES	(100		SAMPLE NO				
SAMPLE QC		YES	NO		E SAMPLE NO			•••••••••••••••••••••••••••••••	
MS/MSD REC	QUESTED	YES	TNO	MS/MSI	SAMPLE NO	·			
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALYS	IS					***************************************
Sample Contai			Preservative		Analysis Requ	uested			
2 - 500 mL An			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCI		Methane (RSI				
1 - 500 mL HE			6°C, H ₂ SO ₄			NH ₃ (350.1), NC) ₂ /NO ₃ (353.2)		
1 - 250 mL HE	PE		6°C	***************************************		Alkalinity (2320			
1 - 250 mL HD	PE		6°C, ZnOAc/N	aOH	Sulfide (9034				
1 - 250 mL An			6°C		DOC (9060A)	<u> </u>			
WELL PURG	ING DATA			***************************************			***************************************		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					We	ll Depth (ft bgs)	30		
Date		6-	-5-21			to Water (ft bgs)	11.73)	
Time Started						Column Length	18.2		
Time Complete	ed		330 345			Volume (per ft)	0.14	-	
PID Measurem						ater in Well (L)	2,92		
Background			nH)			olumes to Purge	NA		
Breathing Zo			ND			um to Purge (L)	NA	-	
Well Head			ND		_	Actual Purge (L)			
Purge Water	•		NIS			iotaar rango (E)			
					-				
FIELD MEAS	SUREMENTS			***************************************			Philippe		
Time	_								
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (ORP)	Turbidity (NTU)	Depth to Water (ft BTOC)	(Umin) 🤻
			(Celsius)	(mS/cm)	Oxygen (mg/L	(mV)	(NTU)	(ft BTOC)	(Umin) K
1335	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	(inV)	(NTU)	(ft BTOC)	(Umin) K ml/min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	(inV)	(NTU)	(ft BTOC)	(Umin) K ml/min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius)	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius) 14,35 14,74 14,54	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius) 14,35 14,74 14,54	(mS/cm)	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius) 14,35 14,74 14,54	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L)	6.36	(Celsius) 14,35 14,74 14,54	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340 1345	Purged (L) 2.5 5.0 7.5	6.36	(Celsius) 14,35 14,74 14,59	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L	-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340	Purged (L) 2.5 5.0 7.5	6.36 6.37 6.38	(Celsius) 14,35 14,74 14,59	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L 0, 0 (0, 0 (0, 0 (-77.4 -78.0	(NTU) 3,69 4.02	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340 1345 FIELD EQUI	Purged (L) 2.5 5.0 2.5	6.36 6.37 6.38 CALIBRATIO Model	(Celsius) 14,35 14,74 14,59	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O I O, O I	-77.4 -78.6 -78.4	(NTU) 3.69 4.02 3.50	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340 1345	Purged (L) 2.5 5.0 2.5	CALIBRATIO Model Heron	(Celsius) 14,35 14,74 14,59	(mS/cm) 1.27 1.27 1.27	Oxygen (mg/L O, O (O, O I O, O I	-77.4 -78.0	(NTU) 3.69 4.02 3.50	(ft BTOC)	(Hmin) Ke m//min 500
1335 1340 1345 FIELD EQUI	Purged (L) 2.5 5.0 2.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14,35 14,74 14,55 DN 500 w/ flow three	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	-77.4 -78.6 -78.4	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
1335 1340 1345 FIELD EQUII	Purged (L) 2.5 5.0 2.5 PMENT AND obe Meter	CALIBRATIO Model Heron	(Celsius) 14,35 14,74 14,55 DN 500 w/ flow three	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
1335 1340 1345 FIELD EQUII Water Level Pr Water Quality	Purged (L) 2.4 5.0 7.5 PMENT AND obe Meter	CALIBRATIO Model Heron Aqua TROLL LA Mot	(Celsius) 14,35 14,74 14,55 DN 500 w/ flow three	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co	Purged (L) 2.4 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 r	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14,35 14,74 14,55 DN 500 w/ flow three	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete	Purged (L) 2.4 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit #	CALIBRATION Model Heron Aqua TROLL LA Mot	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Cor Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.4 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit # rs Measured in	CALIBRATION Model Heron Aqua TROLL LA Moth	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth	Purged (L) 2.5 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit # rs Measured in (ft bgs) = 225	CALIBRATION Model Heron Aqua TROLL LA Moth	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	Purged (L) 2.5 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit # rs Measured in (ft bgs) = 2.5 5.00	CALIBRATION Model Heron Aqua TROLL LA Moth	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(fi BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth of Pump Rate = Temp Well Dia	Purged (L) 2.5 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit # rs Measured in (ft bgs) = 2.5 5.00 umeter = 1	CALIBRATION Model Heron Aqua TROLL LA Molt I Flow-Through	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(ft BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	Purged (L) 2.5 5.0 2.5 PMENT AND obe Meter OMMENTS 3.10 rer Probe Unit # rs Measured in (ft bgs) = 2.5 5.00 umeter = 1	CALIBRATION Model Heron Aqua TROLL LA Molt I Flow-Through	(Celsius) 14,35 14,74 14,59 DN 500 w/ flow thro	(mS/cm) 1,27 1,27 1,27	Oxygen (mg/L O, O (O, O) O, O Calibration Checked Agai Twice Daily C	nst Calibrated Le	(NTU) 3.69 4.02 3.50	(ft BTOC) 11.90 11.88 11.87	(Hmin) Ke m//min 500

SITE NAME	CHAAI	P OU1 RAO_P	erformance M	onitoring	PROJECT NO.		605	665355	
SAMPLE NO.	EW7-	PM25A	-6-2	- 5	WELL NO.	EW7	-12M	25 A	
DATE/TIME (SAMPLE ME			21 / 9 10 taltic Pump and		_ PERSONNEL	EW7 BE	JO,	KD	
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REC	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATI	I SAMPLE NO. E SAMPLE NO. D SAMPLE NO.		V A V A		
SAMPLE CO	NTAINERS, F	PRESERVATI	VES, ANALYS	SIS					
Sample Contain	<u>iner</u>		Preservative		Analysis Requ	ested			
2 - 500 mL Ar	nber		6°C		Explosives + N	MNX (8330A)			
3 - 40 mL VO	A		6℃, HCl		Methane (RSK	(175)			
I - 500 mL HI	OPE		6°C, H ₂ SO ₄		TKN (351.2),	NH ₃ (350.1), NO	O ₂ /NO ₃ (353.2	.)	
1 - 250 mL HI			6°C		SO ₄ (9056A),	Alkalinity (2320)B)		
1 - 250 mL HI			6°C, ZnOAc/N	laOH	Sulfide (9034)				
1 - 250 mL An	nber		6°C		DOC (9060A)				
WELL PURG	SING DATA		***************************************		************				
Date Time Started Time Complete PID Measurem Background Breathing Z Well Head Purge Water	nents one	- 9 - N			Depth to Water (Well Casing of Wall Volume of Wall Casing Volume Minimu	I Depth (ft bgs) o Water (ft bgs) Column Length Volume (per ft) tter in Well (L) olumes to Purge im to Purge (L) ctual Purge (L)	6.5 23.4 0.16 3.74 NA NA	2	
FIELD MEAS	SUREMENTS	***************************************		***************************************					
E ELIZADE PRINCIPLE									
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate -(k/min)- K\\ M//win
Time 900		рН 6.24	•	-	Oxygen (mg/L)		•	(ft BTOC)	-(ldmin) KD MI/utin
	Purged (L)	•	(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV) -99.8	(NTU)	(ft BTOC)	- (ldmin) - 🚧
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm)	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L)	6.24	(Celsius)	(mS/cm)	Oxygen (mg/L)	(mV) -99.8	(NTU)	(ft BTOC)	-(L/min) KO 141/win 500
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm)	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L) 2.5 5.0	6.24	(Celsius)	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900	Purged (L) 2.5 5.0 7.5	6.24 6.23 6.23	(Celsius) 14.13 14.15 14.30	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O.01 O.01	(mV) -99.9 -99.5	(NTU) 6.65 5.24	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900 905 910 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	6.24 6.23 6.23 CALIBRATIO	(Celsius) 14.13 14.15 14.30	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O, Ol O, Ol O, Ol O, Ol Calibration	(mV) -99.8 -99.5 -99.3	(NTU) 6.65 5.24 8.39	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
900 905 910 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron	(Celsius) 14.13 14.15 14.30	(mS/cm) 1.55 1.55 1.55	Oxygen (mg/L) O, Ol O, Ol O, Ol O, Ol Calibration Checked Again	(mV) -99.8 -99.5 -99.3	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
900 905 910 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14.13 14.15 14.30 ON	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(fi BTOC) 6.84 6.83	-(1/min) KD 141/min 500
905 910 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14.13 14.15 14.30	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol O, Ol Calibration Checked Again	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
900 905 910 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS	CALIBRATIO Model Heron Agua TROLL	(Celsius) 14.13 14.15 14.30 ON	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 n	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14.13 14.15 14.30 ON	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 ner Probe Unit #	CALIBRATIO Model Heron Aqua TROLL LA Moti	(Celsius) 14.13 14.15 14.30 ON Soo w/ flow three Turb	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 ner Probe Unit # rs Measured in	CALIBRATIO Model Heron Aqua TROLL LA Moti	(Celsius) 14.13 14.15 14.30 ON Soo w/ flow three Turb	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 n er Probe Unit # rs Measured in (ft bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL LA Moti	(Celsius) 14.13 14.15 14.30 ON Soo w/ flow three Turb	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 n er Probe Unit # rs Measured in (ft bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL LA Moti	(Celsius) 14.13 14.15 14.30 ON Soo w/ flow three Turb	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 2.72 n er Probe Unit # rs Measured in (ft bgs) = 2.5	CALIBRATIO Model Heron Aqua TROLL L Flow-Through	(Celsius) 14.13 14.15 14.30 ON Soo w/ flow three Turb	(mS/cm) 1.55 1.55 1.55 DJE	Oxygen (mg/L) O, Ol O, Ol O, Ol Calibration Checked Again Twice Daily Ca	mst Calibrated La	(NTU) 6.65 5.24 8.39	(ft BTOC) 6.84 6.83 6.83	-(1/min) KD 141/min 500

SITE NAME	СНААР	OU1 RAO	Performance Mo	onitoring	PROJECT NO.	•	605	65355	
SAMPLE NO.	EWZ		25B-6-			EN7	- PM 2	5 B	
DATE/TIME O			cristaltic Pump and	· · · · · · · · · · · · · · · · · · ·	_ PERSONNEL	. NE,	50,	KD	
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwa YES YES YES	NO NO	DUPLICATI	Γ SAMPLE NO. E SAMPLE NO. D SAMPLE NO.	NA			
SAMPLE CO	NTAINERS, P	RESERVA	TIVES, ANALYS	IS		*****			
Sample Contai			Preservative		Analysis Requ				
2 - 500 mL An 3 - 40 mL VOA			6°C 6°C, HCl		Explosives + N				
1 - 500 mL HE			6°C, HC1		Methane (RSk	NH ₃ (350.1), NC)-/NO- (353-2)		
1 - 250 mL HD			6°C			Alkalinity (2320		<i>y</i>	
1 - 250 mL HD	DPE		6°C, ZnOAc/N	aOH	Sulfide (9034)				
1 - 250 mL An	nber		6°C		DOC (9060A)				
WELL PURG Date Time Started	SING DATA	6	6-4-21 1055		Depth to	ll Depth (ft bgs) o Water (ft bgs) Column Length	40		
Time Complete			1110			Volume (per ft)	.16		
PID Measurem						ater in Well (L)			
Background			<u>ND</u>		_ ~	olumes to Purge			
Breathing Zo Well Head	one		ND			um to Purge (L)	NA	-	
Purge Water			N D N D		_ A	ctual Purge (L)	7.5		
r digo water			7-12		_				
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (ORP)) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (11/min) Ko ml/min
1100	2,5	6.35	15.30	1.21	0.01	-117.2	4.40	6.66	500
1105	5,0	6.36		1.20	0.61	-118.8	4.13	6.67	11
1110	7.5	6.34	15,61	1,21	0.01	-120.1	3.75	6.66	/ (
			Me						
			100						
								A POPULATION OF THE POPULATION	Vennese
	Samuel Land								
						- Transcore	***		
Water Level Pro	PMENT AND	CALIBRA'I Model	TION		Calibration		***************************************		
Water Quality I	-	Heron				nst Calibrated Le			
	-	Aqua TROI	LL 500 w/ flow thro		Twice Daily C	nst Calibrated Le alibration Verific		librated Weekly	
CENEDAL CO	Meter	Aqua TROI		ough cell				librated Weekly	
GENERAL CO	Meter OMMENTS	Aqua TROI しょ の。			Twice Daily C			librated Weekly	
Ferrous Iron =	Meter OMMENTS 9.15 n	Aqua TROI			Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Paramete	Meter OMMENTS 9.15 ner Probe Unit #	Aqua TROI La Ma ng/L	otte Tudb		Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Parameter Field Parameter	OMMENTS 9.15 n er Probe Unit # rs Measured in l	Aqua TROI La Ma ng/L	otte Tudb		Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (OMMENTS 9.15 n er Probe Unit # rs Measured in 1 (ft bgs) = 35	Aqua TROI La Ma ng/L	otte Tudb		Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Parameter Field Parameter	OMMENTS 9.15 n er Probe Unit # rs Measured in (ft bgs) = 35	Aqua TROI La Ma ng/L	otte Tudb		Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Paramete Field Parameter Sample Depth (Pump Rate = Temp Well Dia	OMMENTS 9.15 n er Probe Unit # rs Measured in (ft bgs) = 35	Aqua TROI LA Ma ng/L l Flow-Through	otte Tudb		Twice Daily C			librated Weekly	
Ferrous Iron = Multi-Paramete Field Parameter Sample Depth (Pump Rate = Temp Well Dia	OMMENTS 9.15 n er Probe Unit # rs Measured in 1 (ft bgs) = 35 500 uneter = 1	Aqua TROI LA Ma ng/L l Flow-Through	otte Tudb		Twice Daily C			librated Weekly	

GENERAL INFORMATION CHAAP OU1 RAO_Performance Monitoring SITE NAME PROJECT NO. WELL NO. EW 7 - 26A- 19M 26A SAMPLE NO. FW7-2 PM 26A-6-25 DATE/TIME COLLECTED 6-3-21/16/5 PERSONNEL AE, JO, KO SAMPLE METHOD Peristaltic Pump and tubing SAMPLE MEDIA: Groundwater YES ŃΟ SAMPLE QA SPLIT: SPLIT SAMPLE NO. DUPLICATE SAMPLE NO. SAMPLE QC DUPLICATE: YES NO MS/MSD REQUESTED MS/MSD SAMPLE NO. YES NO SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS Sample Container Preservative Analysis Requested 2 - 500 mL Amber 6°C Explosives + MNX (8330A) 3 - 40 mL VOA 6°C, HCI Methane (RSK 175) 1 - 500 mL HDPE TKN (351.2), NH₃ (350.1), NO₂/NO₃ (353.2) 6°C, H₂SO₄ 1 - 250 mL HDPE 6°C SO₄ (9056A), Alkalinity (2320B) 1 - 250 mL HDPE 6°C, ZnOAc/NaOH Sulfide (9034) 1 - 250 mL Amber DOC (9060A) 6°C WELL PURGING DATA 30' Well Depth (ft bgs) 6-3-21 Date Depth to Water (ft bgs) 12.45 1600 Time Started 17.55 Water Column Length 1615 Well Casing Volume (per ft) Time Completed PID Measurements Volume of Water in Well (L) 2.8 Background Casing Volumes to Purge NA Breathing Zone Minimum to Purge (L) NA Well Head Actual Purge (L) マッケ Purge Water FIELD MEASUREMENTS Time Amount pΗ Temperature Conductivity Dissolved Redox (ORP) Depth to Water Purge Rate Turbidity Purged (L) (Celsius) (mS/cm) Oxygen (mg/L) —(L/min)- ≪ (mV) (NTU) (ft BTOC) m/min 1605 2,5 -26.0 11:30 13,49 0.01 1,18 500 5.0 6.36 11.31 1610 13,05 0.02 -30,6 1.17 1.43 i t1615 13.32 0,01 11.30 -33. FIELD EQUIPMENT AND CALIBRATION Model Calibration Water Level Probe Checked Against Calibrated Length Aqua TROLL 500 w/ flow through cell Twice Daily Calibration Verification also Calibrated Weekly Water Quality Meter LA MOTTE TUND meter - DAILY GENERAL COMMENTS Ferrous Iron = 7.56mg/L Multi-Parameter Probe Unit # Field Parameters Measured in Flow-Through Cell Sample Depth (ft bgs) = 25 Pump Rate = 500 ml/min Temp Well Diameter = 1 Screen Interval (ft bgs) = 20 - 30

SITE NAME	CHAAI	OU1 RAO_F	erformance M	onitoring	PROJECT NO		605	65355	
SAMPLE NO.	EW7-	- PM26	B-6-	35	_ WELL NO	EW	7-P	M 26B	
DATE/TIME C			1/1500 taltic Pump and		_ PERSONNEI	-	· , TO	, KD	
SAMPLE MED SAMPLE QA S SAMPLE QC I MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO	SPLIT DUPLICATE MS/MSI	T SAMPLE NO E SAMPLE NO D SAMPLE NO	/	NA NA NA		
		RESERVATI	VES, ANALYS	SIS					
Sample Contain			<u>Preservative</u>		Analysis Requ				
2 - 500 mL Am 3 - 40 mL VOA			6°C, HCl		······	MNX (8330A)			
1 - 500 mL HD			6°C, HC1		Methane (RSI	NH ₃ (350.1), N	O ₂ /NO ₂ (353.2))	
1 - 250 mL HD			6°C			Alkalinity (232		/	
1 - 250 mL HD	PE		6°C, ZnOAc/N	aOH	Sulfide (9034			*.*	
1 - 250 mL Am	iber		6°C		DOC (9060A)				
WELL PURG	ING DATA								
Date Time Started Time Complete PID Measureme Background Breathing Zo Well Head Purge Water	ents one		-21 5 0 ND ND ND ND		Depth t Water Well Casing Volume of W Casing Volume	Il Depth (ft bgs) to Water (ft bgs) Column Length Volume (per ft) ater in Well (L) tolumes to Purge um to Purge (L) Actual Purge (L)	11.35 28.65 ,16 4,54 R +0 N		
******* ** * **** * *	Y ID EIL FEIL IEG								
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (ORP) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate -(L/min) ** m//min
1450	2,5	6,37	13,16	1.32	6.01	-139,8	7,29	11.39	500
() 1 5- 1-	5-m &a.	6,37	13.31	1.32		140 :	16.50	11.40	()
1455	5.0	423	17,71		0.01	-14001			
14 95 + 14 1500	7,5	6.38	13.38	1,32	0.01	-140.1 -140.4	6,74	11,40	()
		(0.34					6,74		()
		ia. 34					6,74		(1)
		ia. 34					6,74		()
		ia. 34					6,74		()
		ia. 34					6,74		()
		ia. 34					6,74		()
- 14 1500	7.5	ia.34	13.38 BOL				6,74		()
	PMENT AND	ia.34	13.38 BOL		O. Ol	-140.4			
FIELD EQUI	PMENT AND	CALIBRATIO Model Heron	13.38 BOL	1,32	Calibration Checked Agai		ength	11,46	
FIELD EQUII Water Level Pro	PMENT AND obe Meter	CALIBRATIO Model Heron	13.35 DN	1,32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N	PMENT AND obe Meter OMMENTS	CALIBRATIO Model Heron Agua TROLL L ft Moto	13.35 DN	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N GENERAL CO Ferrous Iron =	PMENT AND obe Meter OMMENTS 2,69	CALIBRATIO Model Heron Aqua TROLL L fi Mafi	13.35 DN	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Paramete	PMENT AND obe Meter OMMENTS 2,69 rr Probe Unit #	CALIBRATIO Model Heron Aqua TROLL L ft Mota	DN 500 w/ flow thr	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N GENERAL CO Ferrous Iron =	PMENT AND obe Meter OMMENTS 2,69 or Probe Unit #	CALIBRATIO Model Heron Aqua TROLL L ft Mofa	DN 500 w/ flow thr	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Prowater Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter	PMENT AND Obe Meter OMMENTS 2	CALIBRATIO Model Heron Aqua TROLL Left Mata	DN 500 w/ flow thr	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Pump Rate = Temp Well Dia:	PMENT AND Obe Meter OMMENTS 2.69 pr or Probe Unit # rs Measured in ft bgs) = 35 500 m/ meter = /"	CALIBRATION Model Heron Aqua TROLL L. A. Marian Mar	DN 500 w/ flow thr	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	
FIELD EQUII Water Level Pro Water Quality N GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth (Pump Rate =	PMENT AND Obe Meter OMMENTS 2.69 pr or Probe Unit # rs Measured in ft bgs) = 35 500 m/ meter = /"	CALIBRATION Model Heron Aqua TROLL L. A. Marian Mar	DN 500 w/ flow thr	U, 32	Calibration Checked Agai Twice Daily C	nst Calibrated L	ength	11,46	

SITE NAME	СНАА	P OU1 RAO_I	erformance M	onitoring	PROJECT NO)	605	65355	
SAMPLE NO.	EW7	- PM2	-7B-6	<u>-35</u>	WELL NO	D. Εω=	7 - PM	27B	
DATE/TIME (COLLECTED	6-5-	21/12	15	PERSONNE	L &	RE, K	· D	
SAMPLE ME	THOD		taltic Pump and	tubing					
SAMPLE MEI	DIA:	Groundwate	P						
SAMPLE QA		YES	NO	SPLI	T SAMPLE NO). NA	-		
SAMPLE QC		YES	NO/		E SAMPLE NO				
MS/MSD REC		YES	NA /		O SAMPLE NO				
SAMPLE CO	NTAINERS.	PRESERVATI	IVES, ANALYS		***************************************		***************************************		***************************************
Sample Contai			<u>Preservative</u>		Analysis Req	<u>uested</u>			
2 - 500 mL An			6°C		Explosives +	MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RS				
1 - 500 mL HI			6°C, H ₂ SO ₄			, NH ₃ (350.1), No)	
1 - 250 mL HE 1 - 250 mL HE			6°C	LOIT		, Alkalinity (232	OB)		
1 - 250 mL An			6°C, ZnOAc/N	IaOH	Sulfide (9034 DOC (9060A				
WELL PURG		****		·		***************************************			
					We	ell Depth (ft bgs)	40		
Date		_6-	5-21 200 215			to Water (ft bgs)			
Time Started			200			Column Length		<u> </u>	
Time Complete			215		-	Volume (per ft)			
PID Measurem						ater in Well (L)			
Background Breathing Zo			v () v ()			olumes to Purge		<u>.</u>	
Well Head	one		v 0		_	num to Purge (L) Actual Purge (L)		-	
Purge Water	•		v1)		<u></u>	Actual Fulge (L)	7.7		
FIELD MEAS	SUREMENTS	i							
Time	Amount Purged (L)	Нд	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/I	Redox (ORP) L) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	(L/min) (
			(Celsius)	(mS/cm)	Oxygen (mg/I	_) (mV)	(NTU)	(ft BTOC)	(Idmin) K m/min
1205 1210	Purged (L)	6.33	•	•		_) (mV)	•	•	(Umin) Ke ml/min 500
1205	Purged (L)	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	_) (mV)	(NTU)	(ft BTOC)	(Idmin) K m/min
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0	6.33	(Celsius)	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0 7.5	(e.33 6.33 (e.32	(Celsius) 14.41 (4.47 (4,55	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
1205	Purged (L) 2.5 5.0 7.5	(e.33 6.33 (e.32	(Celsius) 14.41 (4.47 (4,55	(mS/cm)	Oxygen (mg/l	-100,1 -100.3	(NTU) 5-03 5,09	(ft BTOC) 9.60 9.62	(15min) KI Monin 500
12 0 5 12 10 12 15 12 15 15 15 15 15 1	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron	(Celsius) [14.41 (4.47 (4.55)	(mS/cm) 1,13 1,13 1,13	Oxygen (mg/I	-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
205 210 215 1215	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 14.41 (4.47 (4,55) A P2 ON 500 w/ flow three	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-) (mV) -100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter	CALIBRATION Model Heron Aqua TROLL	(Celsius) [14.41 (4.47 (4.55)	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr Water Quality	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS #	CALIBRATIO Model Heron Aqua TROLL LA MOT	(Celsius) 14.41 (4.47 (4,55) A P2 ON 500 w/ flow three	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS # 6.42	CALIBRATIO Model Heron Aqua TROLL LA MOT	(Celsius) 14.41 (4.47 (4,55) A P2 ON 500 w/ flow three	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS # 6.42 er Probe Unit # rs Measured in	CALIBRATIO Model Heron Aqua TROLL La Mot I Flow-Through	(Celsius) 14.41 14.47 14.55 A Proposition of the Turk	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Parameter Field Parameter Sample Depth of	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS # 6.42 er Probe Unit # rs Measured in (ft bgs) = 3:	CALIBRATIO Model Heron Aqua TROLL LA MOF Tomg/L Flow-Through	(Celsius) 14.41 14.47 14.55 A Proposition of the Turk	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth of Pump Rate =	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS # 6.42 er Probe Unit # rs Measured in (ft bgs) = 35 500 m.1	CALIBRATIO Model Heron Aqua TROLL LA MOF Tomg/L Flow-Through	(Celsius) 14.41 14.47 14.55 A Proposition of the Turk	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUID Water Level Pr Water Quality GENERAL CO Ferrous Iron = Multi-Parameter Sample Depth of Pump Rate = Temp Well Dia	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 6.42 er Probe Unit # rs Measured in (ft bgs) = 35 500 m.1 uneter = /	CALIBRATION CALIBRATION Model Heron Aqua TROLL LA MOF I Flow-Through 7/2, h	(Celsius) 14.41 14.47 14.55 A Proposition of the Turk	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth of Pump Rate =	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 6.42 er Probe Unit # rs Measured in (ft bgs) = 35 500 m.1 uneter = /	CALIBRATION CALIBRATION Model Heron Aqua TROLL LA MOF I Flow-Through 7/2, h	(Celsius) 14.41 14.47 14.55 A Proposition of the Turk	(mS/cm) 1,13 1,13 1,13	Calibration Checked Aga Twice Daily (-100, (-100, 3 -100, 5	(NTU) 5.03 5.09 4.84 ength	(ft BTOC) 9.60 9.62 9.59	(15min) KI Monin 500

SITE NAME	E CHAAI	P OU1 RAO_P	erformance M	onitoring	PROJECT NO.		60:	565355	
SAMPLE NO	o. <u>FW7</u> -	- PM28	A -6 - 2	25	WELL NO.	EW7	-PM	28A	
	E COLLECTED	6-5-2	/ / /	1000	PERSONNEL				
SAMPLE M	FDIA:	Groundwater	. _						
SAMPLE QA		YES	NO	SPLI	T SAMPLE NO.	NA	-		
-	C DUPLICATE:	YES	NQ		E SAMPLE NO.				
MS/MSD RE		YES	1,000		D SAMPLE NO.				
011 0 1110			- (/						***************************************
Sample Cont	ONTAINERS, I	'RESERVATI	VES, ANALYS Preservative	SIS	Analusia Danu	Lasas			
2 - 500 mL A			6°C		Analysis Requ Explosives + N				
3 - 40 mL V			6°C, HCl		Methane (RSK				
1 - 500 mL F			6°C, H ₂ S0 ₄			NH ₃ (350.1), N	O ₂ /NO ₂ (353.2	1	
1 - 250 mL F			6°C			Alkalinity (232		· · ·	
1 - 250 mL F	IDPE		6°C, ZnOAc/N	VaOH	Sulfide (9034)				
1 - 250 mL A			6°C		DOC (9060A)				
WELL PUR	GING DATA							***************************************	···
		,	~- 7 I		Wel	l Depth (ft bgs)	30		
Date			5-21		Depth to	Water (ft bgs)			
Time Started			55		Water 6	Column Length	25,	03	
Time Comple		hu +	121B 1	000		Volume (per ft)		•	
PID Measure					Volume of Wa	iter in Well (L)	4.	0	
Backgroun			ND			lumes to Purge			
Breathing			ND			ım to Purge (L)			
Well Head			ND		_ A	ctual Purge (L)	7.9		
Purge Wat	er		רו ע						
FIELD ME	ASUREMENTS								
Time	Amount Purged (L)	рН	Temperature (Celsius)	(mS/cm)	Oxygen (mg/L)		(NTU)	Depth to Wate (ft BTOC)	Purge Rate -(L/min) 4 M/mln
401000	n 2.5	6.35	14.84	1.46	0.01	-104,9	20.3	7.23	500
55 too-5	A 5.0	6,35	14.87	1.46	0.01	-104.8	19.1	7.20	U
001010	.M. 7.5	6.35	14,87	1.46	0.01	-104,7	20.6	7.21	
			12						
			Wh						
				Ī					

EIRI D EOI	IIDAGENGE AND	CATIONATIC	\NT	<u></u>		<u> </u>			
rield equ	JIPMENT AND	Model	JIN		Calibration				
Water Level I	Probe	Heron			Checked Again	st Calibrated L	enoth		
Water Quality	y Meter		500 w/ flow thr	ough cell				librated Weekly	,
			e Turb		DALLY				
	COMMENTS							**	****
GENERAL O									
Ferrous Iron =	= 1.87 I	ng/L							
Ferrous Iron = Multi-Parame	= 1.87 r eter Probe Unit #	Ĭ.							
Ferrous Iron = Multi-Parame Field Parame	= 1.87 reter Probe Unit # ters Measured in	/ Flow-Through	Cell						
Ferrous Iron = Multi-Parame Field Paramet Sample Depti	eter Probe Unit # ters Measured in h (ft bgs) = 2	 Flow-Through F	Cell						
Ferrous Iron = Multi-Parame Field Paramet Sample Depth Pump Rate =	eter Probe Unit # ters Measured in h (ft bgs) = 2: 500 h (Flow-Through	Cell						
Ferrous Iron = Multi-Parame Field Paramet Sample Depti Pump Rate = Temp Well D	eter Probe Unit # ters Measured in h (ft bgs) = 2 : 5004 (Flow-Through	Cell						
Ferrous Iron = Multi-Paramet Field Paramet Sample Deptt Pump Rate = Temp Well D	eter Probe Unit # ters Measured in h (ft bgs) = 2: 500 h (Flow-Through	Cell						

OWE MAN									
SITE NAME			Performance M		-			565355	
SAMPLE NO.	EW7				_ WELL NO	EL NE	17-P1	M 29A	
DATE/TIME	COLLECTED	6-4-2	11/12	45	PERSONNEI	NE	, JO,	16 D	
SAMPLE ME	THOD	Peris	taltic Pump and	l tubing			<i></i>		
SAMPLE ME	DIΔ·	Groundwater	•						
SAMPLE OA		YES	NO	SPLI	ΓSAMPLE NO	N	4		
•	DUPLICATE:	YES	NO		E SAMPLE NO	·	<u>·</u> }		
MS/MSD REC		YES	NO		SAMPLE NO				
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALY	SIS					
Sample Contain	•		<u>Preservative</u>		Analysis Requ	iested			
2 - 500 mL Ar			6°C		Explosives +	MNX (8330A)			
3 - 40 mL VO.		· · · · · · · · · · · · · · · · · · ·	6°C, HCl		Methane (RSI				
1 - 500 mL HI			6°C, H ₂ SO ₄			NH ₃ (350.1), N		2)	
1 - 250 mL HI 1 - 250 mL HI			6°C	I-OII		Alkalinity (232	0B)		
1 - 250 mL Ht		,	6°C, ZnOAc/N	NaOH	Sulfide (9034 DOC (9060A				
WELL PURG					DOC (2000A	<u> </u>			
			- •		We	ll Depth (ft bgs)	30		
Date		6-4	1-21		_ Depth (o Water (ft bgs)	7.3		
Time Started		12	30			Column Length			
Time Complete		12	45		_ Well Casing	Volume (per ft)	16		
PID Measuren			JO			ater in Well (L)			
Background			ND			olumes to Purge		_	
Breathing Z Well Head	one		ND			um to Purge (L)		•	
Purge Water		***************************************	ND		- /	Actual Purge (L)	7.5		
Turge water	•		7V P						
Time	SUREMENTS								
	Amount Purged (L)	рH	Temperature (Celsius)	(mS/cm)	Oxygen (mg/L		Turbidity (NTU)	Depth to Wate (ft BTOC)	Purge Rate -(Umin) 4
1235	Purged (L)	6,32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3	(NTU)	(ft BTOC)	-(L/min) - 4
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6,32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3	(NTU)	(ft BTOC)	(Hmin) 4 in//msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Hmin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Umin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Hmin) 4 ml/msn 500
1235	Purged (L)	6.32	(Celsius)	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Hmin) 4 ml/msn 500
1235	Purged (L) 2.5 5.0 7.5	6.33 6.33 6.33	(Celsius) 15.(1 14.99 14.94	(mS/cm)	Oxygen (mg/L	(mV) -93.3 -93.5	(NTU) 3.66 3.67	(ft BTOC) 7.35 7.39	(Hmin) 4 ml/msn 500
1235 1240 1245 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	6.32 6.33 6.33 6.33	(Celsius) 15.(1 14.99 14.94	(mS/cm)	Oxygen (mg/L O.O.1 O.O.1 O.O.0 Calibration	(mV) -93.3 -93.5 -93.7	(NTU) 3.66 3.67 3.67	(ft BTOC) 7.35 7.39	(Hmin) 4 ml/msn 500
1235 1240 1245 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron	(Celsius) 15.(1 14.95 14.94	(mS/cm) 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
1235 1240 1245 FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(ft BTOC) 7.35 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter	CALIBRATIO Model Heron Aqua TROLL	(Celsius) 15.(1 14.95 14.94	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL C	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS	CALIBRATION Model Heron Aqua TROLL	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron =	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS	CALIBRATIO Model Heron Aqua TROLL LA MoTI	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete	Purged (L) 2.5 5.0 7.5 PMENT AND robe Meter OMMENTS 5.70 rer Probe Unit #	CALIBRATIO Model Heron Aqua TROLL LA MOTI	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL Corrors Iron = Multi-Parameter Field Parameter	Purged (L) 2.5 5.0 7.5 PMENT AND robe Meter OMMENTS 5.70 rer Probe Unit #	CALIBRATION Model Heron Aqua TROLL CA Mo To	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-(Limin) 4 me/moton 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	Purged (L) 2.5 5.0 7.5 PMENT AND obe Meter OMMENTS 9.70 rer Probe Unit # rrs Measured in (ft bgs) = 2.9 5.00 au	CALIBRATION Model Heron Aqua TROLL CA Mo To	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL Cores Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate = Temp Well Dia	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 9.70 rer Probe Unit # rrs Measured in (ft bgs) = 25 500 au, ameter = (1)	CALIBRATION Model Heron Aqua TROLL CA MoT	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11
FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Sample Depth Pump Rate =	Purged (L) 2.5 5.0 7.5 PMENT AND Obe Meter OMMENTS 9.70 rer Probe Unit # rrs Measured in (ft bgs) = 25 500 au, ameter = (1)	CALIBRATION Model Heron Aqua TROLL CA MoT	(Celsius) 15.(1 14.99 14.94 DN 500 w/ flow thr	(mS/cm) 0,93 0,93 0,93 0,93	Oxygen (mg/L O.OI O.OI O.OI Calibration Checked Agai Twice Daily C	(mV) - 93.3 - 93.5 - 93.7	(NTU) 3.66 3.67 3.67	(fi BTOC) 7.35 7.39 7.39	-{L/min} - 4 mi/min 500 11 11

SITE NAME	CHAAI	POULRAO I	Performance M	onitoring	PROJECT NO)	604	65355	
			913-6-	***************************************	_). <i>EW</i>		·	
			1 / 144		PERSONNE	L_AE,	JO, 12	· <i>V</i>	·
SAMPLE ME	THOD	Peris	staltic Pump and	tubing					
SAMPLE ME	DIA:	Groundwate	er 🔾						
SAMPLE QA		YES	/ NO)		T SAMPLE NO)	V A		
-	DUPLICATE:	YES	NO		E SAMPLE NO		NA		
MS/MSD REC	QUESTED	YES	4 NO)	MS/MSI	O SAMPLE NO)	VA		
		PRESERVAT	IVES, ANALYS	SIS		***************************************		····	
Sample Contai			Preservative		Analysis Req				
2 - 500 mL An 3 - 40 mL VO			6°C		· · · · · · · · · · · · · · · · · · ·	MNX (8330A)			
1 - 500 mL HE			6°C, HCl 6°C, H ₂ S0 ₄		Methane (RS	NH ₃ (350.1), N	O./NO. (353.2)	
I - 250 mL HI			6°C			Alkalinity (232		,	
1 - 250 mL HI	OPE		6°C, ZnOAc/N	laOH	Sulfide (9034				
1 - 250 mL An			6°C		DOC (9060A				
WELL PURG	GING DATA								
Data		/_	_11 _ 0 1	\		ell Depth (ft bgs)			
Date Time Started			-4-21 1430 445			to Water (ft bgs) Column Length			
Time Complete	ed		4115			Column Length Volume (per ft)	*****		
PID Measurem			743			ater in Well (L)			
Background			ND			olumes to Purge	X	**···	
Breathing Z			ND			um to Purge (L)		-	
Well Head			ND			Actual Purge (L)			
Purge Water	г		ND						
FIELD MEAS	Amount	pН	Temperature	Conductivity	Dissolved	Redox (ORP)	Turbidity	Depth to Water	Purge Rate
	Purged (L)	,	(Celsius)	(mS/cm)	Oxygen (mg/L	.) (mV)	(NTU)	(ft BTOC)	-(Elmin) 15/ 111/min
1435	2.5	6.57	18.02	(mS/cm)	Oxygen (mg/I	.) (mV)	(NTU) 4./1	(ft BTOC)	-(L/min) /<
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(Elmin) K
	2.5		18.02	1.00	Oxygen (mg/I	.) (mV)	(NTU) 4./1	(ft BTOC)	-(Umin) K usl/min 500
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/11/11/19/19/19/19/19/19/19/19/19/19/19/
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/11/11/19/19/19/19/19/19/19/19/19/19/19/
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/11/11/19/19/19/19/19/19/19/19/19/19/19/
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/11/11/19/19/19/19/19/19/19/19/19/19/19/
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
1440	2.5	6.57	18.02	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
1440	2.5	6.57	18.02 18.16 19.14	1.00	Oxygen (mg/L	-124.8 -125.3	(NTU) 4./1 3.79	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
I 4 4 0 I 4 4 5	2.5 5.0 7.5 PMENT AND	6.57	18.02 18.16 19.14	1.00	Oxygen (mg/L	-124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56	(ft BTOC) 7.25 7.26	-(L/min) 12/ 12//min 500
FIELD EQUI	2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron	18.02 18.16 19.14	1.00	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
1440 1445	2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	18.02 19.16 19.14 ON	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(ft BTOC) 7.25 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUI	2.5 5.0 7.5 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	18.02 18.16 19.14	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUI	2.5 5.0 7.5 PMENT AND obe Meter	CALIBRATIO Model Heron Aqua TROLL	18.02 19.16 19.14 ON	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUIL Water Level Pr Water Quality GENERAL Co	2.5 5.0 7.5 PMENT AND obe Meter	CALIBRATIO Model Heron Aqua TROLL LA Moti	18.02 19.16 19.14 ON	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete	PMENT AND obe Meter OMMENTS 9,27 rs Probe Unit # rs Measured in	CALIBRATION Model Heron Aqua TROLL LA Moti	18.02 19.16 19.14 ON 500 w/ flow thr	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUII Water Level Pr Water Quality GENERAL Co Ferrous Iron = Multi-Paramete Field Paramete Sample Depth	PMENT AND obe Meter OMMENTS 9,27 in er Probe Unit # rs Measured in (ft bgs) = 3 5	CALIBRATIO Model Heron Aqua TROLL LA Mottl IFlow-Through	18.02 19.16 19.14 ON 500 w/ flow thr	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	-(Hmin) My 151/min 500 11 11
FIELD EQUII Water Level Pr Water Quality GENERAL Corrous Iron = Multi-Paramete Field Paramete Sample Depth of Pump Rate =	PMENT AND TO BE TO SHAPE TO SH	CALIBRATION Model Heron Aqua TROLL LA Motil I Flow-Through	18.02 19.16 19.14 ON 500 w/ flow thr	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUID Water Level Pr Water Quality GENERAL Corrections Iron = Multi-Parameter Field Parameter Sample Depth of Pump Rate = Temp Well Dia	PMENT AND obe Meter OMMENTS 9,27 in er Probe Unit # rs Measured in (ft bgs) = 3 5 500 ml ameter = 1	CALIBRATION Model Heron Aqua TROLL LA Motil Ing/L I Flow-Through	18.02 19.16 19.14 ON 500 w/ flow thr	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15
FIELD EQUID Water Level Pr Water Quality GENERAL Corrections Iron = Multi-Parameter Field Parameter Sample Depth of Pump Rate = Temp Well Dia	PMENT AND TO BE TO SHAPE TO SH	CALIBRATION Model Heron Aqua TROLL LA Motil Ing/L I Flow-Through	18.02 19.16 19.14 ON 500 w/ flow thr	1.00 1.01 1.01	Oxygen (mg/L	.) (mV) -124.8 -125.3 -125.6	(NTU) 4./1 3.79 3.56 ength	(fi BTOC) 7.25 7.26 7.26	(Hmin) 12 15 15 15 15 15 15 15 15 15 15 15 15 15

SITE NAME		СН	AAP		PROJECT NO.		605	665355	
SAMPLE NO		G002	2-21A		WELL NO.		G	0022	
DATE/TIME	COLLECTED	5-	25-2	1/1140	PERSONNEL	B	F. 1	< M	
SAMPLE ME	THOD	PRO-A	CTIVE SS MON	NOON					
SAMPLE ME	DIA:	Groundwater							
SAMPLE QA		YES	NO	SPLIT	SAMPLE NO.	_	NA		
-	DUPLICATE:	YES	NO		SAMPLE NO.		NA		
MS/MSD REG	QUESTED	YES	NO	MS/MSE	SAMPLE NO.		V /5		
SAMPLE CO	ONTAINERS, P	RESERVATI	VES, ANALYS	IS		***************************************		······································	
Sample Conta			Preservative		Analysis Reque				
2 - 500 mL Ar			6°C	······································	Explosives + N				
3 - 40 mL VO			6°C, HCl 6°C, H ₂ SO ₄		Methane (RSK TKN (351.2), 1		NIO (252.2	\	
1 - 250 mL HI			6°C		SO ₄ (9056A), A			<u> </u>	
1 - 250 mL HI			6°C, ZnOAc/Na	aOH	Sulfide (9034)	tikumity (2520	, , , , , , , , , , , , , , , , , , ,		
1 - 250 mL Ar			6°C	.011	DOC (9060A)				
WELL PURC	GING DATA				********		***************************************		
		, .	n - 01			epth (ft BTOC)		34.98	
Date			25-21			ater (ft BTOC)		10,55	
Time Started	and		100		<u>.</u>	Column Length		24.43	
Time Complet PID Measuren			170	······	Volume of Wa	Volume (per ft)		2.47	
Background			ND			lumes to Purge		60,34	
Breathing Z			NI)			m to Purge (L)		NA 20	
Well Head			<i>201</i> 5	······································	···	ctual Purge (L)		20	
Purge Water	r		NN		-	U			
DIELD MEA	OT IDER (ENITS								
Time	SUREMENTS Amount	рН	Temperature	Conductivity	Dissolved	Redox	Turbidity	Donth to Water	Dungo Doto
rinc	Purged (L)	pri	(Celsius)	(mS/cm)	Oxygen (mg/L)		(NTU)	Depth to Water (ft BTOC)	Purge Rate (Umin) n1/min
1105	2.5	6.80	12.12	0.97	12.08	22.1	1.16	10.62	500
1110	5.0	6.51	12,09	0.96	0.05	37.4	0,92	11	U
1115	7.5	6,52	12.03	0,95	0.04	35,4	1,50	4	(L
1120	10	6,65	11,99	0.94	0.06	26.5	1.99	L\	Ч
1125	12.5	6.69	12,00	0.94	0.07	22:0	126	()	11
1130	15	6,69	12.10	0.94	19.09	19.5	0.42	<u> </u>	41
1135	17.5	6.69	12.11	0.94	0:11	18.9	1.02	11	11
1140	20	6,68	11,99	0,94	0.10	18,2	0.87	11	11
		100							
						:			
		——————————————————————————————————————			-				
FIELD EQUI	PMENT AND	CALIBRATIO	DN .					<u>'</u>	
		<u>Model</u>			<u>Calibration</u>				
Water Level Pa		Heron			Checked Again				
Water Quality	Meter		500 w/ flow thro			llibration Verifi	cation also Ca	llibrated Weekly	
GENERAL C	OMMENTS	LA MOTI	e july	aucter -	PRILY				
Ferrous Iron =		ng/L							
Multi-Paramet	ter Probe Unit#	ì		***************************************					
	ers Measured in		Cell						
	ent Depth = 27	.5 ft							
Pump Rate =		/nin						2020 or Q5 / Ave	
Well Diameter					ORP	-94.9	141.4	-94.9	44.5
Screen Interval	1 = 18-33				DO	0.73	3.32	3.32	1.98
					PH Cond.	6.49 0.646	7.08 0.862	6.87 0.850	6.81 0.796
***************************************					CORG.	0.040	0.002	0.00.0	U./70

	ITE NAME CHAAP				PROJECT NO.			60565355		
SAMPLE NO.		G009	94-21A		WELL NO.		G(0094		
DATE/TIME (COLLECTED	5-2	5-21/	945	PERSONNEL	ME	= 16	- M		
SAMPLE ME			CTIVE SS MO				<u> , </u>			
SAMPLE MEI	DIA.	Groundwater	•							
SAMPLE OA		YES	NO	SPLIT	r sample no.	A	A			
SAMPLE QC		YES	NO		E SAMPLE NO.	- /V	7 <u>A</u>			
MS/MSD REQ		YES	NO	MS/MSE	SAMPLE NO.		À			
CLIMPI D CO	**************	TATION TATAL	V/IIC 1811 T V/C	170						
SAMPLE CO Sample Contai		RESERVATI	Preservative	SIS	Analysis Requ	ested				
2 - 500 mL An			6°C		Explosives + N					
3 - 40 mL VO			6°C, HCl		Methane (RSK					
1 - 500 mL HE	PE		6°C, H ₂ S0 ₄			NH ₃ (350.1), NO	O ₂ /NO ₃ (353.2)			
1 - 250 mL HE	PE		6°C			Alkalinity (2320	OB)			
1 - 250 mL HE			6°C, ZnOAc/N	IaOH	Sulfide (9034)					
1 - 250 mL An			6°C		DOC (9060A)				·	
WELL PURG	JING DATA				Wall	anth (A DTOC)		77.50		
Date		5-:	25-21			epth (ft BTOC) ater (ft BTOC)		27.50 (2.59		
Time Started			905		-	Column Length		14.91		
Time Complete	ed	0	245			Volume (per ft)		0.62	,	
PID Measurem	<u>ents</u>					ter in Well (L)		9,24		
Background			v D			lumes to Purge		NA		
Breathing Zo	one		<u>v i)</u>			ım to Purge (L)		20		
Well Head			NO		_ A	ctual Purge (L)		20		
Purge Water			V 17							
FIELD MEAS	UREMENTS				······································		***************************************			
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/ min) /	
910	2.5	6.19	11.29	1,09	0.07	-(/a	5,51	12.92	500	
915	510	5,99	11 32	1,08	0.04	-1.6 -20,8	4,61	()	11	
920	7,5	6,00	(1.73	1.09	0,03	-36.4	3.37);	ll	
925	10	6,04	11,41	1.08	0.03	-46.9	3.19	11	11	
			11.25	1.08	0.02			14		
930	12,5	6210		11100	11100	-55.7	1.00	1 6 6	/1	
930	15	6.12		1.08	0.02	-57.1	3.00	16	/ L	
	15 17.5	6.12	11,53	1.08	0.02	-59,1 -60,9	2.86			
935	15	6.12	11,53	1.08	0.02	-59,1	2.86	, ι	11	
935	15 17.5	6.12	11,53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935 940 945	15 17.5	6.12	11,53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935 940 945	15 17.5	6.12	11,53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935 940 945	15 17.5	6.12	11,53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935	15 17.5 20	6.12 6.13 6.13	11.53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935 940 945	15 17.5 20	CALIBRATIO	11.53	1.08	0.02	-59,1 -60,9	2.86	, L) /	11	
935	15 17.5 20 PMENT AND	6.12 6.13 6.13	11.53	1.08	0.02 0.02 0.02	-59.1 -60.9 -62.6	2.86 2.72 2.60	, L) /	11	
9 35" 9 40 9 45 	15 17.5 20 PMENT AND	CALIBRATIO Model Heron Aqua TROLL	11.53 11.37 11.62 DN	1.08 1.03 1.08	O. 0 2 O. 0 2 O. 0 2 Calibration Checked Again	-59,1 -60,9	2.96 2.72 2.60) () () () () () () () () () (11	
9 35 9 4 6 9 45 9 45 FIELD EQUII	15 17.5 20 PMENT AND obe Meter	CALIBRATIO Model Heron	11.53 11.37 11.62 DN	1.08	O. 0 2 O. 0 2 O. 0 2 Calibration Checked Again	-59,1 -60,9 -62, 6	2.96 2.72 2.60) () () () () () () () () () (11	
9 35 9 4 0 9 45 FIELD EQUII Water Level Prowater Quality I	PMENT AND obe Meter OMMENTS	CALIBRATION Model Heron Aqua TROLL	11.53 11.37 11.62 DN	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration	-59,1 -60,9 -62, 6	2.96 2.72 2.60) () () () () () () () () () (11	
9 45 9 45 FIELD EQUIL Water Level Pr Water Quality I	PMENT AND obe Meter OMMENTS 4.98	CALIBRATIO Model Heron Aqua TROLL LA Mott	11.53 11.37 11.62 DN	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration	-59,1 -60,9 -62, 6	2.96 2.72 2.60) () () () () () () () () () (11	
FIELD EQUII Water Level Pr Water Quality I GENERAL CO Ferrous Iron = Multi-Paramete	PMENT AND obe Meter OMMENTS 4.98 ner Probe Unit #	CALIBRATIO Model Heron Aqua TROLL LA Moti	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration	-59,1 -60,9 -62, 6	2.96 2.72 2.60) () () () () () () () () () (11	
9 35 9 4 U 9 45 FIELD EQUIL Water Level Pr Water Quality I GENERAL CO Ferrous Iron =	PMENT AND obe Meter OMMENTS 4.98 n or Probe Unit #	CALIBRATION Model Heron Aqua TROLL LA Mott	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration	-59,1 -60,9 -62, 6	2.96 2.72 2.60) () () () () () () () () () (11	
FIELD EQUII Water Level Pr Water Quality I GENERAL CO Ferrous Iron = Multi-Paramete Field Paramete	PMENT AND obe Meter OMMENTS 4.98 in er Probe Unit # rs Measured in nt Depth = 22	CALIBRATION Model Heron Aqua TROLL LA Mott	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Agair Twice Daily Co	-59,1 -60,9 -62,6	2.96 2.72 2.60 ength) () () () () () () () () () (11 (4)	
FIELD EQUII Water Level Prowater Quality I GENERAL Conference Iron = Multi-Parameter Pump Placement Pump Rate = Well Diameter	PMENT AND obe Meter OMMENTS 4.98 m or Probe Unit # rs Measured in nt Depth = 22 500 m = 2"	CALIBRATION Model Heron Aqua TROLL LA Mott	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration Checked Original Calibration Checked Again Checked Again Checked Again Twice Daily Calibration Checked Again	-59, l -60, 9 -62, C ast Calibrated Lealibration Verification Verific	2.96 2.72 2.60 ength	ibrated Weekly	11 (4)	
FIELD EQUII Water Level Prowater Quality I GENERAL Conference In Multi-Parameter Pump Placement Pump Rate =	PMENT AND obe Meter OMMENTS 4.98 m or Probe Unit # rs Measured in nt Depth = 22 500 m = 2"	CALIBRATION Model Heron Aqua TROLL LA Mott	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Agair Twice Daily Calibration Checked Agair	-59, I -60, 9 -62, C ast Calibrated La allibration Verification Ve	2.96 2.72 2.40 ength cation also Cal	ibrated Weekly	z in Bold) -16.6 0.48	
FIELD EQUII Water Level Prowater Quality I GENERAL Conference Ferrous Iron = Multi-Parameter Pump Placement Pump Rate = Well Diameter	PMENT AND obe Meter OMMENTS 4.98 m or Probe Unit # rs Measured in nt Depth = 22 500 m = 2"	CALIBRATION Model Heron Aqua TROLL LA Mott	11.37 11.62 11.62 DN 500 w/ flow three	1.08 1.03 1.08	Calibration Checked Again Twice Daily Calibration Checked Original Calibration Checked Again Checked Again Checked Again Twice Daily Calibration Checked Again	-59, l -60, 9 -62, C ast Calibrated Lealibration Verification Verific	ength cation also Cal	ibrated Weekly	i i // // // // // // // // // // // //	

SAMPLE NO. G0096-21A	SITE NAME							605	565355	
SAMPLE MEDIA: SAMPLE QA SPLIT: SAMPLE QA SPLIT: YES NO DUPLICATE SAMPLE NO. ### AND CONTAINERS, PRESERVATIVES, ANALYSIS Sample MANALYSIS SAMPLE CONTAINERS, PRESERVATIVES, ANALYSIS SAMPLE CONTAINER	SAMPLE NO		G00	96-21A		WELL NO.		G	···	
SAMPLE QA SPLIT:					835	PERSONNEL		E, 1	LM	
SAMPLE QO DUPLICATE: YES					7130011					
SAMPLE COLUPLICATE YES NO					SPLI	Γ SAMPLE NO.		N	A	
Sample Container Preservative Analysis Requested Explosives + MNX (830A)			YES	NO				G02	96-21A	
Sample Container	MS/MSD RE	QUESTED	YES	NO	MS/MSI	O SAMPLE NO.		ν .	<u>ት</u>	
2-50 mL Amber 6°C Explosives + MNX (33)30A)			PRESERVATI	VES, ANALYS	SIS					
340 in LVOA	•									
1-500 mL HDPE				···						
1 - 250 mL HDPE								O ₂ /NO ₃ (353.2	7	
1 - 250 mL AIDPE										
1-25 mL Amber	1 - 250 mL HI	DPE		6°C, ZnOAc/N	VaOH					
Date	1 - 250 mL Aı	mber								
Date	WELL PURC	GING DATA						***************************************		
Time Completed \$7.5	_		E- 1	£ 11						
Time Completed \$3.5 Well Casing Volume (per ft) No. 10			7-6	5 - 41						7
PID Measurements		and	7	55		······				
Casing Volumes to Purge 1/4 1/4 1/4				35						, 2
Berathing Zone Well Head Well Diameter = 2*				115						
No	-				****					
Purge Water	_	John		N/5						
FIELD MEASUREMENTS		r		NO			ictuar i urge (L)			
Time										
Purged (L) (Celsius) (mS/cm) Oxygen (mg/L) (mV) (NTU) (ft BTOC) 44/min / min	FIELD MEA	SUREMENTS								
\$05 5.0 6.10 1.84 1.10 0.05 -133.6 4.07 14.28 11 \$10 7.5 6.11 1.87 1.22 0.04 -134.9 3.02 11 11 \$15 10 6.24 1.99 1.22 0.03 -138.0 2.96 17 11 \$20 12.5 6.27 1.94 1.21 0.02 -138.3 2.01 11 11 \$25 15 6.27 1.94 1.21 0.02 -139.1 2.63 11 11 \$30 17.5 6.24 11.94 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.93 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.93 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.95 12.25 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.95 12.25 0.02 -138.6 2.10 11 11 \$35 20 6.19 11.95 11.95 11.95 11.95 Water Level Probe Water Quality Meter	Time		рН	•	•			•	-	(L/min)
\$05 5.0 6.10 1.84 1.10 0.05 -133.6 4.07 14.28 11 \$10 7.5 6.11 1.87 1.22 0.04 -134.9 3.02 11 11 \$15 10 6.24 1.99 1.22 0.03 -138.0 2.96 17 11 \$20 12.5 6.27 1.94 1.21 0.02 -138.3 2.01 11 11 \$25 15 6.27 1.94 1.21 0.02 -139.1 2.63 11 11 \$30 17.5 6.24 11.94 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.93 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.93 1.23 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.95 12.25 0.02 -138.6 2.10 11 11 \$35 20 6.29 11.95 12.25 0.02 -138.6 2.10 11 11 \$35 20 6.19 11.95 11.95 11.95 11.95 Water Level Probe Water Quality Meter	800	2.5	6.22	11.87	1 . i/s	0:07	-139.7	5.25	14.77	500
S O 7.5 O O O O O O O O O	805	5.0		11,84						
## S15	810				· · · · · · · · · · · · · · · · · · ·			1		
S20 12.5 G. 27 (1.93 1.26 0.03 -178.4 2.36 (1 11 11 12 15 15 15 15 1										11
\$\frac{\partial 2.5}{\partial 3.0} \ \frac{\partial 2.7}{\partial 3.0} \ \frac{\partial 3.2}{\partial 3.0} \ \frac{\partial 3.2}{\partial 3.0} \ \frac{\partial 3.2}{\partial 3.2} \ \frac{\partial 3.2}{\partial					·	12:03				11
FIELD EQUIPMENT AND CALIBRATION Model Heron Checked Against Calibrated Length Twice Daily Calibration Verification also Calibrated Weekly Calibration Verification also Calibrated Weekly Calibration Verification also Calibrated Weekly Calibrated Probe Heron Checked Against Calibrated Length Twice Daily Calibration Verification also Calibrated Weekly Calibrated Probe Calibrated Probe Calibrated Length Checked Against Calibrated Length Checked Against Calibrated Weekly Checked Against Calibrated Weekly Checked Against Calibrated Length Checked Against Calibrated Le		15								
### FIELD EQUIPMENT AND CALIBRATION Mode		17.5								
FIELD EQUIPMENT AND CALIBRATION										
Model								1		
Model			7							
Model	And and a second		11/11/2							
Model			00							
Model										
Water Level Probe Heron	FIELD EQUI	PMENT AND	CALIBRATIO	ON			-			
Water Quality Meter										
CA Moffe Turb Meter - DAY CA MOFFE TURB METER CA MOFFE TUR										***
GENERAL COMMENTS Ferrous Iron = 1,09 mg/L Multi-Parameter Probe Unit # / Field Parameter Probe Unit # / Field Parameters Measured in Flow-Through Cell Flow Placement Depth = 23 ft Flow Placement Depth = 23 ft Flow Placement Depth = 2 ft Flow Placement Depth	Water Quality	Meter					alibration Verif	ication also Ca	llibrated Weekly	
Ferrous Iron = 1,09 mg/L Multi-Parameter Probe Unit # / Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 23 ft Pump Rate = 500 mg/lm/s Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -43.9 133.1 65.0 30.3 Screen Interval = 15-25 DO 0.32 0.61 0.61 0.50 PH 6.40 7.04 6.72 6.62	GENERAL C	OMMENTS	CH :1101	ie iain	meter -	UMIU				
Multi-Parameter Probe Unit # / Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 23 ft Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -43.9 log 133.1 log 130.3 Screen Interval = 15-25 DO 0.32 log 1 log 0.61 log 0.50 PH 6.40 log 7.04 log 7.04 log 0.62		4 6 6	mg/L							
Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2.3 ft Pump Rate = 5 OO in f / in Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -43.9 133.1 65.0 30.3 Screen Interval = 15-25 DO 0.32 0.61 0.61 0.50 PH 6.40 7.04 6.72 6.62										
Pump Placement Depth = 23 ft Pump Rate = 5 OO in 1 /in 1 Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -43.9 133.1 65.0 30.3 Screen Interval = 15-25 DO 0.32 0.61 0.61 0.50 PH 6.40 7.04 6.72 6.62	***************************************			Cell						
Pump Rate = 5 00 ml /m / Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -43.9 133.1 65.0 30.3 Screen Interval = 15-25 DO 0.32 0.61 0.61 0.50 PH 6.40 7.04 6.72 6.62										
Well Diameter = 2" ORP -43.9 133.1 65.0 30.3 Screen Interval = 15-25 DO 0.32 0.61 0.61 0.50 PH 6.40 7.04 6.72 6.62	Pump Rate =	500 ml	110			Historic (7-year average	low and high /	2020 or Q5 / Av	g in Bold)
PH 6.40 7.04 6.72 6.62										
	Screen Interva	1 = 15-25				DO	0.32	0.61	0.61	
Cond. 0.483 1.040 1.040 0.697							6.40	7.04	6.72	6.62
						Cond.	0.483	1.040	1,040	0.697

SAMPLE NO. G0102-21A WELL NO. G0102	SITE NAME		CH.	AAP		PROJECT NO		605	65355	
DATEITIMS COLLECTED						_				
SAMPLE METHOD			_		<i>(</i> 2)				0.102	
SAMPLE GOASPILT:				·		_ PERSONNEI	- 12L)	12 10(
SAMPLE QO DUPLICATE: YES NO NO NO NO NO NO NO N										
SAMPLE OC DUPLICATE: YES NO NO NO NO NO NO NO N					l spir	L CAMBLE NU	114-			
No. MS/MSD SAMPLE NO. A A	•						· NA	***************************************		
Sample Container	MS/MSD REQ	UESTED	YES	NO	MS/MSI	SAMPLE NO				
Sample Container	SAMPLE CO	NTAINERS, I	PRESERVATION	VES. ANALYS	TIS				·//	***************************************
3.40 L VOA				-		Analysis Requ	<u>iested</u>			
1-500 mt. HDPE			· . · · · · · · · · · · · · · · · · · ·			·····				
1 - 250 mL HDPE					***************************************					
1 - 250 mL HDPE)	
1-250 ml. Amber 6°C DCC (9660A)					-OU			JB)		
Date					aon					
Dute				-						
Time Completed			ندي ين.							
Time Completed 142.0 Well Casing Volume (part in Well (L.) 11.4 47 47 47 47 47 47 47			5-2	<u> 21 - 21</u>					9.65	
PID Measurements				40						
Background ND	•		14	20						
Berathing Zone Well Head Purge Water Will Will Actual Purge (L) Actual Purg				420						
No	-								20	
FIELD MEASUREMENTS Time Amount pH Temperature Conductivity Dissolved Redox Turbidity Depth to Water Purge Rate Purged (L) (Celsius) (mS/cm) Oxygen (mg/L) (mV) (nTU) (ft BTOC) (Harmm) (mS/cm) (mS/cm) Oxygen (mg/L) (mV) (mV) (mTU) (ft BTOC) (Harmm) (mS/cm) (mS	_	sine							20	
FIELD MEASUREMENTS				VIX		<u>.</u>	101000 1 0180 (2)		KD	
Time	_									
Purged (L) (Celsius) (mS/cm) Oxygen (mg/L) (mV) (NTU) (ft BTOC) Leftrim And An										
13 45 2.5 6.98 13.13 2.52 0.05 -334.1 3.42 9.67 500 13 50 5.0 6.78 13.22 2.53 0.07 -329.7 3.01 (1 1 1 1 1 1 1 1 1	Time		pĦ	•	•			-	•	_
1350 5.0 6.78 13.22 2.57 0.07 -324.1 3.01 11 11 13.55 7.5 6.74 13.24 2.52 0.02 -328.1 3.09 11 11 11 12 14.00 10 6.71 13.24 2.52 0.01 -327.9 2.99 11 11 11 11 12 13.12 2.53 0.01 -327.6 2.25 11 11 11 12 14 15 6.69 13.19 2.53 0.01 -327.3 0.14 11 11 11 11 11 11 11	1245	2.5	1.98	12 13	2,52	13.05	_334.1_	3,47	947	
13.55 7.5			6,78							
1400	1365	***************************************		13.24					ļ	
1									1	
1410 15	1405				2.53	0.01				17
1415			6,69		2.53		-329, 3		11	71
1420 20 13.34 2.53 0.0 -335.7 2.32 (1 (1 (1 (1 (1 (1 (1 (17.5	6,70							17
FIELD EQUIPMENT AND CALIBRATION	1420	20	6,70	13,39	2.53		- 335.7		((()
Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Tw/b · mull w/ - D/A) Twice Daily, Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1,866 mg/L Stvong Sielfer of Oder Difference of Mean of the Weekly Multi-Parameter Probe Unit # 1 Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2 3 ft ft Pump Rate = 900 m/l min Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -279.2 lo.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83										
Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Tw/b · mull w/ - D/A) Twice Daily, Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1,866 mg/L Stvong Sielfer of Oder Difference of Mean of the Weekly Multi-Parameter Probe Unit # 1 Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2 3 ft ft Pump Rate = 900 m/l min Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -279.2 lo.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83										
Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Tw/b · mull w/ - D/A) Twice Daily, Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1,866 mg/L Stvong Sielfer of Oder Difference of Diffe			M							
Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Tw/b · mull w/ - D/A) Twice Daily, Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1,866 mg/L Stvong Sielfer of Oder Difference of Diffe			7 - 1				<u>_</u>			
Model Calibration Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Tw/b · mull w/ - D/A) Twice Daily, Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1,866 mg/L Stvong Sielfer of Oder Difference of Diffe	EIEI D EOUI	DATENIT AND	CALIDDATIO	N	· · · · · · · · · · · · · · · · · · ·		<u> </u>		1	
Water Level Probe Heron Checked Against Calibrated Length Water Quality Meter Aqua TROLL 500 w/ flow through cell Twice Daily Calibration Verification also Calibrated Weekly GENERAL COMMENTS Ferrous Iron = 1.866 mg/L Strong Sieller Weekly Multi-Parameter Probe Unit # 1 Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2.3 ft Pump Rate = 900 m/l min Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -279.2 10.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83	TIELD EQUIF	rivient AND		'IN		Calibration				
Water Quality Meter	Water Level Pro	obe					nst Calibrated L	ength		
CA motte Turb multiv - DAI V				500 w/ flow thre	ough cell				librated Weekly	
Ferrous Iron = 1, 86 mg/L Multi-Parameter Probe Unit # 1 Field Parameters Measured in Flow-Through Cell Pump Placement Depth = 2, 3 ft Pump Rate = 900 m/l min										
Multi-Parameter Probe Unit # / Field Parameters Measured in Flow-Through Cell Pump Placement Depth = '2.3 ft Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -279.2 10.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83			II				Strong	ci. life	-Bdor 1	1 PZ
Field Parameters Measured in Flow-Through Cell			ııg/∟			·····	<i>y</i> , <i></i>			
Pump Placement Depth = 2.3 ft Pump Rate = 900 m / / win Historic (7-year average low and high / 2020 or Q5 / Avg in Bold) Well Diameter = 2" ORP -279.2 10.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83			Flow-Through (Cell	***************************************					
Pump Rate = \$\frac{900}{000} \text{ ns } \frac{1}{000} \text{ ns } \frac{1}{000} \text{ ms } \tex										
Well Diameter = 2" ORP -279.2 10.9 -279.2 -84.4 Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83		1 10 10			·	Historic (7-year average l	ow and high /	2020 or O5 / Av	g in Bold)
Screen Interval = 15-25 DO 0.03 0.62 0.03 0.37 PH 6.68 7.00 6.68 6.83										
	Screen Interval	= 15-25					0.03	0.62	·	0.37
Cond. 2.271 2.740 2.271 2.424						PH		7.00	6.68	6.83
						Cond.	2.271	2.740	2.271	2.424

SITE NAME CHAAP			IAAP		PROJECT NO.			60565355		
SAMPLE NO.	SAMPLE NO. G0111-21A				WELL NO	·	G0111			
DATE/TIME (COLLECTED	5-24-	21/13	20	PERSONNEI	. P20	$=$, \ltimes	M		
SAMPLE ME	THOD		CTIVE SS MC	NSOON						
SAMPLE MEI	DIA:	Groundwater	•							
SAMPLE QA	SPLIT:	YES	NO	SPLI	T SAMPLE NO		NA	4		
SAMPLE QC		L	NO	-	E SAMPLE NO		G03	311-21A 🐵	800	
MS/MSD REQ	UESTED	YES	NO	MS/MS	D SAMPLE NO	•	NA			
SAMPLE CO	NTAINERS, I	PRESERVATI	VES, ANALYS	SIS				-		
Sample Contai	_		<u>Preservative</u>		Analysis Requ					
2 - 500 mL An 3 - 40 mL VO			6°C 6°C, HCl		Methane (RSI	MNX (8330A)				
1 - 500 mL HD			6°C, H ₂ SO ₄			NH ₃ (350.1), No	O ₂ /NO ₃ (353.2	2)		
1 - 250 mL HD			6°C		SO ₄ (9056A),	Alkalinity (232				
1 - 250 mL HD 1 - 250 mL An			6°C, ZnOAc/N	laOH	Sulfide (9034) DOC (9060A)					
WELL PURG			0.0		DOC (9000A))				
			, , , , , ,	,	Well D	epth (ft BTOC)		27.54		
Date		*	-24-2	- 1	Depth to V	Vater (ft BTOC)		16.98		
Time Started Time Complete			235			Column Length		10.50		
PID Measurem			320			Volume (per ft)		0.62		
Background		,	VO		Volume of Water in Well (L) 6.54 Casing Volumes to Purge NA					
Breathing Zo	one		ND		Minimum to Purge (L) 20					
Well Head		N D		Actual Purge (L)						
Purge Water			N 1/2							
FIELD MEAS			***		***************************************	a militar i	***************************************			
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox) (mV)	Turbidity (NTU)	Depth to Wate (ft BTOC)	で Purge Rate (口加加) だ MI / min	
1240	2.5	6.64	12.10	2.06	0.10	38.2	7,35	17.05	500	
1245	5.0	6.50	12.09	2,06	0.08	39.3	5.02	U	17	
1250	7.5	6.41	12.00	2.07	0.06	26.9	4.01	11	11	
1300	12.5	6.37	12.14	2,09	0.05	-10:2 -34,1	3,54 3,49	11	11	
1305	15	10.37	12,10	2.10	0.04	-49.7	3.42	11	11	
1310	12.5	6.37	12.13	2.08	0.04	-57.3	3.10	11	1)	
1315	20	6.37	12.11	2.11	0.04	-61,9	3,10	11	11	
1320	22,5	6.38	12,11	2.13	0.04	-63,8	3,44	l)	11	
		AM								
	$$ ι				•					
FIELD EQUII	PMENT AND	CALIBRATIC	N		*****					
		<u>Model</u>			<u>Calibration</u>					
Water Level Pro Water Quality N		Heron Aqua TROLL :	500 m/ flow the	auch coll		nst Calibrated L		alibrated Weekly		
Water Quarty 1	VICICI	LA MAH			· Orily	anoration venii	cation also Ca	ilibrated weekly		
GENERAL CO	- ~		•		***************************************		*****	***************************************		
Ferrous Iron = Multi-Paramete		mg/L								
Field Parameter			Cell							
Pump Placemer	nt Depth = 2-7	2.5 ft								
Pump Rate =		/min						2020 or Q5 / Av		
Well Diameter :					ORP	-198.4	14.0	-198.4	-76.5	
Scious Interval	1,7-2,J				DO PH	0.15 6.37	0.86 7.06	0.22 6.69	0.48 6.66	
					Cond.	1.239	1.762	1.762	1.522	

SITE NAME CHAAP			PROJECT NO. 60565355						
SAMPLE NO.	•	G0121-21A			— WELL NO		G	0121	
	DATE/TIME COLLECTED 5-24-21 / 1105 SAMPLE METHOD PRO-ACTIVE SS MONSOON			_ AB	· , /	M			
SAMPLE ME	DIA:	Groundwater		_					
· · · · · · · · · · · · · · · · · · ·			T SAMPLE NO E SAMPLE NO	•	A IA				
MS/MSD REC		YES	NO		D SAMPLE NO		/A		
SAMPLE CO	NTAINERS, I	PRESERVATI	VES. ANALYS	SIS				****	
Sample Contain	<u>iner</u>		<u>Preservative</u>		Analysis Requ				
2 - 500 mL An			6°C			MNX (8330A)			
3 - 40 mL VO			6°C, HCl		Methane (RSF		. 0.10 (0.50 0)		
1 - 500 mL HE			6°C, H ₂ SO ₄	·		NH ₃ (350.1), NO Alkalinity (2320)	
1 - 250 mL HE			6°C, ZnOAc/N	InOU	Sulfide (9034),		(סו		
1 - 250 mL An			6°C	aon	DOC (9060A)				
WELL PURG			<u> </u>		DOC (7000A)	,		····	<u> </u>
WEDE LOVE	MINUUMIN				Wall D	Pepth (ft BTOC)		23.25	
Date		2-1	14-21			Vater (ft BTOC)		32.35 1 3.61	
Time Started		7 /	05			Column Length		18,74	· · · · · · · · · · · · · · · · · · ·
Time Complete	ed	10	05			Volume (per ft)		0.62	
PID Measurem			<i>u</i>)						
Background			110		Volume of Water in Well (L) 11-62 Casing Volumes to Purge NA				
Breathing Z			NO			um to Purge (L)		20	
Well Head			ND			Actual Purge (L)		30	
Purge Water	•	NO				TOTAL TALES		<u> </u>	
			7 0						
FIELD MEAS Time	SUREMENTS Amount Purged (L)	Нд	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (Limin)
1010	2,5	5.07	12.05	3.05	0:16	-37.5	20.7	14.95	500
1015	5.0	4.98	12.10	3,05	0:10	-51.1	26.1	14.48	500
1020	7.5	4,00	12.12	2,94	0.09	-64.3	2911	15,00	l l
1025	10	5.03	12.13	2.86	0.09	-81,0	22.4	15,00	11
1030	12,5	5.09	12.21	2,78	0.08	-94.3	20,7	15.00	il
1.035	15	5.17	12.17	2.68	0.08	-107.9	23.3	LA	il
1040	17.5	5,25	12.25	2.61	0.08	-119.3	17.1	11	n
1045	20	5.34	12.24	2.54	0.08	-131.7	15.5	- 61	11
1050	22,5	5.38	12.36	2.48	0.07	-141.1	16.0	11	()
1055	25.0	5,49	12,39	2.43	0.07	-153.5	15:0	11	()
1100	27.5	5.53	12.38	2.37	0,07	-163.3	15.1		"
11.05	30.0	5.59	12.36	2,33	0.08	-173.6			
11.07	3-2-1 h	7 4 9 7	12.76	2,77	0,00	-1750	16.2	11	<u>"</u>
FIELD FORM		CALIBRATIC) N	I		1		<u> </u>	
FIELD EQUI	FINENT AND	Model)IN		C-101				
Water Level Pr	ohe	Heron			Calibration Chapted Again	net Calibrated La			
Water Quality			500 w/ flow thro	nuch call		nst Calibrated Le		ibratad W1-1	
mater Quanty		LA MOT				alibration Verifi	cation also Ca	indicated weekly	
GENERAL C	OMMENTS				7	Gold col	an alaten	c - 5+1A.	e odar
Ferrous Iron =		mg/L			annet	GOIA CONO	L WILL ALA	1 5tahil	7 0001
Multi-Paramete					9, 15, 5	he F Con C	- 40111 100	. 2 [10 -0 - 1]	
		Flow-Through	Cell						
Pump Placeme									
Pump Rate = 4		/min			Historic (7-year average lo	ow and high /	2020 or O5 / Av	g in Bold)
						-127.9	-80.0	-127.9	-101.9
Well Diameter	= 2"				ORP	-127.9			"LU1.7
Well Diameter Screen Interval					DO	0.04			
						0.04	1.24	0.04	0.65
					DO				

SITE NAME		СНААР			PROJECT NO. 60565355			565355	
SAMPLE NO.		G0122-21A			WELL NO	***************************************		0122	
DATE/TIME COLLECTED 5-23-21/ SAMPLE METHOD PRO-ACTIVE SS M			105 INSOON	_ PERSONNEL	·/>	E, K	. M		
SAMPLE MEI SAMPLE QA SAMPLE QC MS/MSD REQ	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATE	T SAMPLE NO. E SAMPLE NO. D SAMPLE NO.		r A- 		
SAMPLE CO	NTAINERS, P	PRESERVATI	VES, ANALYS	SIS	***************************************				
Sample Contai	nber		Preservative 6°C		Analysis Requ Explosives + N	MNX (8330A)			
3 - 40 mL VO			6°C, HCl 6°C, H ₂ S0 ₄		Methane (RSF	C 175) NH ₃ (350.1), N	O (NO (353.2		
1 - 250 mL HD			6°C			Alkalinity (232)		.)	
1 - 250 mL HE			6°C, ZnOAc/N	IaOH	Sulfide (9034)		· · · · · · · · · · · · · · · · · · ·		
1 - 250 mL An	nber		6°C		DOC (9060A)				
WELL PURG	ING DATA								****
			23-21		Well D	epth (ft BTOC)	32.	91	
Date			=			/ater (ft BTOC)		95	
Time Started	_		25		-	Column Length		96	
Time Complete			05			Volume (per ft)		62	
PID Measurem			v D			iter in Well (L)		07	
Background Breathing Zo			UU			olumes to Purge			
Well Head	Silc				<u></u>	um to Purge (L) Actual Purge (L)		<i>0</i>	
Purge Water			$\frac{ND}{ND}$			icital Fulge (L)			
			<u> </u>						
FIELD MEAS	UREMENTS						***************************************		
Time	Amount Purged (L)	pН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L)	Redox) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (I/min) (D)
1030	2.5	6.74	13.10	2,28	0.08	-239,7	4.70	14.96	500
1035	5.0	6,66	13.14	2.33	0.06	-278,1	4.20	11	17
1040	7.5	6.67	13.14	2.37	0.04	-326,1	2,74	11	13
1045	10	6.68	13.21	2.41	0,03	-337.6	3.76	Ct	()
1050	12.5	6,67	13.02	2.44	0.03	-324.6	2.55	(1	1/
1055	15	6,69	13.16	2,44	0.02	-339.2	2,22	11	U
1100	17,5	6.69	13,26	2.44	0.02	-341.5	2.18	11	11
1105	<i>ጉዕ</i>	6.69	13,10	2,44	0.02	-341,4	2.24	l ((1
		W							
DIEL D'EQUI) (T) (T)		<u> </u>						
FIELD EQUI		Model Model)N		Calibration				
Water Level Pro	obe	Heron			Checked Again	nst Calibrated L	ength		
Water Quality I	Meter	Aqua TROLL:	500 w/ flow thro	ough cell	Twice Daily C	alibration Verifi	cation also Ca	librated Weekly	
		LA MO	ite tur	b anctor	- DAIN	/			
GENERAL CO Ferrous Iron = Multi-Paramete	2.79 n	ng/L				Strong	Sulfer	odor	^
Field Parameter		Flow-Through	Cell						
Pump Placemer			1100						
Pump Rate =			1		Historia (7-vear average l	ow and high /	2020 or Q5 / Avg	in Bold)
Well Diameter:		. , , , , ,	•		ORP	-266.4	-61.0	-266.4	-163.7
Screen Interval		*,***			DO	0.06	0.30	0.06	0.18
					PH	6.48	7.01	6.48	6.75
					Cond.	2.339	2.340	2.339	2.340

SITE NAME		СН	AAP		PROJECT NO		605	65355	***************************************	
SAMPLE NO. G0123-21A				WELL NO		G	0123			
DATE/TIME COLLECTED 5-24			21/94	0	DEDCOMME	125	E, K1	n		
SAMPLE ME			CTIVE SS MO		_ FEKSONNEI	100	<u> </u>			
SAMPLE ME					<u></u>					
SAMPLE ME		Groundwater YES	NO	CDI I'	ΓSAMPLE NO	A I	LA			
-	DUPLICATE:	YES	NO		E SAMPLE NO		'A 'A			
MS/MSD REG		YES	NO	4	SAMPLE NO		IA			
····					, or min. DE 110					
	ONTAINERS, I	PRESERVATI		SIS		***************************************				
Sample Conta			Preservative		Analysis Requ					
2 - 500 mL At 3 - 40 mL VO			6°C		·	MNX (8330A)				
1 - 500 mL HI			6°C, HCl 6°C, H ₂ SO ₄		Methane (RSI	NH ₃ (350.1), NO) /NO (353 2)	\		
1 - 250 mL HI			6°C			Alkalinity (2320				
1 - 250 mL HI			6°C, ZnOAc/N	iaOH	Sulfide (9034		<i>ab</i> ,			
1 - 250 mL Aı	mber		6°C		DOC (9060A)					
WELL PURC	GING DATA								***************************************	
			بيسيي			epth (ft BTOC)	32	0		
Date			24-21		Depth to V	Vater (ft BTOC)	13 4.6	0		
Time Started		90	00		***	Column Length			(
Time Complet		94	40	·		Volume (per ft)		,		
PID Measuren			. D			ater in Well (L)		65 23K	11.4	
Background			· <i>D</i>		Casing Volumes to Purge					
Breathing Z Well Head	Zone					um to Purge (L)				
Purge Wate	sr'				F	Actual Purge (L)		0		
- Turge Wate			<i></i>							
FIELD MEA	SUREMENTS	***************************************							***************************************	
Time	Amount Purged (L)	рН	Temperature (Celsius)	Conductivity (mS/cm)	Dissolved Oxygen (mg/L	Redox) (mV)	Turbidity (NTU)	Depth to Water (ft BTOC)	Purge Rate (L/min) Ki MI/min	
905	2.5	6.32	12.56	1.85	0.13	-99,4	3.06	13.65	500	
			12.53	1.88		-106.4	3.43	11	11	
1910	5.0	6.29			1008					
910	5.0	6,29			0.08					
915	7.5	6.30	12.52	1.88	0.67	-111.0	3,54	11	11	
915	7.5	6,36	12.52	1.88	0.07	-111.0 -116.0	3.54	/ L	1) 1/	
915 920 925	7.5 10 12.5	6.39	12.52	1.88 1.88 1.85	0.07	-111:0 -(16:0 -120:0	3.54 3.52 2.27		// // ()	
915 920 925 930	7.5 10 12.5 15	6.39	12.52 12.53 12.55 12.54	1.88 1.88 1.88	0.07	-111:0 -(16:0 -120:0 -(23.6	3.54 3.52 2.27 2.27		11 11 (2 11	
915 920 925 930 935	7.5 10 12.5 15 17.5	6.39 6.39 6.39 6.39	12.52 12.53 12.55 12.54 12.54	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / (} 1 / 1 /	
915 920 925 930	7.5 10 12.5 15	6.39	12.52 12.53 12.55 12.54	1.88 1.88 1.88	0.07	-111:0 -(16:0 -120:0 -(23.6	3.54 3.52 2.27 2.27		11 11 (2 11	
915 920 925 930 935	7.5 10 12.5 15 17.5	6.39 6.39 6.39 6.39	12.52 12.53 12.55 12.54 12.54	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / () 1 / 1 /	
915 920 925 930 935	7.5 10 12.5 15 17.5 20	6.36 6.34 6.38 6.39 6.39 6.40	12.52 12.53 12.55 12.54 12.54	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / (} 1 / 1 /	
915 920 925 930 935	7.5 10 12.5 15 17.5 20	6.39 6.39 6.39 6.39	12.52 12.53 12.55 12.54 12.54	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / () 1 / 1 /	
915 920 925 930 935	7.5 10 12.5 15 17.5 20	6.36 6.34 6.38 6.39 6.39 6.40	12.52 12.53 12.55 12.54 12.54	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / () 1 / 1 /	
915 920 925 930 935 940	7.5 10 12.5 15 17.5 20	6.34 6.34 6.39 6.39 6.40	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / () 1 / 1 /	
915 920 925 930 935 940	7.5 10 12.5 15 17.5 20 M	6.34 6.34 6.39 6.39 6.40	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.88 1.88	0.67 0.06 6.05 0.06	-111.0 -(16.0 -120.0 -(23.6 -(25.8	3.54 3.52 2.27 2.27 2.42		1) 1 / () 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 FIELD EQUI	7.5 10 12.5 15 17.5 20 PMENT AND	6,36 6,34 6,39 6,39 6,40 CALIBRATIO Model Heron	12.51 12.53 12.55 12.54 12.55 12.57	.88 188 186 186 186 188	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / () 1 / 1 /	
915 920 925 930 935 940	7.5 10 12.5 15 17.5 20 PMENT AND	6,36 6,34 6,39 6,39 6,40 CALIBRATIO Model Heron	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-111:0 -(16:0 -120:0 -(23.6 -(25.8 -129:6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / () 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 FIELD EQUI	7.5 10 12.5 15 17.5 20 IPMENT AND	6,36 6,34 6,39 6,39 6,40 CALIBRATIO Model Heron	12.51 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / () 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Pr Water Quality	7.5 10 12.5 15 17.5 20 IPMENT AND	6,36 6,34 6.39 6.39 6.39 6.40 CALIBRATIO Model Heron Aqua TROLL: LA MORE	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / () 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Powater Quality GENERAL Control of the	7.5 10 12.5 15 17.5 20 IPMENT AND Trobe Meter	(6,36) (6,34) (6,39) (6,39) (6,39) (6,40) CALIBRATIO Model Heron Aqua TROLL: 1 A Makta	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / (} 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 FIELD EQUI Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramet	IPMENT AND TODE Meter COMMENTS 5./2 IT TODE THE Probe Unit #	(6,36) (6,34) (6,39) (6,39) (6,39) (6,40) CALIBRATIO Model Heron Aqua TROLL: 1 A Mokta	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / (} 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Present Company of the Periods Iron = Multi-Parameter Field Parameter Field Parameter Programmeter Progra	7.5 10 12.5 15 17.5 20 IPMENT AND Trobe Meter	CALIBRATIO Model Heron Aqua TROLL: LA MORT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	0.67 0.06 6.05 0.05 0.05 0.05	-1/1:0 -(16:0 -120:0 -(23.6 -(25.8 -129.6	3,54 3.52 2.27 2.27 2.42 2.17		1) 1 / (} 1 / 1 /	
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Preserved In Paramete Field Paramete Pump Placeme	IPMENT AND TODE TODE	CALIBRATIO Model Heron Aqua TROLL: LA MORT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	Calibration Checked Agai Twice Daily C	-1/1:0 -(16,0) -(23.6) -(23.6) -(25.8) -(25.8) -(25.6) -(25.6) -(25.6) -(25.6) -(25.6) -(25.6)	3,54 3.52 2.27 2.27 2.17 2.17	ibrated Weekly	// (
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Preserved In Paramete Field Paramete Pump Placeme	IPMENT AND TODE Meter COMMENTS 55/2 Ter Probe Unit # ers Measured in ent Depth = 2 500 ml	CALIBRATIO Model Heron Aqua TROLL: LA MOKT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	Calibration Checked Agai Twice Daily C	-1/1:0 -(16,0) -(23.6) -(23.6) -(25.8) -(25.8) -(25.6) -(25.6) -(25.6) -(25.6) -(25.6) -(25.6)	3,54 3.52 2.27 2.27 2.17 2.17		// // // // //	
9 15 9 20 9 25 9 30 9 35 9 40 Water Level Pr Water Quality GENERAL C Ferrous Iron = Multi-Paramete Field Paramete Pump Placeme Pump Rate =	IPMENT AND TODE Meter COMMENTS 55/2 Ter Probe Unit # ers Measured in ent Depth = 2 500 m/ 1 = 2"	CALIBRATIO Model Heron Aqua TROLL: LA MOKT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	Calibration Checked Agai Twice Daily C	-1/1:0 -(16.0) -(120.0) -(23.6) -(25.8) -/28.6 -i28.6	3,54 3.52 2.27 2.27 2.27 2.17 2.17	ibrated Weekly	// (
9 15 9 20 9 25 9 30 9 35 9 40 FIELD EQUI Water Level Properties from a Multi-Parameter Properties from Placemer Pump Placemer Pump Rate a Well Diameter	IPMENT AND TODE Meter COMMENTS 55/2 Ter Probe Unit # ers Measured in ent Depth = 2 500 m/ 1 = 2"	CALIBRATIO Model Heron Aqua TROLL: LA MOKT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	Calibration Checked Agai Twice Daily C Daily Historic (ORP	-1/1:0 -(16,0) -(120,0) -(23.6) -(25.8) -/28.6 -/28.6 -/28.6 -/29.6	3,54 3.52 2.27 2.27 2.27 2.17 2.17		// (
FIELD EQUI Water Level Properties for the Properties of the Properties for the Propertie	IPMENT AND TODE Meter COMMENTS 55/2 Ter Probe Unit # ers Measured in ent Depth = 2 500 m/ 1 = 2"	CALIBRATIO Model Heron Aqua TROLL: LA MOKT	12.52 12.53 12.55 12.54 12.55 12.57	1.88 1.88 1.86 1.86 1.88 1.88	Calibration Checked Agai Twice Daily C Daily Historic (ORP	-1/1:0 -(16.0) -(120.0) -(23.6) -(25.8) -/25.8 -/28.6 -	3,54 3.52 2.27 2.27 2.27 2.17 2.17 ength cation also Cal		;; i, f,	

SITE NAME	СНААР	PROJECT NO.	PROJECT NO. 60565355			
SAMPLE NO.	PZ017R-21A	WELL NO.	PZ017R			
DATE/TIME COLLECTED	E Stort I had a	7 45 PERSONNEL	AE,	IL M		
SAMPLE METHOD	PRO-ACTIVE SS MONSO			, ,,, -		
SAMPLE MEDIA:	SAMPLE MEDIA; Groundwater					
SAMPLE QA SPLIT:	YES NO	SPLIT SAMPLE NO.		NA	 	
SAMPLE QC DUPLICATE:		UPLICATE SAMPLE NO.			21-21A (80c	?)()
MS/MSD REQUESTED	YÉS NO	MS/MSD SAMPLE NO.		NA		
	PRESERVATIVES, ANALYSIS			***************************************		***************************************
Sample Container 2 - 500 mL Amber	<u>Preservative</u> 6°C	<u>Analysis Reque</u> Explosives + M				
3 - 40 mL VOA	6°C, HCl	Methane (RSK			······································	
1 - 500 mL HDPE	6°С, Н ₂ S0 ₄		VH ₃ (350.1), NO ₂		}	
1 - 250 mL HDPE	6°C		Alkalinity (2320E	3)		
1 - 250 mL HDPE 1 - 250 mL Amber	6°C, ZnOAc/NaOI 6°C	Sulfide (9034) DOC (9060A)		······································		
WELL PURGING DATA						
	/~ a i		pth (ft. BTOC)_		32,42	
Date Time Started	5-26-21		ter (ft. BTOC)		9,73	
Time Started Time Completed	1846	········	Column Length _ Volume (per ft)		22.69	
PID Measurements	<u> </u>		er in Well (L)		14.07	
Background	ND		lumes to Purge _		NA	
Breathing Zone Well Head	NI)		m to Purge (L) _ ctual Purge (L)		30	
Purge Water			cidal Fulge (L)		30	
FIELD MEASUREMENTS	***************************************			***********		
Time Amount		nductivity Dissolved	Redox	Turbidity	Depth to Water	Purge Rate
Purged (L)	(Celsius)	mS/cm) Oxygen (mg/L)	(mV)	(NTU)	(ft BTOC)	M/min) KD
0750 2.5	6.30 11.57 0	1.88 O.11	201.8	1,49	9,74	500
0755 5.0		90 0.07		090	9,74	()
0800 7.5		.90 0.06		1.22	11	11
0810 12.5	1 - 1	.91 6.05 90 0:04		1,08	il	(1
0815 15		91 0:04		0.76	11	17
0820 17.5	6.19 11.94 0	.91 0.04		0,61	CZ	11
0825 20		191 0.04	4	0,76	jı	11
0830 21.5	6.19 12.11 0		161.9	0,54	11	
0835 250		191 0.03	155.2	0.54	11	
08 45 30		91 0.03	·······	0,88	61	(1
	n Pr		1			
FIELD EQUIPMENT AND		G 111 - 1			7180	
Water Level Probe	Model Heron	Calibration Checked Agains	st Calibrated Ler	acth		
Water Quality Meter	Aqua TROLL 500 w/ flow through	·····	libration Verifica		ibrated Weekly	· · · · · · · · · · · · · · · · · · ·
GENERAL COMMENTS	LA MOTTE TUNB ME	itar - mes Davil	Υ			
~ ~ ~ ~	mg/L	<i></i>				
Multi-Parameter Probe Unit #	† į					
Field Parameters Measured in						
Pump Placement Depth = 2		fliatair /7	1000 0-1000 1-	n and hi-1- / 6)))))	in Dalah
Pump Rate = 500 au / Well Diameter = 2"	/min	ORP	-year average lov	v and high / 2 202,6	2 <u>020 or Q5 / Avg</u> 6.8	in Bold) 119.7
Screen Interval = 10-30		DO	0.01	5.92	0.01	3.16
		PH	6.07	6.90	6.38	6.36
		Cond.	0.628	0.902	0.902	0.775

SITE NAME		СН	AAP		PROJECT NO.		605	65355	
SAMPLE NO		PZ018-21A			 WELL NO.			Z018	
DATE/TIME	DATE/TIME COLLECTED 5-25-21 @ 1525 SAMPLE METHOD PRO-ACTIVE SS MONSOON			PERSONNEL					
SAMPLE ME SAMPLE QA SAMPLE QC MS/MSD REG	SPLIT: DUPLICATE:	Groundwater YES YES YES	NO NO NO	DUPLICATI	T SAMPLE NO. E SAMPLE NO. D SAMPLE NO.	N A	4		
SAMPLE CO Sample Conta 2 - 500 mL Ar 3 - 40 mL VO 1 - 500 mL HI 1 - 250 mL HI 1 - 250 mL Ar WELL PURC	mber IA DPE DPE DPE nber	PRESERVATI	Preservative 6°C 6°C, HCl 6°C, H ₂ SO ₄ 6°C 6°C, ZnOAc/N			MNX (8330A) (175) NH ₃ (350.1), No Alkalinity (232)			
Date Time Started Time Complet PID Measuren Background Breathing Z Well Head Purge Water	nents i Zone	5 - N N N N	25-21 445 525 D		Depth to W Water Well Casing Volume of Wa Casing Vo	epth (ft. BTOC) fater (ft. BTOC) Column Length Volume (per ft) ater in Well (L) olumes to Purge um to Purge (L) actual Purge (L)		31.90 11.24 20.66 0,63 13.81 WA 20 20	
Time	SUREMENTS Amount Purged (L) 2, 5 5.0 7.5 10.0 12.5 15.0 17.5 20.0	5.80 5.81 5.85 5.85 5.91 5.94 5.95	Temperature (Celsius) 14.25 14.27 14.23 14.80 14.59 14.65	Conductivity (mS/cm) 0, 854 0,858 0,873 0,868 0,875 0,875 0,870	Dissolved Oxygen (mg/L) 0, 12 0, 10 0, 04 0, 07 0, 12 0, 08 0, 62 0, 62	Redox (mV) 46,4 42,5 32,2 25,3 21,2 15,9 12,7	Turbidity (NTU) 0.00 0.45 0.00 0.49 0.68 0.00 0.92 0.70	Depth to Water (ft BTOC) 11.23 11.24 11.25 11.26 11.26	Purge Rate (L/min)
FIELD EQUI	PMENT AND	CALIBRATIO Model	JO		Calibration				
Water Level Pr Water Quality		Heron Aqua TROLL 5	500 w/ flow thr	ough cell	Checked Again	nst Calibrated L alibration Verif		librated Weekly	
	6.3 r er Probe Unit # ers Measured in		S Cell		for	sed a turbidit	La N	latte m	eter
Pump Rate = Well Diameter	0.5	L/min						2020 or Q5 / Avg	
Screen Interval					DO DO	-9.9 0.33	187.6 9.26	-9.9 0.36	125.8 3.88
					PH	5.52	6.57	6.28	6.23
					Cond.	0.520	0.822	0.713	0.637

DAILY QUALITY CONTROL REPORT

Date 05/18/21 S W Day S Μ T T F X On Site Hours 0700-1730 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow Temp To 32 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High

Moderate

Humid X 1

COE Project Manager

Project

Project No.

Contract No.

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM
60565355
W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Began OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Completed site-wide water level measurement round.

- -OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.
- -Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #2 (Serial #669704).

Health and Safety and Activities:

Had the initial H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet
- -Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

G0120 is damaged and water level measurement and gw sample cannot be collected.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Title Field Manager

DAILY QUALITY CONTROL REPORT

Date 05/19/21 Day S S M Т W T F X On Site Hours 0700-1700 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85 85 up X

High

Humid X

Moderate

X

Moderate

Report No.

2

COE Project Manager	
---------------------	--

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM

Project No.

Contract No.

60565355 W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (10)

CA210-21A NW060-21A CA211-21A NW061-21A CA212-21A NW062-21A CA213-21A G0085-25A

NW070-21A NW071-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #2 (Serial #669704).

-NW062-21A (MS/MSD)

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Title Field Manager

DAILY QUALITY CONTROL REPORT

Date 05/20/21 W Day S S M Т T F X On Site Hours 0700-1700 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow Temp To 32 32-50 50-70 70-85 85 up X

High

X

Humid X

Moderate

X

Moderate

Report No.

3

COE Project Mana	iger
------------------	------

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMc O#6 & OU1 OU3 LTM

Project No.

Contract No.

PMs-Q#6 & OU1-OU3 LTM 60565355 W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (10)

G0070-21A G0088-21A G0075-21A G0089-21A G0076-21A G0090-21A G0079-21A G0082-21A

G0080-21A G0081-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #2 (Serial #669704).

-G0070-21A (MS/MSD)

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

Aqua Troll 500 turbidy were inaccurate, began using Lamotte turbidty meters.

Office Work Performed:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Title Field Manager

Date 05/21/21 S W Day S M T T F X On Site Hours 0700-1630 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow Temp To 32 32-50 50-70 70-85 85 up

Moderate

Moderate

X

 $\begin{matrix} High \\ X \end{matrix}$

Humid X Report No.

4

COE Project N	Manager
---------------	---------

Project

Brian Fettin
CHAAP OU1 Rebound Study/

Project No.

Contract No.

PMs-Q#6 & OU1-OU3 LTM 60565355 W9128F-18-D-0020

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (12)

G0102-21A	G0023-21A
G0103-21A	G0048-21A
G0104-21A	G0049-21A
G0105-21A	G0083-21A
G0106-21A	G0093-21A
G0107-21A	PZ015-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #2 (Serial #669704).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 05/22/21 S W Day S M Τ T F X On Site Hours 0700-1730 Travel Time $0.\overline{5}$ Office Time 0.5

COE Project Manager

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM

Project No.

Contract No.

60565355 W9128F-18-D-0020

Weather	Bright Sun		Clear	Overcast X	Rain	Snow
Temp	To 32		32-50	50-70	70-85 X	85 up
Wind	Still	Moderate		High X	Rep	ort No.
Humidity	Dry	Moderate		Humid V		5

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (12)

G0067-21A	G0118-21A
G0108-21A	PZ009-21A
G0110-21A	PZ010-21A
G0114-21A	PZ011-21A
G0116-21A	PZ013-21A
G0117-21A	PZ016-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #2 (Serial #669704).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

05/23/21 Date Day S S M Τ W Τ F X On Site Hours 0700-1700

COE Project Manager Brian Fettin

Project

Project No.

Contract No.

CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM 60565355 W9128F-18-D-0020

Weather	Bright Sun		Clear	Overcast	Rain	Snow
				X		
Temp	То	32	32-50	50-70	70-85	85 up
					X	
Wind	Still	Mod	erate	High	Rep	ort No.
		X				
Humidity	Dry	Moderate		Humid		6

X

0.5

0.5

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Travel Time

Office Time

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (13)

PZ012-21A G0099-21A G0122-21A PZ014-21A G0100-21A G0066R-21A G0109-21A G0095-21A G0112-21A G0097-21A G0113-21A G0098-21A G0119-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #3 (Serial #643305).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

Aqua Troll #2's conductivity was not functioning correctly so we put Troll #3 (serial # 643305) into service.

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 05/24/21 S W Day S M T T F X On Site Hours 0700-1730 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85 85 up X

 $\begin{matrix} High \\ X \end{matrix}$

Humid X

Moderate

Moderate

Report No.

7

COE Project Manager

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM
60565355
W9128F-18-D-0020

Project No. Contract No.

Humidity

Wind

Still

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (13)

PZ001-21A	G0091-21A	G0123-21A
PZ004-21A	G0092-21A	
PZ005-21A	G0101-21A	
PZ019-21A	G0111-21A	
G0044-21A	G0115-21A	
G0084-21A	G0121-21A	

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #3 (Serial #643305).

'-Duplicate G0311-21A (parent G0111-21A). PZ001-21A MS/MSD, PZ019-21A MS/MSD.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

Date 05/25/21 W Day S S Μ T T F X On Site Hours 0700-1700 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X X Temp To 32 32-50 50-70 70-85 85 up

Moderate

Moderate

Still

X

Dry

X

High

Humid X Report No.

8

COE	Project	Manager
-----	---------	---------

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM

Project No.

Contract No.

60565355 W9128F-18-D-0020

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (12)

PZ007-21A	G0087-21A
PZ018-21A	G0094-21A
G0017-21A	G0096-21A
G0022-21A	NW020-21A
G0045-21A	NW021-21A
G0086-21A	NW022-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #3 (Serial #643305).

-Duplicates G0296-21A (parent G0096-21A), NW023-21A (parent NW020-21A). PZ007-21A MS/MSD.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

05/26/21 Date S Day S M T W T F X On Site Hours 0700-1330 Travel Time 2.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 70-85 50-70 85 up X Wind Report No. Still Moderate High

9

X

Moderate

X

Humid

CO	E	Proj	ect	Ma	nag	jer

Project

Brian Fettin CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM

Project No.

60565355

W9128F-18-D-0020 Contract No.

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Monsoon pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, Aqua Troll 500, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling; Brice - Kyle Milkey, Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Monitoring Wells sampled (7)

PZ017R-21A

SHGW03-21A

PZ020-21A

G0024-21A

G0077-21A

G0078-21A

SHGW02-21A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628) #3 (Serial #643305).

-Duplicates PZ021-21A (parent PZ017R-21A), SHGW05-21A (parent SHGW02-21A).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

-Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.

-Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

OU1-OU3 LTM monioting well activities complete. Remob 6/1 to continue with Q#6 activities.

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/01/21 Date S W Day S M T T F X On Site Hours 1000 - 1630 Travel Time 2.5 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85 85 up

Moderate

X

Moderate

X

X

High

Humid

Report No.

10

COE Project Manager Project Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM
60565355

Project No. Contract No.

60565355 W9128F-18-D-0020

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Off-post Direct Push Groundwater Sampled (3)

NW050R - DP06-20

NW050R - DP06-35

NW050R - DP06-60

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T).

Health and Safety and Activities:

Had the initial H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/02/21 Date S Day S M T W T F X On Site Hours 700 - 1730 Travel Time 0.5 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High X 11

Moderate

X

Humid

COE Project Manage

Project

Brian Fettin CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM

Project No.

Contract No.

60565355 W9128F-18-D-0020

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Visitors on Site:

USACE - Brian Fettin

State of Nebraska - Allie Grady

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling, Dean Converse; Brice - Gary Carson

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Off-post Direct Push Groundwater Sampled (3) Performance Monitoring Well Installed (temporary) (3)

OS001-DP06-25 OS003-DP06-45 EW7-PM21A OS001-DP06-35 EW7-PM26A OS001-DP06-45 EW7-PM26B

OS003-DP06-25 OS003-DP06-35

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #s 110-014926, 110-014888), water level indicators (#s 1324-T, 1323-T).

-Duplicate OS501-DP06-25 (parent OS001-DP06-25). OS003-DP06-45 MS/MSD.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

USACE, NDEE on and off-site for site visit.

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/03/21 Date S W Day S M T T F X On Site Hours 0700-1730 Travel Time 0.5 0.5 Office Time Weather Bright Sun Clear Overcast Rain Snow X To 32 Temp 32-50 50-70 70-85 85 up X Wind Report No. Still Moderate High X

Moderate

X

Humid

12

COE Project Manager

Project

Brian Fettin CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM 60565355

Project No.

Contract No.

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

W9128F-18-D-0020

Equipment on Site:

One direct push rig (Geoprobe 6620DT), Screen point sampler (SP15), support trucks, hand-held GPS unit, performance monitoring (PM) temporary well materials (1"-OD PVC., 10' screens, filter pack sand, granular bentonite, coated chips, grout mix), peristaltic pump and tubing, laboratory provided sample containers, IDW buckets, decon supplies, AquaTroll 500, LaMotte turbidity meter, Hach Colormeter, water level meters, MiniRAE PID, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Humidity

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Performance Monitoring Well Installed (temporary) (7) Performance Monitoring Wells Sampled (2)

EW7-PM24A EW7-PM29A EW7-PM26A-6-25 EW7-PM25A EW7-PM29B EW7-PM26B-6-35

EW7-PM25B EW7-PM27B EW7-PM28A

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/04/21 Date S Day S M T W T F X On Site Hours 0700 - 1600 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X Temp To 32 32-50 50-70 70-85

> High X

Humid

Moderate

Moderate

X

85 up

X

Report No.

13

COE Project N	/lanager
---------------	----------

Project

Brian Fettin CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM

Project No. Contract No. 60565355 W9128F-18-D-0020

Subco	ntractors	on Sit	e:

None.

Equipment on Site:

Support trucks, Peristaltic pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Jonathan Ortiz, Kameron Daehling

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Performance Monitoring Wells Sampled (4)

EW7-PM25A-6-25

EW7-PM25B-6-35

EW7-PM29A-6-25

EW7-PM29B-6-35

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888), water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/05/21 Date S Day S M T W T F X On Site Hours 0800 - 1630 Travel Time 0.5 Office Time 0.5 Weather Bright Sun Clear Overcast Rain Snow X To 32 Temp 32-50 50-70 70-85 85 up

Moderate

Moderate

X

High

X

Humid

X

Report No.

14

COE Project Manager

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM
60565355
W9128F-18-D-0020

Project No. Contract No.

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Peristaltic pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Wind

Humidity

Still

Dry

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Kameron Daehling,

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

Performance Monitoring Wells Sampled (4)

EW7-PM21A-6-25

EW7-PM24A-6-25

EW7-PM27B-6-35

EW7-PM28A-6-25

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

-Calibration check of PIDs (serial #'s 110-014926, 110-014888) , water level indicators (#'s 1324-T, 1323-T), Aqua Troll 500 #1 (serial #648628).

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet

-Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

-Organized paperwork and equipment, scanned SCFSs.

-Completed DQCR.

By Ryan Herold

06/06/21 Date Day S S M T W T F X On Site Hours 0800 - 1030 Travel Time 0.5 Office Time 0.5

COE Project Manager

Project

Brian Fettin
CHAAP OU1 Rebound Study/
PMs-Q#6 & OU1-OU3 LTM
60565355
W9128F-18-D-0020

Project No. Contract No.

Office Time			0.5			
Weather	Bright Sun		Clear	Overcast	Rain	Snow
	Bright Sun					
			X			
Temp	То	32	32-50	50-70	70-85	85 up
					X	
Wind	Still	Moderate		High	Report No.	
				X	-	
Humidity	Dry	Mod	lerate	Humid	1 '	15
		2	X			

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Peristaltic pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Bob Exceen, Ryan Herold, Kameron Daehling,

Field Work Performed (including sampling):

- -Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).
- -abandoned 10 temporary PM wells
- -collected IDW water sample: WATER-WC-Q6-JUN21
- -OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.
- -Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

None.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet
- -Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

None.

Office Work Performed:

- -Organized paperwork and equipment, scanned SCFSs.
- -Completed DQCR.

By Ryan Herold

06/07/21 Date S Day S M T W T F X On Site Hours 0800 - 1000Travel Time 2.5 Office Time Weather Bright Sun Clear Overcast Rain Snow 70-85 85 up

Report No.

16

COE Project Manager Project

Brian Fettin CHAAP OU1 Rebound Study/ PMs-Q#6 & OU1-OU3 LTM

Project No. 60565355 W9128F-18-D-0020

Contract No.

Temp	To 32		32-50	50-70	
Wind	Still	Moderate X		High	
Humidity	Dry	Mod	erate	Humid	

Subcontractors on Site:

None.

Equipment on Site:

Support trucks, Peristaltic pumps and tubing, laboratory provided sample containers, IDW buckets, decon supplies, LaMotte turbidity meters, Hach Colormeters, water level meters, MiniRAE PIDs, level D PPE, first-aid/safety supplies, and field/safety paperwork.

Visitors on Site:

None.

AECOM/Brice Personnel on Site:

AECOM - Ryan Herold, Kameron Daehling,

Field Work Performed (including sampling):

-Continued OU1 Rebound Study Q#6 and OU1-OU3 LTM sampling events (install/sample/abandon performance monitoring wells, DP screen point sampling, and MW sampling).

-Completed site restoration, equipment storage, final sample shipments, and demobilization.

-OU1/OU3 sample analysis will be completed in accordance with Addendum 2, and Addendum 3 UFP-QAPPs.

-Containerized IDW purge/decontamination water in a designated labeled 1500-gallon poly tank at GWTF.

Quality Control Activities (including field calibration):

None.

Health and Safety and Activities:

Had the daily H&S meeting with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, hazards with direct push rigs, pump and traffic safety, potential exposure to explosives contamination, fire hazards, heat stress, hearing protection, slip-trip-falls, COVID-19, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety. Utility locates were performed (Nebraska811) and utilities were marked.

- -Re-capped overall health and safety concerns, stressed road, COVID-19, and sampling safety.
- -Completed Daily Tailgate Meeting Sheet
- -Completed Daily Task Hazard Assessment Sheet

Observations/Problems Encountered/Corrective Action Taken:

Field team demobed 6/7/21.

Office Work Performed:

- -Organized paperwork and equipment, scanned SCFSs.
- -Completed DQCR.

By Ryan Herold

COE Project Manager Brian Fettin

Project CHAAP - 2021 OU1/OU3 LTM, Da

OU1 RBStudy, PMs - Quarter #6

Project No. 60565355

Contract No. Brice W9128F-18-D-0020

Delivery Order No. F0041

0

Subcontractor Hours

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Jonathan Ortiz (AECOM), Kyle Milke, Gary Carson (Brice)

Subcontractors on Site:

None.

Visitors on Site:

None.

Summary of Work Performed:

- -Contacted private land owners and informed them of the upcoming 2021 annual OU1/OU3 and OU1 Rebound Study/performance monitoring (PM) field activities. Completed utility locates prior to subsurface activities (week of 5/24/21).
- -Mobilized to site, conducted initial health and safety meeting, prepped field equipment, and staked all direct push (DP) locations using hand-held GPS including: 3 off-site (screen point) locations OS001, OS003, and NW050R (adjacent to MW cluster NW050); and 10 temporary PM wells for 2020 subsurface injections.
- -Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

BEGAN 2021 ANNUAL OU1/OU3 LTM AND QUARTER #6 (Q6) OU1 REBOUND STUDY AND INJECTION PM SAMPLING ACTIVITIES:

- -Completed site-wide (OU1-OU3) groundwater level measurement event.
- -Collected groundwater samples from 32 of the 87* OU1 LTM wells/piezometers (CA210, CA211, CA212, CA213, NW060, NW061, NW062, NW070, NW071, G0023, G0048, G0049, G0070, G0075, G0076, G0079, G0081, G0082, G0083, G0085, G0086, G0088, G0089, G0090, G0093, G0102, G0103, G0104, G0105, G0106, G0107, PZ015). Each well was purged and sampled using low-flow groundwater sampling techniques with collection of field water quality parameters, and will be analyzed for explosives+MNX (Method 8330A) and laboratory water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.
- -IDW water (purge, develop., and decon.) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of annual LTM/Q6 field activities, the IDW water will be sampled for site waste characterization analysis (Explosives+MNX and VOCs [8260B]) prior to disposal or discharge to ground surface.
- -All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-QAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2019 and 2020 Annual Groundwater Monitoring Reports and Draft OU1 Rebound Study Letter Report Quarter 5 Event.
- *Of the 87 annual OU1 LTM wells, 30 wells are included in the OU1 Rebound Study and 10 wells are included in the 2020 subsurface injection PM quarterly events (Q6).

Percentage of Work Completed:

Mobilization, 32 of 87* annual OU1 LTM wells were sampled, 0 of 2 annual OU3 LTM wells were sampled, 0 of 9 offpost DP (screen point) groundwater samples were collected; 0 of 10 temporary PM wells were installed, developed, and sampled. Approximately 29% of the 2021 annual OU1/OU3 LTM and Q6 OU1 Rebound Study/injection PM sampling field work is now complete.

Schedule for Next Week:

Calibration of water quality equipment, complete groundwater purge and sample collection activities at remaining

COE Project Manager Brian Fettin

CHAAP - 2021 OU1/OU3 LTM, 5/18/21 to 5/21/21 **Project** Date

OU1 RBStudy, PMs - Quarter #6 **Brice/AECOM On-site Hours** 180

Report No.

Project No. 60565355 **Subcontractor Hours**

0 Brice W9128F-18-D-0020 Contract No.

F0041 **Delivery Order No.**

OU1/OU3 monitoring wells, complete Q6 off-post DP (screen point) groundwater sampling activities; install, develop, sample, and abandon Q6 temporary PM wells, and collect IDW water sample.

Health and Safety and Activities:

-Had the initial and daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, weather safety, slip-trip-falls, traffic hazards, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.

- -Completed equipment and vehicle safety checks.
- -Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

None.

Problems Encountered/Corrective Action Taken:

In LL2, monitoring well G0120 (pictured below) was identified as damaged due to farming activities and the groundwater level measurement and sample collection activities were not able to be completed. Although G0120 PVC casing (2-inch ID) has been compromised (i.e., pulled up and pinched under metal casing/below ground surface), no direct pathway was identified to groundwater. However, the compromised well will be recommended for repair, replacement, and/or abandonment.

Recommendations:

Due to well G0120 damage and unable to be sampled, the total 2021 annual OU1 LTM wells to be sampled will be reduced from 88 to 87 total. Additionally due to existing wells in proximity and historical concentrations below HALs, well G0120 will be recommended to PDT for abandonment.

Communication Notice This Week:

None.

Key Personnel Changes:

Gary Carson (Brice) off site 5/19, 5/20/21.

Damaged monitoring well G0120 in LL2 (facing east).

Water level measurement at monitoring well G0093 in LL1 (facing north).

COE Project Manager B

Brian Fettin

Project

CHAAP - 2021 OU1/OU3 LTM,

OU1 RBStudy, PMs - Quarter #6

Project No. 60565355

Contract No. Brice W9128F-18-D-0020

Delivery Order No. F0041

Report No.
Date

5/18/21 to 5/21/21

Subcontractor Hours

180

By: Ryan Herold Ti

COE Project Manager Brian Fettin

CHAAP - 2021 OU1/OU3 LTM, 5/22/21 to 5/26/21 **Project Date**

Report No. OU1 RBStudy, PMs - Quarter #6 **Brice/AECOM On-site Hours** 264

Project No. 60565355 **Subcontractor Hours** 0 Brice W9128F-18-D-0020 Contract No.

F0041 **Delivery Order No.**

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Jonathan Ortiz, Kameron Daehling (AECOM), Kyle Milke, Gary Carson (Brice)

Subcontractors on Site:

None.

Visitors on Site:

None.

Summary of Work Performed:

-Contacted private land owners and informed them of the upcoming 2021 annual OU1/OU3 and OU1 Rebound Study/performance monitoring (PM) field activities. Completed utility locates prior to subsurface activities (week of 5/24/21).

-Mobilized to site, conducted initial health and safety meeting, prepped field equipment, and staked all direct push (DP) locations using hand-held GPS including: 3 off-site (screen point) locations - OS001, OS003, and NW050R (adjacent to MW cluster NW050); and 10 temporary PM wells for 2020 subsurface injections.

-Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

CONTINUED 2021 ANNUAL OU1/OU3 LTM AND QUARTER #6 (Q6) OU1 REBOUND STUDY AND INJECTION PM SAMPLING ACTIVITIES:

-Collected groundwater samples from 55 of the 87* OU1 LTM wells/piezometers (NW020, NW021, NW022, G0017, G0024, G0044, G0045, G0066R, G0067, G0077, G0078, G0080, G0084, G0087, G0091, G0092, G0094, G0095, G0096, G0097, G0098, G0099, G0100, G0101, G0108, G0109, G0110, G0111, G0112, G0113, G0114, G0115, G0116, G0117, G0118, G0119, G0120, G0121, G0122, G0123, PZ001, PZ004, PZ005, PZ007, PZ009, PZ010, PZ011, PZ012, PZ013, PZ014, PZ016, PZ017R, PZ018, PZ019, PZ020). Each well was purged and sampled using low-flow groundwater sampling techniques with collection of field water quality parameters, and will be analyzed for explosives+MNX (Method 8330A) and laboratory water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.

- -Collected groundwater samples from 2 of the 2 OU3-Shop Area LTM wells (SHGW02, SHGW03). Each well was purged and sampled using low-flow groundwater sampling techniques with collection of field water quality parameters, and will be analyzed for VOCs (Method 8260B) and laboratory water quality parameters including: NO2/NO3, SO4, Alkalinity, and Methane, Ethane, Ethene (RSK 175). One well (SHGW03) was additionally sampled for DRO (Method 8015B).
- -IDW water (purge, develop., and decon.) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of annual LTM/Q6 field activities, the IDW water will be sampled for site waste characterization analysis (Explosives+MNX and VOCs) prior to disposal or discharge to ground surface.
- -All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-QAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2019 and 2020 Annual Groundwater Monitoring Reports and Draft OU1 Rebound Study Letter Report - Quarter 5 Event.

*Of the 87 annual OU1 LTM wells, 30 wells are included in the OU1 Rebound Study and 10 wells are included in the 2020 subsurface injection PM quarterly events (Q6).

Percentage of Work Completed:

Mobilization, site-wide water level measurements, 87 of 87* annual OU1 LTM wells were sampled, 2 of 2 annual OU3

COE Project Manager Brian Fettin

Project CHAAP - 2021 OU1/OU3 LTM, Date 5/22/21 to 5/26/21

OU1 RBStudy, PMs - Quarter #6 Brice/AECOM On-site Hours 264

Report No.

Project No. 60565355 Subcontractor Hours

 Project No.
 60363333
 Subcontractor Hours
 0

 Contract No.
 Brice W9128F-18-D-0020

LTM wells were sampled, 0 of 9 off-post DP (screen point) groundwater samples were collected; 0 of 10 temporary PM wells were installed, developed, and sampled. <u>Approximately 82%</u> of the 2021 annual OU1/OU3 LTM and Q6 OU1 Rebound Study/injection PM sampling field work is now complete.

Schedule for Next Week:

Calibration of water quality equipment, complete Q6 off-post DP (screen point) groundwater sampling activities; install, develop, sample, and abandon Q6 temporary PM wells, and collect IDW water sample.

Health and Safety and Activities:

- -Had the daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, weather safety, slip-trip-falls, traffic hazards, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.
- -Completed equipment and vehicle safety checks.
- -Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

None.

Problems Encountered/Corrective Action Taken:

None.

Recommendations:

*Due to well G0120 damage and unable to be sampled, the total 2021 annual OU1 LTM wells to be sampled will be reduced from 88 to 87 total.

Communication Notice This Week:

None.

Key Personnel Changes:

Kameron Daehling (AECOM) on site 5/24/21. Field personnel off site 5/26/21 and will resume field activities on 6/1/21.

Delivery Order No.

F0041

COE Project Manager Report No. Brian Fettin

5/22/21 to 5/26/21 Project CHAAP - 2021 OU1/OU3 LTM, Date

> OU1 RBStudy, PMs - Quarter #6 **Brice/AECOM On-site Hours** 264

Project No. 60565355 **Subcontractor Hours**

0 Contract No. Brice W9128F-18-D-0020

Low-flow purging set up at on-post piezometer PZ001 in LL5 Sample collection at off-post monitoring well NW071 (facing east). (facing south).

> By: Ryan Herold Title: Field Manager

COE Project Manager Brian Fettin

Project CHAAP - 2021 OU1/OU3 LTM, Date 6/1/21 to 6/4/21

OU1 RBStudy, PMs - Quarter #6 Brice/AECOM On-site Hours 148

Report No.

Subcontractor Hours

25

Project No. 60565355

Contract No. Brice W9128F-18-D-0020

Delivery Order No. F0041

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Jonathan Ortiz, Kameron Daehling, Dean Converse (AECOM); Gary Carson (Brice)

Subcontractors on Site:

Plains Environmental Services (PES) (Direct Push Subcontractor) - Jason Auernheimer

Visitors on Site:

Brian Fettin (USACE), Allie Grady (NDEE)

Summary of Work Performed:

- -Contacted private land owners and informed them of the upcoming 2021 annual OU1/OU3 and OU1 Rebound Study/performance monitoring (PM) field activities. Completed utility locates prior to subsurface activities (week of 5/24/21).
- -Mobilized to site, conducted initial health and safety meeting, prepped field equipment, and staked all direct push (DP) locations using hand-held GPS including: 3 off-site (screen point) locations OS001, OS003, and NW050R (adjacent to MW cluster NW050); and 10 temporary PM wells for 2020 subsurface injections.
- -Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

CONTINUED 2021 ANNUAL OU1/OU3 LTM AND QUARTER #6 (Q6) OU1 REBOUND STUDY AND INJECTION PM SAMPLING ACTIVITIES:

- -Collected 9 DP groundwater samples (screen point) at depths 25 feet, 35 feet, and 45 feet bgs (at locations OS001, OS003) and 20 feet, 35 feet, and 60 feet bgs (at location NW050R) for explosives+MNX (Method 8330A) analysis only (OS001-DP06-25, OS001-DP06-35, OS001-DP06-45, OS003-DP06-25, OS003-DP06-35, OS003-DP06-45, NW050R-DP06-20, NW050R-DP06-35, NW050R-DP06-60).
- -Onsite, <u>installed 10 temporary PM wells</u> (1" PVC via DP technology) at 7 locations for 2020 subsurface injection PM. Each location included either a shallow well (A) (10-foot screen, 20 to 30 feet bgs) or a shallow intermediate well (B) (10-foot screen, 30-40 feet bgs), or both dependent upon location accordingly: EW7-PM21A, EW7-PM24A, EW7-PM25A/B, EW7-PM26A/B, EW7-PM27B, EW7-PM28A, and EW7-PM29A/B.
- -Collected 6 of the 10 groundwater samples at temporary PM wells (EW7-PM25A, PM25B, PM26A, PM26B, PM29A, PM29B). Each PM temp well was developed prior to sample collection and sampled using low-flow groundwater sampling techniques with collection of field water quality parameters, and will be analyzed for explosives+MNX (Method 8330A) and water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.
- -IDW water (purge, develop., and decon.) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of annual LTM/Q6 field activities, the IDW water will be sampled for site waste characterization analysis (Explosives+MNX and VOCs) prior to disposal or discharge to ground surface.
- -All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-QAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2019 and 2020 Annual Groundwater Monitoring Reports and Draft OU1 Rebound Study Letter Report Quarter 5 Event.
- *Of the 87 annual OU1 LTM wells, 30 wells are included in the OU1 Rebound Study and 10 wells are included in the 2020 subsurface injection PM quarterly events (Q6).

Percentage of Work Completed:

Mobilization, site-wide water level measurements, 87 of 87* annual OU1 LTM wells were sampled, 2 of 2 annual OU3

COE Project Manager Brian Fettin

Project CHAAP - 2021 OU1/OU3 LTM,

OU1 RBStudy, PMs - Quarter #6

Project No. 60565355

Contract No. Brice W9128F-18-D-0020

Delivery Order No. F0041

 Report No.
 3

 Date
 6/1/21 to 6/4/21

 Brice/AECOM On-site Hours
 148

 Subcontractor Hours
 25

LTM wells were sampled, 9 of 9 off-post DP (screen point) groundwater samples were collected; 6 of 10 temporary PM wells were installed, developed, and sampled. <u>Approximately 97%</u> of the 2021 annual OU1/OU3 LTM and Q6 OU1 Rebound Study/injection PM sampling field work is now complete.

Schedule for Next Week:

Calibration of water quality equipment, complete Q6 temporary PM wells sampling and abandon all temp wells, and collect IDW water sample.

Health and Safety and Activities:

- -Had the daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, weather safety, slip-trip-falls, traffic hazards, direct push hazards and safety, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.
- -Completed equipment and vehicle safety checks.
- -Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

None.

Problems Encountered/Corrective Action Taken:

None.

Recommendations:

*Due to well G0120 damage and unable to be sampled, the total 2021 annual OU1 LTM wells to be sampled will be reduced from 88 to 87 total.

Communication Notice This Week:

None.

Key Personnel Changes:

Brian Fettin, Allie Grady, Dean Converse, Gary Carson on-, off site 6/2/21. Jason Auernheimer off site 6/3/21.

COE Project Manager Brian Fettin Report No. 3

Project CHAAP - 2021 OU1/OU3 LTM, Date 6/1/21 to 6/4/21

OU1 RBStudy, PMs - Quarter #6 Brice/AECOM On-site Hours 148

Project No. 60565355 Subcontractor Hours 25

 Contract No.
 Brice W9128F-18-D-0020

 Delivery Order No.
 F0041

Purging off-site DP location OS003 (facing south)

Installation of temporary PM wells: EW7-PM28A (shallow) (facing east)

By: Ryan Herold Title: Field Manager

COE Project Manager Brian Fettin

Project CHAAP - 2021 OU1/OU3 LTM,

OU1 RBStudy, PMs - Quarter #6

Project No. 60565355

Contract No. Brice W9128F-18-D-0020

Delivery Order No. F0041

 Report No.
 4

 Date
 6/5/21 to 6/7/21

 Brice/AECOM On-site Hours
 37

0

Subcontractor Hours

AECOM/Brice Personnel on Site:

Ryan Herold, Bob Exceen, Kameron Daehling (AECOM)

Subcontractors on Site:

None.

Visitors on Site:

None.

Summary of Work Performed:

- -Contacted private land owners and informed them of the upcoming 2021 annual OU1/OU3 and OU1 Rebound Study/performance monitoring (PM) field activities. Completed utility locates prior to subsurface activities (week of 5/24/21).
- -Mobilized to site, conducted initial health and safety meeting, prepped field equipment, and staked all direct push (DP) locations using hand-held GPS including: 3 off-site (screen point) locations OS001, OS003, and NW050R (adjacent to MW cluster NW050); and 10 temporary PM wells for 2020 subsurface injections.
- -Calibration (weekly) and calibration checks (daily) of field PIDs, water level indicators, and Aqua TROLL 500s.

CONTINUED 2021 ANNUAL OU1/OU3 LTM AND QUARTER #6 (Q6) OU1 REBOUND STUDY AND INJECTION PM SAMPLING ACTIVITIES:

- -Collected 4 of the 10 groundwater samples at temporary PM wells (EW7-PM21A, PM24A, PM27B, PM28A). Each PM temp well was developed prior to sample collection and sampled using low-flow groundwater sampling techniques with collection of field water quality parameters, and will be analyzed for explosives+MNX (Method 8330A) and water quality parameters including: TKN (351.2), NH3 (350.1), NO2/NO3 (353.2), SO4 (9056A), Alkalinity (2320B), Sulfide (9034), DOC (9060A), and Methane (RSK 175). CO2 will be back calculated from 2320B.
- -Abandoned all 10 temp. PM wells.
- -IDW water (purge, develop., and decon.) from all sample locations were containerized in an IDW-labeled poly tank located at GWTF. At the completion of annual LTM/Q6 field activities, the <u>IDW water was sampled</u> (WATER-WC-Q6-JUN21) for site waste characterization analysis (Explosives+MNX and VOCs) prior to disposal or discharge to ground surface.
- -All field and sampling activities were completed in accordance with the 2019 Final Addendum 3 UFP-QAPP, the 2018 Final Addendum 2 UFP-QAPP, and recommendations provided in the 2019 and 2020 Annual Groundwater Monitoring Reports and Draft OU1 Rebound Study Letter Report Quarter 5 Event.
- *Of the 87 annual OU1 LTM wells, 30 wells are included in the OU1 Rebound Study and 10 wells are included in the 2020 subsurface injection PM quarterly events (Q6).

Percentage of Work Completed:

Mobilization, site-wide water level measurements, 87 of 87* annual OU1 LTM wells were sampled, 2 of 2 annual OU3 LTM wells were sampled, 9 of 9 off-post DP (screen point) groundwater samples were collected; 10 of 10 temporary PM wells were installed, developed, sampled, and abandoned; collected IDW water waste characterization sample, completed site restoration activities, and demobilized from site. 100% of the 2021 annual OU1/OU3 LTM and Q6 OU1 Rebound Study/injection PM sampling field work is now complete.

Schedule for Next Week:

COE Project Manager

Brian Fettin

Project

CHAAP - 2021 OU1/OU3 LTM,

OU1 RBStudy, PMs - Quarter #6

Project No. 60565355

Brice W9128F-18-D-0020 Contract No.

F0041 **Delivery Order No.**

Report No. Date 6/5/21 to 6/7/21

Brice/AECOM On-site Hours 37

Subcontractor Hours

None.

Health and Safety and Activities:

-Had the daily H&S meetings with all personnel on site. All persons on site completed required paperwork/checklists and discussed sections of QAPP-APP/SSHP and H&S procedures including: PPE, potential exposure to explosives contamination, weather safety, slip-trip-falls, traffic hazards, direct push hazards and safety, and lifting hazards. Discussed route to hospital, severe weather procedures, farming activities, and trains and railroad track safety.

- -Completed equipment and vehicle safety checks.
- -Completed Daily Tailgate Meeting Sheets and Daily Task Hazard Assessment Sheets.

Deviations from SOW and/or WP:

None.

Problems Encountered/Corrective Action Taken:

None.

Recommendations:

*Due to well G0120 damage and unable to be sampled, the total 2021 annual OU1 LTM wells to be sampled will be reduced from 88 to 87 total.

Communication Notice This Week:

None.

Key Personnel Changes:

AECOM personnel demobilized from site on 6/7/21.

Development and purging of PM temp. wells EW7-PM25A/B (facing east)

Sample collection PM wells: EW7-PM24A (shallow)

By: Ryan Herold Title: Field Manager Appendix C Photographic Log

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 6 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 1

Description:

OU1 Rebound Study Q6 **Sampling**

Monitoring wells were purged, and groundwater samples were collected using low-flow techniques with submersible pumps. All purging and sample collection were completed in accordance with UFP-QAPP.

Date: 5/26/2021 Direction: south Photographer: JO Location: PZ020

Photograph No. 2

Description:

OU1 Rebound Study Q6 Sampling

Groundwater samples were collected in laboratoryprovided containers and analyzed for explosives + MNX and laboratory MNA parameters by Eurofins -TestAmerica laboratory.

Date: 5/24/2021 Direction: south Photographer: JO Location: G0091

Field Activities: OU1 Rebound Study and **Performance Monitoring – Quarter 6 Event** Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 3

Description:

OU1 Rebound Study Q6 **Sampling**

The pump and water level meter were decontaminated after every well.

Date: 5/24/2021 Direction: south Photographer: JO Location: G0091

Photograph No. 4

Description:

OU1 Rebound Study Q6 Sampling

To establish off-post extent of explosives greater than HALs in groundwater, direct push locations were collected at offsite locations OS001 and OS003 (1000 feet further east). Groundwater samples were collected (via Direct Push technology) at screen point depths 25 feet, 35 feet, and 45 feet bgs and analyzed for explosives + MNX only.

Date: 06/2/2021 Direction: south Photographer: RH Location: OS003

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 6 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 5

OU1 Rebound Study Q6 Sampling

To supplement for six OU1 Rebound Study wells no longer being accessible (clusters NW050 and NW080), an additional direct push location (NW050R) was collected in ditch adjacent to NW050 well cluster and sampled at equivalent depths. Location NW050R was sampled at depths 20 feet, 35 feet, and 60 feet bgs and analyzed for explosives + MNX only.

Photograph No. 6

Description:

OU1 Q6 Performance Monitoring

For Q6 subsurface injection performance monitoring (2nd event following the 2020 injection event), ten 1" PVC temporary wells were installed (via Direct Push technology) at seven locations between EW6 and EW7. The seven locations included wells either shallow (30-foot deep) wells, shallow-intermediate (40-foot deep) wells, or both.

Date: 6/3/2021 Direction: east Photographer: RH Location: EW7-PM29

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 6 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Delivery Order No. F0041

Photograph No. 7

Description:

OU1 Q6 Performance **Monitoring**

All temporary performance monitoring wells were developed, purged, and sampled for explosives + MNX and laboratory water quality parameters analysis.

Date: 6/4/2021 Direction: west Photographer: RH Location: EW7-PM25

Photograph No. 8

Description:

OU1 Q6 Performance Monitoring

Additionally, for Q6 subsurface injection performance, ten permanent monitoring wells were used at LL1, LL2, the Decant Station, and between EW6 and EW7. Purging and sample collection for explosives + MNX and laboratory water quality parameters analysis were completed in accordance with UFP-QAPP.

Date: 5/25/2021 Direction: north Photographer: JO Location: G0096

Field Activities: OU1 Rebound Study and Performance Monitoring - Quarter 6 Event Cornhusker Army Ammunition Plant, Nebraska

USACE – Omaha District

Contract No. W9128F-18-D-0020 Delivery Order No. F0041

Photograph No. 9

Description:

OU1 Q6 Rebound Study and **Performance Monitoring**

All decontamination, development, and purge IDW water from sampling activities were collected in field poly tanks, transferred to an IDW tank at GWTF, and sampled at conclusion of event for explosives + MNX only analysis.

Date: 5/26/2021 Direction: north Photographer: BE Location: GWTF

Photograph No. 10

Description:

OU1 Q6 Performance Monitoring

Each temporary well PVC stickup was retracted, and the well was abandoned within 10 days of installation using timerelease bentonite pellets and hydrated granular bentonite.

Date: 6/6/2021 Direction: west Photographer: RH Location: EW7-PM26

Appendix D Analytical Data and Validation

Appendix E OU1 Statistical Trend Data Sheets

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q6

User Name: Dean Converse

Location: Grand Island State: Nebraska

Time Period: 10/22/2019 to 5/26/2021 Consolidation Period: No Time Consolidation

Consolidation Type: Median Duplicate Consolidation: Average

ND Values: 1/2 Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann- Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4,6-TRINITROTO	LUENE							
G0024	Т	6	4	0.72	6	81.5%	No	NT
G0077	T	6	6	0.15	13	99.2%	No	1
G0078	T	6	0	0.69	-7	86.4%	Yes	ND
G0091	T	6	0	0.70	-11	97.2%	Yes	ND
G0092	T	6	0	0.65	-8	89.8%	Yes	ND
NW020	T	6	5	0.48	13	99.2%	No	1
NW021	T	6	0	0.67	-10	95.2%	Yes	ND
NW022	T	6	0	0.69	-10	95.2%	Yes	ND
PZ017R	S	6	6	0.23	-9	93.2%	No	PD
PZ018	T	6	5	0.81	-5	76.5%	No	S
PZ019	T	6	0	0.70	-8	89.8%	Yes	ND
PZ020	T	6	6	0.19	5	76.5%	No	NT
HEXAHYDRO-1,3,5	-TRINITRO	-1,3,5-TRIA	ZIN					
G0024	T	6	1	1.64	-6	81.5%	No	NT
G0077	T	6	6	0.59	5	76.5%	No	NT
G0078	T	6	0	0.60	-8	89.8%	Yes	ND
G0091	T	6	6	0.44	-11	97.2%	No	D
G0092	T	6	0	0.68	-9	93.2%	Yes	ND
NW020	T	6	6	0.58	5	76.5%	No	NT
NW021	T	6	1	0.70	-4	70.3%	No	S
NW022	T	6	0	0.60	-11	97.2%	Yes	ND
PZ017R	S	6	6	0.31	12	98.2%	No	1
PZ018	T	6	2	1.37	-5	76.5%	No	NT
PZ019	T	6	0	0.63	-8	89.8%	Yes	ND
PZ020	T	6	6	0.16	7	86.4%	No	NT

MAROS Version 3.0

Tuesday, July 06, 2021 Page 1 of 2

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q6

User Name: Dean Converse

Location: Grand Island State: Nebraska

HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZIN

Number Number Mann- All Source/ of of Coefficient Kendall Confidence Samples Concentration

Well Tail Samples Detects of Variation Statistic in Trend "ND"? Trend

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 3.0 Release 352, September 2012

MAROS Mann-Kendall Statistics Summary

Project: CHAAP OU1 Rebound Study - Q6 User Name: Dean Converse

Location: Grand Island State: Nebraska

Time Period: 10/21/2019 to 5/26/2021 Consolidation Period: No Time Consolidation

Consolidation Type: Median

Duplicate Consolidation: Average

ND Values: 1/2 Detection Limit

J Flag Values : Actual Value

Well	Source/ Tail	Number of Samples	Number of Detects	Coefficient of Variation	Mann- Kendall Statistic	Confidence in Trend	All Samples "ND" ?	Concentration Trend
2,4,6-TRINITROTO	LUENE							
G0070	T	6	0	0.69	-13	99.2%	Yes	ND
G0075	T	6	0	0.69	-9	93.2%	Yes	ND
G0076	T	6	0	0.69	-9	93.2%	Yes	ND
G0079	T	6	0	0.69	-11	97.2%	Yes	ND
G0080	T	6	0	0.69	-8	89.8%	Yes	ND
G0081	S	6	1	1.37	-12	98.2%	No	D
G0082	T	6	1	1.76	-1	50.0%	No	NT
G0086	T	6	5	0.53	0	42.3%	No	S
G0087	T	6	0	0.66	-9	93.2%	Yes	ND
HEXAHYDRO-1,3,5	-TRINITRO	-1,3,5-TRIA	ZIN					
G0070	T	6	0	0.62	-13	99.2%	Yes	ND
G0075	T	6	0	0.61	-9	93.2%	Yes	ND
G0076	T	6	1	0.94	-5	76.5%	No	S
G0079	T	6	0	0.62	-11	97.2%	Yes	ND
G0080	T	6	0	0.62	-7	86.4%	Yes	ND
G0081	S	6	1	1.19	0	42.3%	No	NT
G0082	T	6	5	0.47	-1	50.0%	No	S
G0086	T	6	4	0.96	11	97.2%	No	1
G0087	T	6	4	0.42	13	99.2%	No	1

Note: Increasing (I); Probably Increasing (PI); Stable (S); Probably Decreasing (PD); Decreasing (D); No Trend (NT); Not Applicable (N/A)-Due to insufficient Data (< 4 sampling events); Source/Tail (S/T)

The Number of Samples and Number of Detects shown above are post-consolidation values.

MAROS Version 3.0 Release 352, September 2012 Tuesday, July 06, 2021 Page 1 of 1

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

	MAROS DATA IN UTS									
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags		
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	5/26/2021	0.44	ug/L	0.044			
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	3/3/2021	0.48	ug/L	0.042			
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	10/4/2020	0.2	ug/L	0.086			
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	6/15/2020	0.63	ug/L	0.048	TR		
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.16	ND		
G0024	2,067,195	403,887	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.16	ND		
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021		ug/L	0.055	ND		
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.048	ND		
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020		ug/L	0.053	ND		
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.59	ug/L	0.055			
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.15	ND		
G0024	2,067,195	403,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.15	ND		
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	5/26/2021	4.3	ug/L	0.046			
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	3/3/2021	3.6	ug/L	0.042			
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	10/4/2020	3.4	ug/L	0.046			
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	6/15/2020	3.3	ug/L	0.047			
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	3/4/2020	2.7	ug/L	0.16			
G0077	2,067,218	403,894	2,4,6-TRINITROTOLUENE	10/23/2019	3.2	ug/L	0.16			
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021	1.2	ug/L	0.053	TR		
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	0.82	ug/L	0.048			
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.34	ug/L	0.052			
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.46	ug/L	0.054			
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.19	ug/L	0.16	TR		
G0077	2,067,218	403,894	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.91	ug/L	0.15			
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	5/26/2021		ug/L	0.048	ND		
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.042	ND		
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	10/4/2020		ug/L	0.044	ND		
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.047	ND		
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.16	ND		
G0078	2,067,199	403,930	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.15	ND		
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021		ug/L	0.055	ND		
G0078	2,067,199		HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.048	ND		
						-				

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	Acsuit	ug/L	0.05	ND
G0078	2,067,199	403.930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.054	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.15	ND
G0078	2,067,199	403,930	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.15	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	5/24/2021		ug/L	0.044	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.045	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.048	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
G0091	2,067,221	405,336	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.15	ND
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/24/2021	0.31	ug/L	0.05	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.27	ug/L	0.049	TR
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020	0.46	ug/L	0.052	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	0.59	ug/L	0.055	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020	0.83	ug/L	0.16	
G0091	2,067,221	405,336	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019	0.81	ug/L	0.15	
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	5/24/2021		ug/L	0.059	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.042	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.043	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.047	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.15	ND
G0092	2,067,222	405,350	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.15	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/24/2021		ug/L	0.068	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.048	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020		ug/L	0.054	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.15	ND
G0092	2,067,222	405,350	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.2	ND
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	5/25/2021	0.93	ug/L	0.046	TR
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	3/3/2021	0.8	ug/L	0.042	
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	10/3/2020	0.62	ug/L	0.045	TR
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	6/15/2020	0.59	ug/L	0.046	

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	3/4/2020	0.6	ug/L	0.16	
NW020	2,067,328	404,441	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/25/2021	1	ug/L	0.053	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	1.2	ug/L	0.048	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020	2.3	ug/L	0.052	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	1.5	ug/L	0.053	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.94	ug/L	0.15	
NW020	2,067,328	404,441	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019	0.2	ug/L	0.15	TR
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	5/25/2021		ug/L	0.047	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.043	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.044	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.05	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.15	ND
NW021	2,067,301	404,393	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.15	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/25/2021	0.13	ug/L	0.053	TR
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.049	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.05	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.058	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.15	ND
NW021	2,067,301	404,393	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.15	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	5/25/2021		ug/L	0.046	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.042	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.046	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.047	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	3/4/2020		ug/L	0.16	ND
NW022	2,067,310	404,436	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.15	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/25/2021		ug/L	0.052	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.049	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.052	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020		ug/L	0.054	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.15	ND
NW022	2,067,310	404,436	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.15	ND

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	5/26/2021	10	ug/L	0.047	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	3/3/2021	10	ug/L	0.048	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	10/4/2020	15	ug/L	0.043	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	6/16/2020	11	ug/L	0.048	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	3/4/2020	17	ug/L	0.15	
PZ017R	2,067,255	403,469	2,4,6-TRINITROTOLUENE	10/23/2019	15	ug/L	0.16	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021	2.1	ug/L	0.054	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	2.2	ug/L	0.055	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	1.8	ug/L	0.049	TR
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	1.4	ug/L	0.055	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	1.4	ug/L	0.15	
PZ017R	2,067,255	403,469	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.87	ug/L	0.16	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	5/25/2021	4.6	ug/L	0.049	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	3/3/2021	6	ug/L	0.047	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	10/3/2020	17	ug/L	0.043	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.049	ND
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	3/4/2020	19	ug/L	0.16	
PZ018	2,067,257	403,293	2,4,6-TRINITROTOLUENE	10/23/2019	8	ug/L	0.16	TR
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/25/2021		ug/L	0.056	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.053	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	1	ug/L	0.056	
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020		ug/L	0.16	ND
PZ018	2,067,257	403,293	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.88	ug/L	0.16	TR
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	5/24/2021		ug/L	0.046	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	3/3/2021		ug/L	0.048	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	10/3/2020		ug/L	0.043	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	6/16/2020		ug/L	0.047	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
PZ019	2,067,268	402,887	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/24/2021		ug/L	0.053	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021		ug/L	0.055	ND

TABLE E.1 FORMER FACILITY BOUNDARY WELLS **CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/3/2020		ug/L	0.049	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020		ug/L	0.054	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND
PZ019	2,067,268	402,887	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	5/26/2021	3.8	ug/L	0.047	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	3/3/2021	3.9	ug/L	0.048	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	10/4/2020	3.5	ug/L	0.045	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	6/15/2020	2.2	ug/L	0.047	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	3/4/2020	3.2	ug/L	0.15	
PZ020	2,067,224	404,088	2,4,6-TRINITROTOLUENE	10/23/2019	3.7	ug/L	0.15	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021	0.68	ug/L	0.053	TR
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2021	0.57	ug/L	0.054	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.67	ug/L	0.051	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.58	ug/L	0.054	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/4/2020	0.62	ug/L	0.15	
PZ020	2,067,224	404,088	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019	0.42	ug/L	0.15	

TABLE E.2 **UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

G0070	2,065,484			SampleDate	Result	Units	DetLim	Flags
	2,005,707	403,541	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.043	ND
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.046	ND
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.05	ND
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.15	ND
G0070	2,065,484	403,541	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021		ug/L	0.049	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.053	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.05	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020		ug/L	0.057	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.15	ND
G0070	2,065,484	403,541	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.043	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.049	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.048	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.16	ND
G0075	2,065,479	403,559	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.15	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021		ug/L	0.049	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.056	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.051	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020		ug/L	0.054	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.16	ND
G0075	2,065,479	403,559	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.15	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.044	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.047	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.043	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.049	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.16	ND
G0076	2,065,469	403,583	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.15	ND
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021		ug/L	0.05	ND
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.054	ND

TABLE E.2 **UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

	MAROS DATA IN U15									
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags		
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.049	ND		
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020	0.2	ug/L	0.056	TR		
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.16	ND		
G0076	2,065,469	403,583	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.15	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.042	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.047	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	6/1/2020		ug/L	0.048	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	3/1/2020		ug/L	0.16	ND		
G0079	2,065,479	403,553	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.15	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021		ug/L	0.048	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.054	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.05	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/1/2020		ug/L	0.055	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2020		ug/L	0.16	ND		
G0079	2,065,479	403,553	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.15	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.046	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	2/28/2021		ug/L	0.044	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	6/11/2020		ug/L	0.047	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND		
G0080	2,065,443	404,329	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.15	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021		ug/L	0.053	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	2/28/2021		ug/L	0.051	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.05	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/11/2020		ug/L	0.054	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND		
G0080	2,065,443	404,329	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.15	ND		
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	5/20/2021		ug/L	0.043	ND		
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.047	ND		
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	9/29/2020		ug/L	0.044	ND		
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.047	ND		

TABLE E.2 **UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT MAROS DATA INPUTS**

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.18	ND
G0081	2,065,490	402,722	2,4,6-TRINITROTOLUENE	10/21/2019	0.29	ug/L	0.16	TR
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021	0.3	ug/L	0.049	
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.054	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/29/2020		ug/L	0.044	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020		ug/L	0.054	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.17	ND
G0081	2,065,490	402,722	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.15	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	5/20/2021	0.73	ug/L	0.043	
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.047	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.043	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	6/2/2020		ug/L	0.052	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
G0082	2,065,493	402,207	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.15	ND
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/20/2021	0.43	ug/L	0.049	TR
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.53	ug/L	0.054	
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020	0.41	ug/L	0.05	
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/2/2020	0.68	ug/L	0.059	TR
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND
G0082	2,065,493	402,207	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019	0.63	ug/L	0.15	TR
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	5/26/2021	4.9	ug/L	0.048	TR
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	3/2/2021	4.9	ug/L	0.047	TR
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	10/4/2020		ug/L	0.045	ND
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	6/16/2020	3.6	ug/L	0.047	
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	3/3/2020	5.9	ug/L	0.16	TR
G0086	2,066,457	403,759	2,4,6-TRINITROTOLUENE	10/23/2019	3.8	ug/L	0.16	
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/26/2021	0.84	ug/L	0.054	TR
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.59	ug/L	0.054	TR
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/4/2020	0.17	ug/L	0.052	TR
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/16/2020	0.21	ug/L	0.054	TR
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
G0086	2,066,457	403,759	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.16	ND

TABLE E.2 **UPGRADIENT WELLS CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	5/25/2021		ug/L	0.045	ND
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.048	ND
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.044	ND
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	6/15/2020		ug/L	0.048	ND
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.15	ND
G0087	2,065,944	403,749	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.15	ND
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/25/2021	0.23	ug/L	0.052	
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021	0.17	ug/L	0.055	TR
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020	0.15	ug/L	0.051	TR
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/15/2020	0.15	ug/L	0.055	TR
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
G0087	2,065,944	403,749	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.15	ND

TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

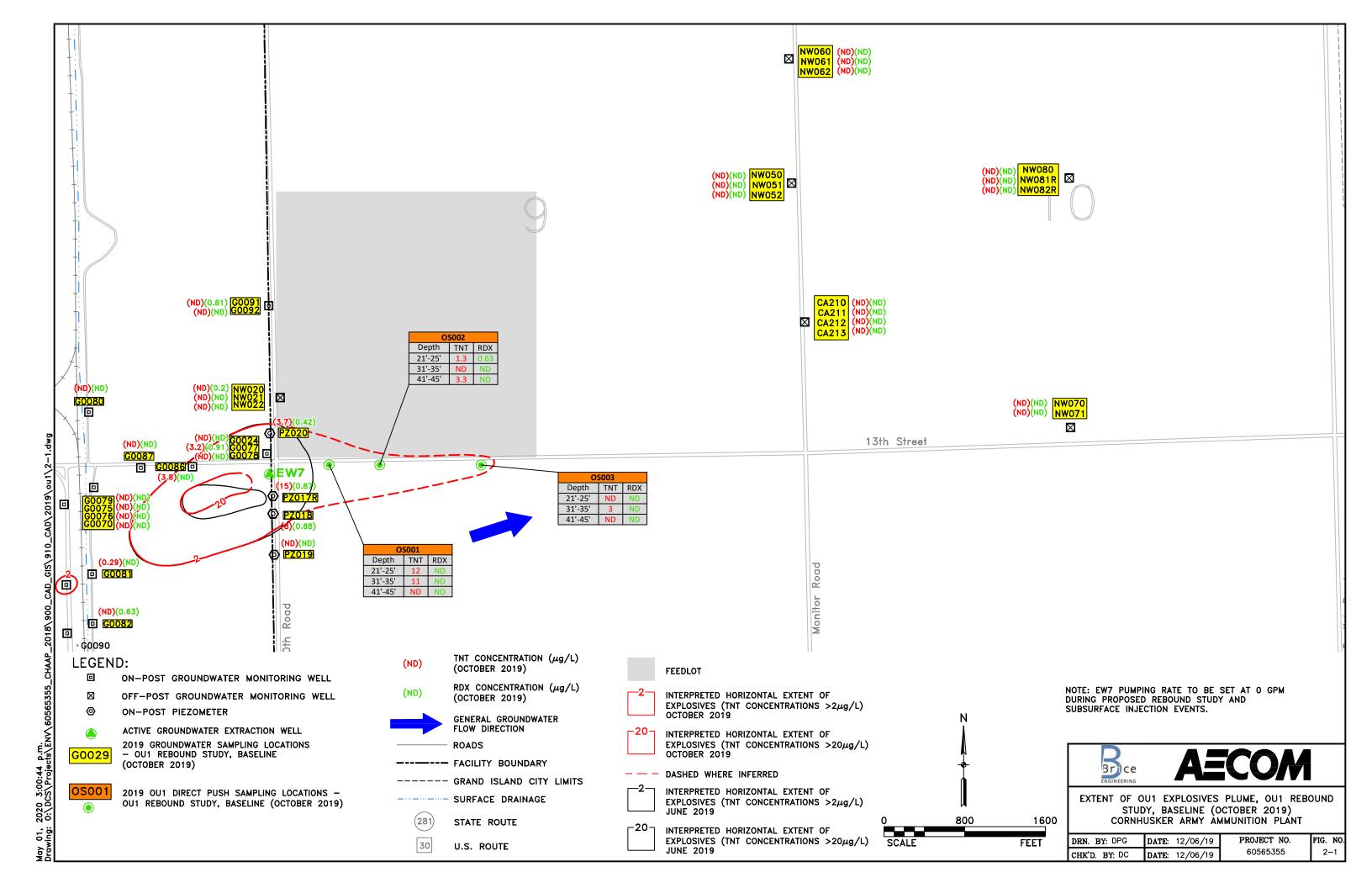
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.1	ND
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.043	ND
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.15	ND
CA210	2,072,527	405,191	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.2	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.049	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
CA210	2,072,527	405,191	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.094	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.045	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
CA211	2,072,573	405,210	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.051	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.16	ND
CA211	2,072,573	405,210	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.097	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.042	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.044	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.049	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
CA212	2,072,578	405,192	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND

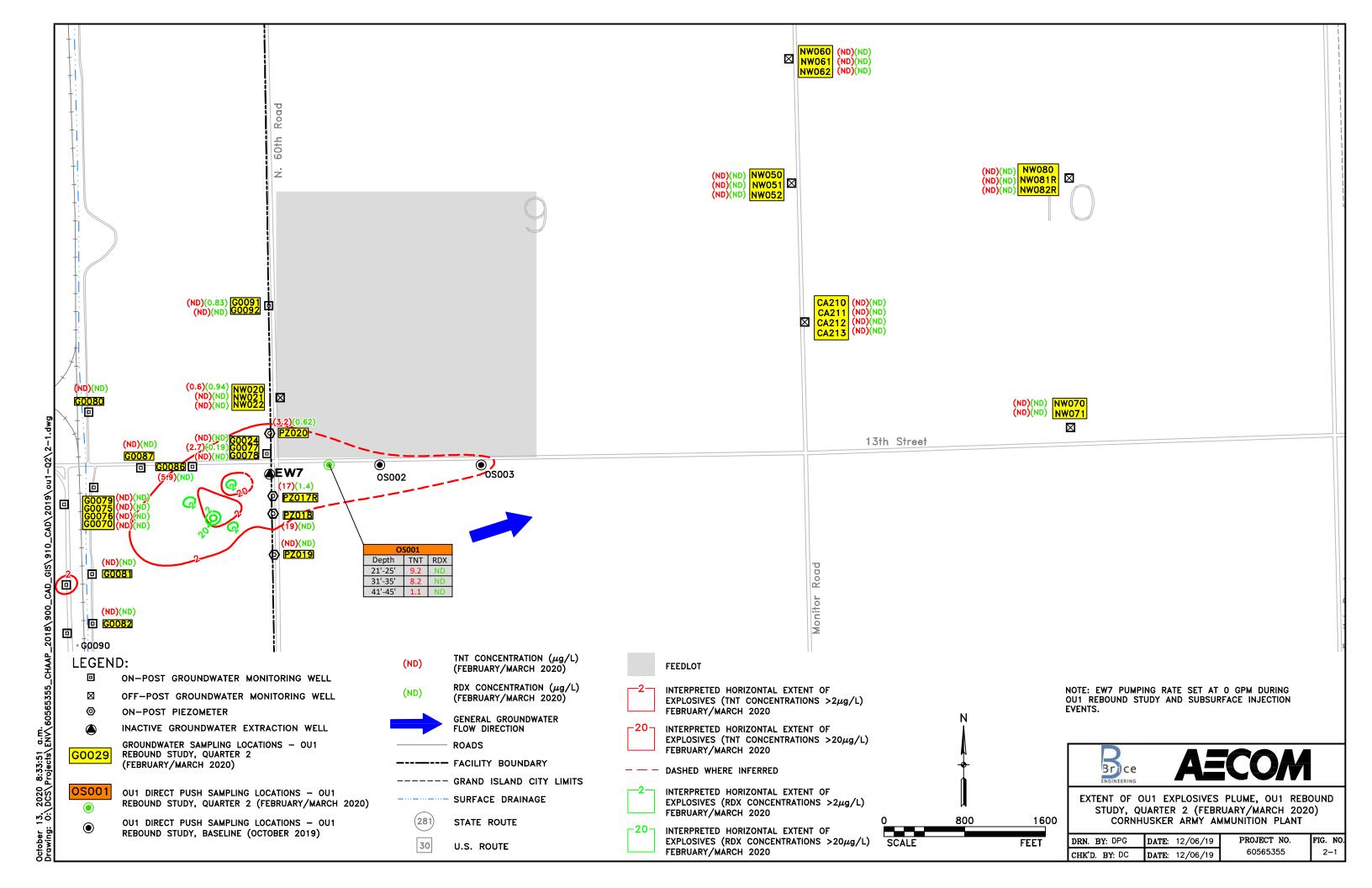
TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

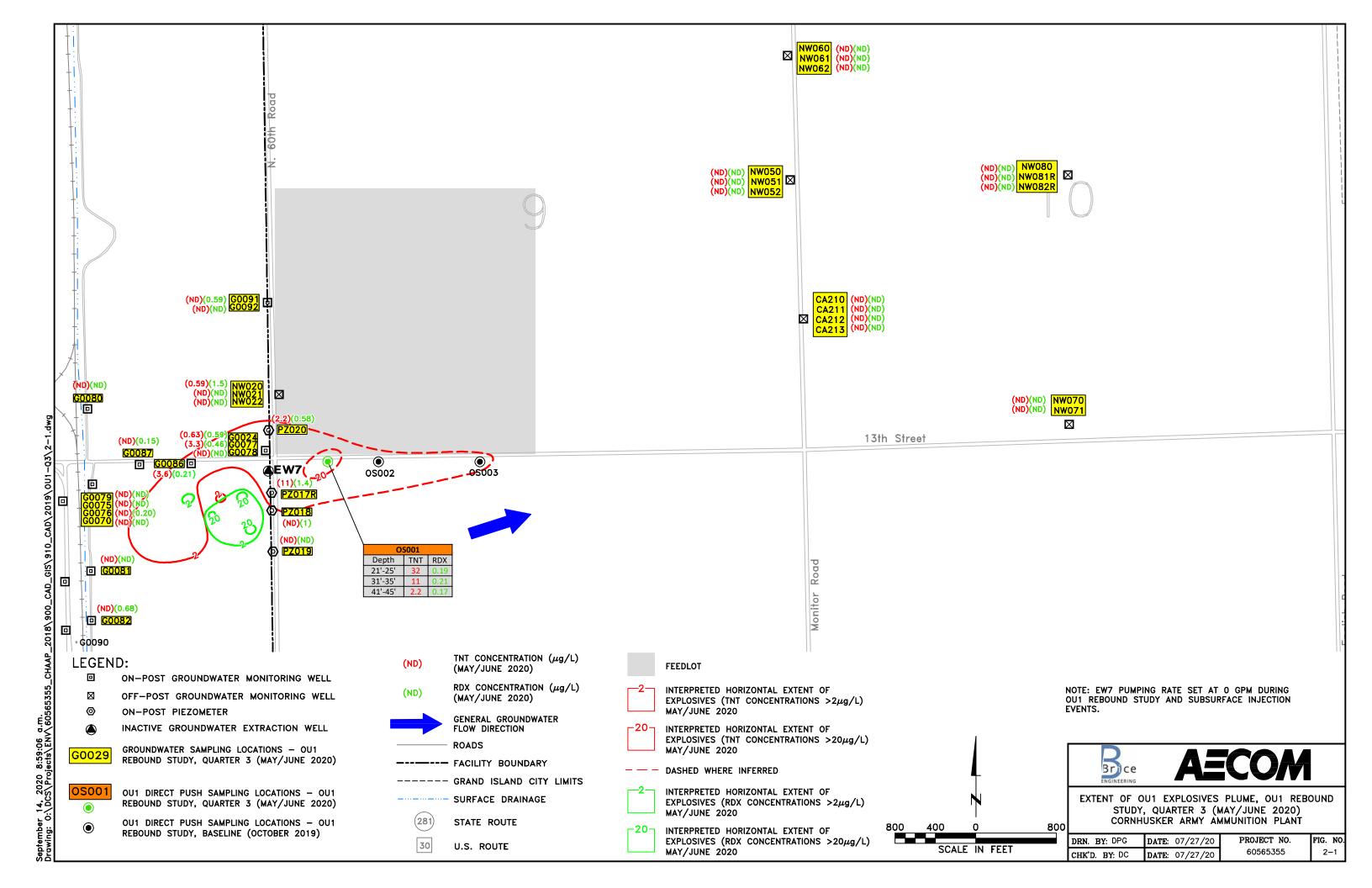
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.05	ND
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.056	ND
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
CA212	2,072,578	405,192	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.097	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	3/2/2021		ug/L	0.043	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	10/2/2020		ug/L	0.045	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.046	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
CA213	2,072,600	405,217	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2021		ug/L	0.049	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/2/2020		ug/L	0.052	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.053	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
CA213	2,072,600	405,217	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
NW050	2,072,396	406,567	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.16	ND
NW050	2,072,396	406,567	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
NW051	2,072,401	406,543	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.16	ND
NW051	2,072,401	406,543	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND

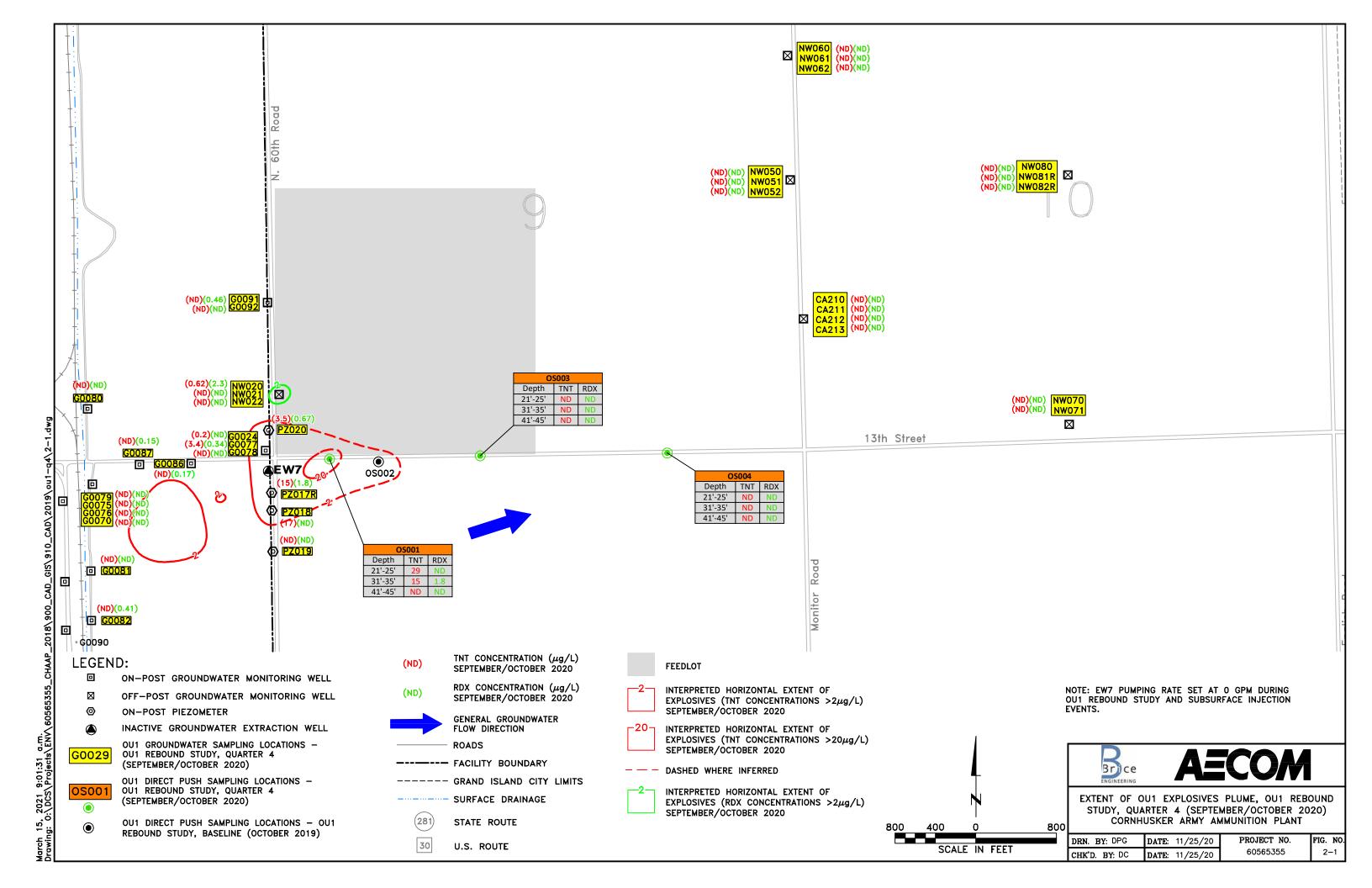
TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS

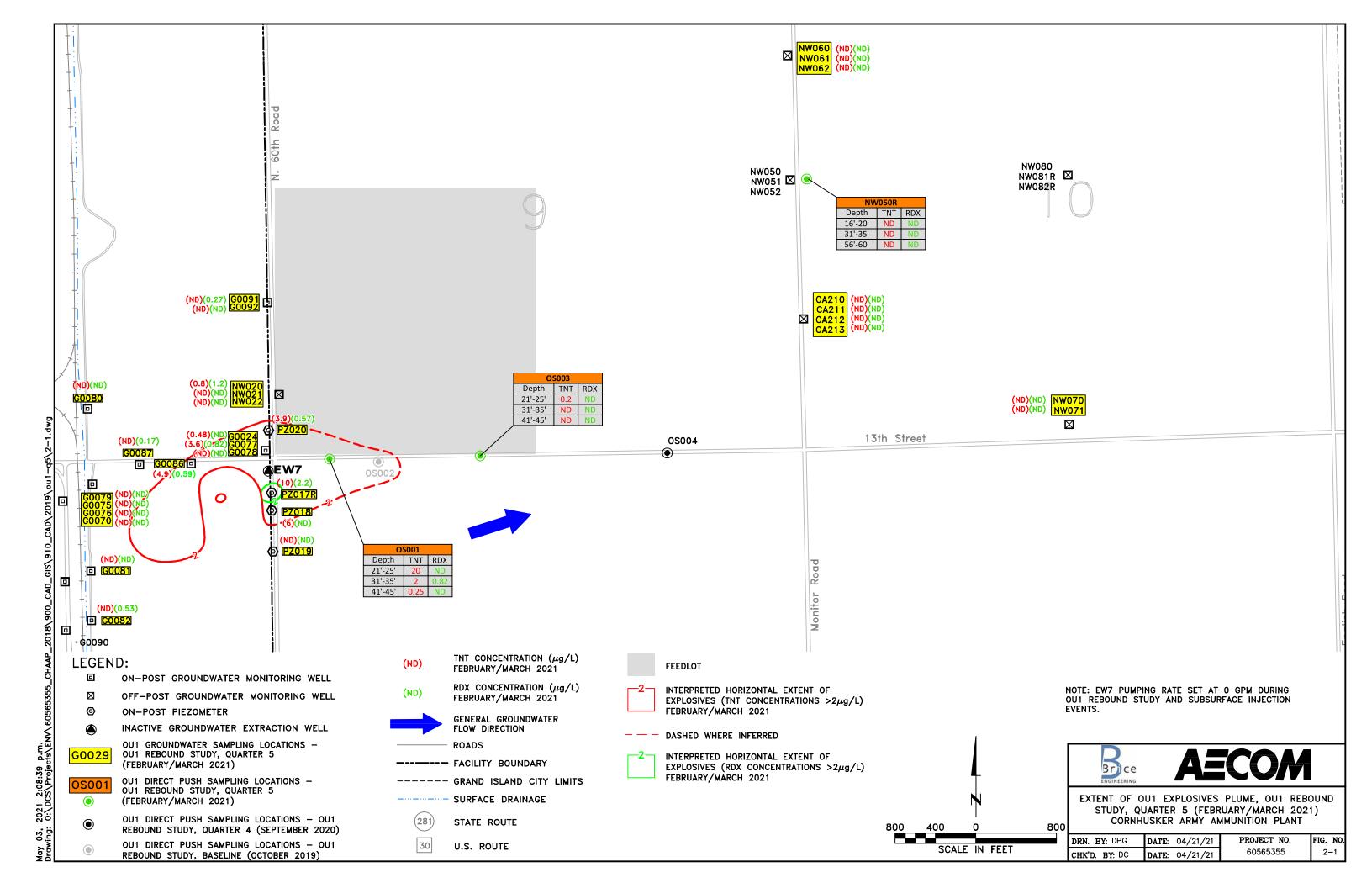
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.044	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
NW052	2,072,410	406,561	2,4,6-TRINITROTOLUENE	10/23/2019		ug/L	0.16	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.15	ND
NW052	2,072,410	406,561	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/23/2019		ug/L	0.16	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.099	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.044	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
NW060	2,072,369	407,799	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.2	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.048	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.05	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND
NW060	2,072,369	407,799	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.097	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.045	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.047	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.15	ND
NW061	2,072,392	407,806	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.048	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.051	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.054	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.15	ND
NW061	2,072,392	407,806	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND


TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS


WIN YOU DE TO THE TOTAL TH								
WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.095	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.042	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	10/1/2020		ug/L	0.043	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.048	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.15	ND
NW062	2,072,383	407,787	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.049	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/1/2020		ug/L	0.049	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.055	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.15	ND
NW062	2,072,383	407,787	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.095	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.041	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.043	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	6/10/2020		ug/L	0.048	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
NW070	2,075,161	404,146	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.19	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.047	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.05	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/10/2020		ug/L	0.055	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND
NW070	2,075,161	404,146	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	5/19/2021		ug/L	0.043	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	3/1/2021		ug/L	0.043	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.047	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	6/9/2020		ug/L	0.048	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	3/2/2020		ug/L	0.16	ND
NW071	2,075,166	404,140	2,4,6-TRINITROTOLUENE	10/21/2019		ug/L	0.16	ND
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	5/19/2021		ug/L	0.049	ND
NW071	2,075,166		HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/1/2021		ug/L	0.049	ND
	, ,	, -	• • • • • • • • • • • • • • • • • • • •			_		


TABLE E.3 DOWNGRADIENT WELLS **CORNHUSKER ARMY AMMUNITION PLANT** MAROS DATA INPUTS


WellName	XCoord	YCoord	Constituent	SampleDate	Result	Units	DetLim	Flags
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.053	ND
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/9/2020		ug/L	0.055	ND
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/2/2020		ug/L	0.16	ND
NW071	2,075,166	404,140	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/21/2019		ug/L	0.16	ND
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.048	ND
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.047	ND
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.17	ND
NW080	2,075,116	406,616	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.054	ND
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.054	ND
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.17	ND
NW080	2,075,116	406,616	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.045	ND
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.05	ND
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
NW081R	2,075,149	406,617	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.051	ND
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.057	ND
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.16	ND
NW081R	2,075,149	406,617	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	9/30/2020		ug/L	0.047	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	6/8/2020		ug/L	0.048	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	3/3/2020		ug/L	0.16	ND
NW082R	2,075,190	406,618	2,4,6-TRINITROTOLUENE	10/22/2019		ug/L	0.16	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	9/30/2020		ug/L	0.054	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	6/8/2020		ug/L	0.055	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	3/3/2020		ug/L	0.16	ND
NW082R	2,075,190	406,618	HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	10/22/2019		ug/L	0.16	ND


Appendix F OU1 Rebound Study Historic Figures

